首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The GnRH antagonist cetrorelix was given during the early (Days 1-5), mid (Days 6-10 or 5-12) or for the entire (Days 1-16) luteal phase of mares to inhibit the secretion of FSH and LH (Day 0=ovulation). Frequent blood sampling from Day 6 to Day 14 was used to determine the precise time-course of the suppression (cetrorelix given Days 6-10). Cetrorelix treatment caused a decrease in FSH and LH concentrations by 8 and 16 h, respectively, and an obliteration of the response to exogenous GnRH given 24h after treatment onset. Treatment never suppressed gonadotropin concentrations to undetectable levels; e.g. frequent sampling showed that the nadirs reached in FSH and LH were 46.2±6% and 33.1±11%, respectively, of pre-treatment concentrations. Daily FSH concentrations were decreased in all treatment groups but daily LH concentrations were lower only when treatment commenced at the beginning of the luteal phase; progesterone concentrations depended on the time of cetrorelix administration, but the changes suggested a role for LH in corpus luteum function. The inter-ovulatory interval was longer than controls when cetrorelix was given in the mid- or for the entire luteal phase, but was unaffected by treatment in the early phase. Nevertheless, in all groups, FSH concentrations were higher (P<0.05 when compared to Day 0, subsequent ovulation) approximately 6-10 days before this next ovulation. This consistent relationship suggests a stringent requirement for a GnRH-induced elevation of FSH above a threshold at, but only at, this time; i.e. approximately 6-10 days before ovulation.  相似文献   

2.
The roles of the pulsatile release of LH in the functional development and maintenance of the corpus luteum (CL) during the estrus cycle in the goat were examined using a potent GnRH antagonist. In Experiment 1, to assess the inhibitory effects of the GnRH antagonist on the release of LH during the estrus cycle, 9 goats were divided into 3 groups. Goats in Group I received only saline on Days 0 (day of ovulation), 5, 10 and 15. Goats in Group II received the GnRH antagonist (50 microg/kg, s.c.) on the days mentioned for Group I to inhibit endogenous LH during the periods of luteal development and maintenance. Goats in Group III received saline on Days 0 and 5 and then the GnRH antagonist on Days 10 and 15 to inhibit LH during the period of luteal maintenance. Serial blood sampling took place on Days 1, 3, 5, 8, 13 and 18 to characterize the LH pulses. The LH pulses were observed throughout the estrus cycle in Group I but were completely abolished in Group II. In Group III, the pulsatile release of LH was observed from Day 1 to 8, but the LH pulses were completely abolished on Days 13 and 18. In Experiment 2, 16 goats were divided into the same 3 groups as in Experiment 1 to examine the effects of the GnRH antagonist on the luteal function. The concentration of progesterone in the plasma in Group I increased after ovulation, reached a maximum level around Day 12, and subsequently returned to the basal level on Day 17. The concentrations of progesterone in Group II rose after ovulation, but reached a plateau around Day 6 and maintained the level up to Day 9, then rapidly decreased from Day 9 to 10 to the basal level. The concentrations of progesterone in Group II were lower on Days 7 to 15 than those in Group I (P<0.01). The concentrations of progesterone in Group III increased after ovulation, reached a maximum level around Day 8, then dropped from Day 10 to 13 to the basal level. The concentrations of progesterone in Group III on Days 11 to 15 were lower than those in Group I (P<0.05 on Day 11, P<0.01 on Days 12 to 15). These results demonstrate that endogenous LH is essential for normal development and maintenance of the CL function during the estrus cycle in the goat. Further, this study suggests that while the functional maintenance of the caprine CL depends entirely on LH support, such functional dependence during early CL development is only partial.  相似文献   

3.
Progesterone secretion has been observed to be episodic in the late luteal phase of the oestrous cycle of ewes and is apparently independent of luteinizing hormone (LH). This study investigated the effects of suppressing the pulsatile release of LH in the early or late luteal phase on the episodic secretion of progesterone. Six Scottish Blackface ewes were treated i.m. with 1 mg kg-1 body weight of a potent gonadotrophin-releasing hormone (GnRH) antagonist on either day 4 or day 11 of the luteal phase. Six ewes received saline at each time and acted as controls. Serial blood samples were collected at 10 or 15 min intervals between 0 and 8 h, 24 and 32 h, and 48 and 56 h after GnRH antagonist treatment and daily from oestrus (day 0) of the treatment cycle for 22 days. Oestrous behaviour was determined using a vasectomized ram present throughout the experiment. Progesterone secretion was episodic in both the early and late luteal phase with a frequency of between 1.6 and 3.2 pulses in 8 h. The GnRH antagonist abolished the pulsatile secretion and suppressed the basal concentrations of LH for at least 3 days after treatment. This suppression of LH, in either the early or late luteal phase, did not affect the episodic release of progesterone. Daily concentrations of progesterone in plasma showed a minimal reduction on days 11 to 14 after GnRH antagonist treatment on day 4, although this was significant (P < 0.05) only on days 11 and 13. There was no effect of treatment on day 11 on daily progesterone concentration, and the timing of luteolysis and the duration of corpus luteum function was unaffected by GnRH antagonist treatment on either day 4 or day 11. These results indicate that the episodic secretion of progesterone during the luteal phase of the oestrous cycle in ewes is independent of LH pulses and normal progesterone secretion by the corpus luteum can be maintained with minimal basal concentrations of LH.  相似文献   

4.
Standard bred mares that were cycling normally were treated beginning on Days 9 or 10 of the oestrous cycle with repeated pulses of GnRH (20 micrograms/h) and/or a single injection of prostaglandin (PG)F-2 alpha (alfaprostol, 3 mg), and were subsequently bled and palpated daily until the next ovulation. GnRH treatment increased serum concentrations of LH and progesterone at 4 days after the start of treatment compared to controls. The combination of PGF-2 alpha + GnRH treatment resulted in an immediate decline in serum progesterone values, and subsequently decreased the interval to next ovulation by 4.5 days compared to controls. Mean serum concentrations of FSH were not different among treatment groups 4 days after the start of treatment, and there was a consistent trend among all treatment groups for decreasing concentrations of FSH within the 6 days before ovulation. We conclude that, under our experimental conditions, pulsatile administration of GnRH provides a short-term luteotrophic stimulus, probably by the elevation in serum LH, but that this stimulus cannot indefinitely prevent the luteolytic effects of exogenously administered PGF-2 alpha. Although GnRH treatment combined with PGF-2 alpha injection hastened the impending ovulation, this regimen was no more effective than PGF-2 alpha treatment alone.  相似文献   

5.
Post-partum acyclic beef cows received continuous long-term treatment with GnRH (200 or 400 ng/kg body wt/h) or the GnRH agonist buserelin (5.5 or 11 ng/kg body wt/h) using s.c. osmotic minipumps which were designed to remain active for 28 days. All treatments increased circulating LH concentrations whereas FSH remained unchanged. Ovulation and corpus luteum (CL) formation as judged by progesterone concentrations greater than or equal to 1 ng/ml occurred in 0/5 control, 4/5 200 ng GnRH, 4/4 400 ng GnRH, 4/5 5.5 ng buserelin and 3/5 11 ng buserelin cows. The outstanding features of the progesterone profiles were the synchrony, both within and across groups, in values greater than or equal to 1 ng/ml around Day 6, and the fact that most CL were short-lived (4-6 days). Only 3 cows, one each from the 400 ng GnRH, 5.5 ng buserelin and 11 ng buserelin groups, showed evidence of extended CL function. Cows failed to show a second ovulation which was anticipated around Day 10 and this could have been due to insufficient FSH to stimulate early follicular development, or the absence of an endogenously driven LH surge. The highest LH concentrations for the respective groups were observed on Days 2 and 6 and by Day 10 LH was declining, although concentrations did remain higher than in controls up to Day 20.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

6.
To determine whether luteinizing hormone (LH) secretion during the first estrous cycle postpartum is characterized by pulsatile release, circulating LH concentrations were measured in 8 postpartum mares, 4 of which had been treated with 150 mg progesterone and 10 mg estradiol daily for 20 days after foaling to delay ovulation. Blood samples were collected every 15 min for 8 h on 4 occasions: 3 times during the follicular phase (Days 2-4, 5-7, and 8-11 after either foaling or end of steroid treatment), and once during the luteal phase (Days 5-8 after ovulation). Ovulation occurred in 4 mares 13.2 +/- 0.6 days postpartum and in 3 of 4 mares 12.0 +/- 1.1 days post-treatment. Before ovulation, low-amplitude LH pulses (approximately 1 ng/ml) were observed in 3 mares; such LH pulses occurred irregularly (1-2/8 h) and were unrelated to mean circulating LH levels, which gradually increased from less than 1 ng/ml at foaling or end of steroid treatment to maximum levels (12.3 ng/ml) within 48 h after ovulation. In contrast, 1-3 high-amplitude LH pulses (3.7 +/- 0.7 ng/ml) were observed in 6 of 7 mares during an 8-h period of the luteal phase. The results suggest that in postpartum mares LH release is pulsatile during the luteal phase of the estrous cycle, whereas before ovulation LH pulses cannot be readily identified.  相似文献   

7.
These experiments tested the hypothesis that administration of steroid hormones to ovariectomized (OVX) mares during the vernal transition to the breeding season would influence LH and FSH secretion. Circulating gonadotropin concentrations, response to exogenous GnRH, and pituitary gonadotropin content were monitored. Experiments 1 and 2 were conducted, beginning 10 March, and 3 February, respectively, utilizing a total of 30 long-term OVX pony mares. In experiment 1, mares were administered vehicle (n = 5) or estradiol-17 beta (E2, n = 5, 5 mg/3 ml sesame oil), twice daily for 16 days. Blood samples were collected daily for assessment of circulating LH and FSH concentrations. On Day 10 of treatment, 400 micrograms GnRH were administered to all mares. LH increased significantly over days of treatment in the estradiol-treated group, but pituitary response to GnRH tended to be less than in control mares. Circulating FSH tended to decline over days of treatment in estradiol-treated mares, and the pituitary response to GnRH was significantly reduced. Pituitary LH, but not FSH, was increased on Day 16 of treatment with estradiol. In experiment 2, 20 OVX mares received, twice daily, vehicle (n = 5), E2, n = 5; 5 mg), progesterone (P4, n = 5; 100 mg), or progesterone plus estradiol (P4/E2, n = 5; 100 + 5 mg). Treatment continued for 14 days. GnRH (100 micrograms) challenges were administered on Days 6 and 13 of treatment.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

8.
Cycling standardbred mares were infused with saline or 20 micrograms gonadotropin-releasing hormone (GnRH) in a pulsatile pattern (one 5-sec pulse/h, 2 h or 4 h) beginning on Day 16 of the estrous cycle. Although serum concentrations of luteinizing hormone (LH) increased significantly earlier in all three GnRH-treated groups (within one day of the initiation of infusion) compared to saline-infused controls, there were no differences in peak periovulatory LH concentrations among treatments (overall mean +/- SEM, 8.98 +/- 0.55 ng/ml). The number of days from the start of treatment to ovulation was significantly less in mares infused with 20 micrograms GnRH/h (mean +/- SEM, 2.9 +/- 0.6 days after the initiation of treatment, or 18.9 days from the previous ovulation; N = 7) compared to mares treated with saline (5.9 +/- 0.3 days, or 21.9 days from previous ovulation; N = 7) or 20 micrograms GnRH per 4 h (5.4 +/- 0.9 days or 21.4 days from previous ovulation; N = 5). Although mares infused with 20 micrograms GnRH/2 h ovulated after 4.3 +/- 0.7 days of treatment (Day 20.3; N = 7), this was not significantly different from either the control or 20 micrograms GnRH/h treatment groups. Neither the duration of the resulting luteal phase nor the length of the estrous cycle was different between any of the treatment groups (combined means, 14.7 +/- 0.2 days and 21.3 +/- 0.4 days, respectively). We conclude that pulsatile infusion of GnRH is effective in advancing the time of ovulation in cycling mares, but that the frequency of pulse infusion is a critical variable.  相似文献   

9.
Practical estrus synchronization schemes are needed for mares. The Ovsynch synchronization protocol for cattle involves the administration of gonadotropin-releasing hormone (GnRH) to induce ovulation or luteinization of dominant follicles during the luteal phase and prostaglandin 7 days later to cause regression of any luteal tissue and development of a preovulatory follicle. An Ovsynch-type synchronization program potentially could be developed for horses if luteinization or ovulation of diestrous follicles occurred in response to GnRH treatment. The objective of this study was to determine if administration of the GnRH agonist, deslorelin acetate, on Day 8 or 12 postovulation would induce luteinization or ovulation of diestrous follicles in the mare. The model used was cycling mares maintained in an artificial luteal phase by administration of a synthetic progestin following prostaglandin-induced luteal regression. On the day of ovulation, 21 light horse mares were randomly assigned to one of three groups: (1) no GnRH, altrenogest from Days 5 to 15 postovulation with prostaglandin on Day 15; (2) GnRH on Day 8, altrenogest from Days 5 to 15 with prostaglandin given on Day 6 to induce luteolysis of the primary corpus luteum, an implant containing 2.1mg of deslorelin acetate inserted on Day 8 and removed on Day 10, with a second prostaglandin treatment on Day 15; (3) GnRH on Day 12, altrenogest from Days 9 to 19, prostaglandin on Day 10, a deslorelin acetate implant injected on Day 12 (subsequently removed on Day 14), and a second dose of prostaglandin administered on Day 19. Follicular development was monitored every other day from Day 5 until a 30-mm sized follicle was observed, and then daily to detection of ovulation. Serum progesterone concentrations were determined daily for 12 consecutive days. Progesterone concentrations in Group 1 remained elevated until approximately Day 12 postovulation. Prostaglandin administration on Day 15 resulted in complete luteolysis in all seven mares. In Group 2, progesterone concentrations in six of seven mares declined to baseline after prostaglandin treatment. No increase in serum progesterone was noted in any of the six mares that were given GnRH on Day 8, including three mares that had diestrous follicles > or =30mm in diameter at the time of treatment. Similarly, progesterone concentrations in six of seven mares in Group 3 declined to baseline after prostaglandin and there was no increase in progesterone after administration of GnRH on Day 12. No ultrasound evidence of luteinization or ovulation of diestrous follicles were noted after GnRH administration in any mares of Group 2 or 3. In conclusion, administration of the GnRH agonist deslorelin acetate to mares failed to induce luteinization or ovulation of diestrous follicles. Consequently, the Ovsynch program (as used in cattle) has little efficacy for synchronization of estrus in mares.  相似文献   

10.
The influence of episodic LH pulses before and subsequent to ovulation on size and function of the corpus luteum (CL) in cattle was examined. Treatments were 1) control; 2) LHRH antagonist starting 2 days before the preovulatory LH surge (Antagonist [Ant] -2); 3) LHRH antagonist at initiation of the preovulatory LH surge (Ant 0); and 4) LHRH antagonist starting 2 days after the preovulatory LH surge (Ant 2). Treatments with an LHRH antagonist were continued until 7 days after the preovulatory surge. Diameter of the CL and concentrations of progesterone were monitored during the luteal phase that ensued after treatment. Maximum average diameters of CL were 9.5, 17.5, 21.6, and 28.8 mm for females from the Ant -2, Ant 0, Ant 2, and control groups, respectively (P < 0. 01). Compared with those in control animals, concentrations of progesterone in plasma were less (P < 0.01) in animals in which release of LH pulses was inhibited by treatment with antagonist. Arbitrary units under the curve for concentrations of progesterone during the luteal phase of the estrous cycle for Ant -2, Ant 0, Ant 2, and control groups were 19.6, 41.6, 43.6, and 142.2, respectively. There was no difference in circulating concentrations of progesterone (P > 0.1) among antagonist-treated groups. In conclusion, episodic release of LH pulses before, during, and after the time of the preovulatory surge of LH may stimulate development and function of the CL in cattle.  相似文献   

11.
Our hypothesis was that luteal function, as determined by plasma progesterone concentrations, and corpus luteum (CL) size is enhanced in cattle administered an agonist of GnRH when the CL is developing as compared with administration of an agonist when the CL is fully functional. Cattle were chronically administered a GnRH agonist, azagly-nafarelin, from Day 3 to Day 21 (D3) or Day 12 to Day 21 (D12) or served as untreated control females (Day 0 = behavioral estrus). Blood samples were serially collected on Days 7 and 14 to evaluate LH secretory patterns and twice daily to measure plasma progesterone. Ultrasonographic examinations were conducted daily to record the area of the CL. CL size and plasma progesterone concentrations were both enhanced in the D3 group as compared with the control group. Progesterone was increased in the D12 group on Days 16 and 17 as compared with the control females. Treatment with GnRH agonist increased basal and mean LH concentrations in both D3 and D12 groups as compared with the controls. We rejected our hypothesis because chronic administration of a GnRH agonist increased plasma progesterone when administered both when the CL was developing and when it was fully functional. The enhanced luteal function was likely due to increased basal LH.  相似文献   

12.
Two experiments involving crossbred ewes which lambed during the breeding season were performed to determine whether: (a) the interval to first postpartum ovulation could be reduced by weaning or mastectomy; (b) there are differences in luteal structure and luteinizing hormone (LH) receptor concentration between first postpartum corpora lutea induced with GnRH and normal cycling corpora lutea and (c) pretreatment of postpartum ewes with progesterone would affect luteal LH receptor concentration and luteal phase serum progesterone concentration.In experiment I, the mean interval (±SEM) to the first postpartum ovulation was 22.3 ± 1.1 days and was not significantly altered by weaning or mastectomy. More than half of the ewes had small, short-lived peaks of serum progesterone associated with short-lived corpora lutea prior to the normal luteal phase rise of serum progesterone. In experiment II, 2 h after GnRH injection on day 18 postpartum, serum LH concentrations were higher in ewes which received progesterone treatment on days 13 and 14 than in control ewes. Progesterone treatment did not affect mean corpus luteum weight (157 mg) or concentration of LH receptors (0.95 fmol/mg) in first postpartum corpora lutea, but progesterone-treated ewes had significantly higher endogenous serum progesterone concentrations on days 21–24. GnRH-induced corpora lutea from postpartum ewes were lighter in weight, paler in color, had lower LH receptor concentrations and had a more regressed histological appearance than corpora lutea of a similar age from normal, cycling ewes.  相似文献   

13.
Occupied and unoccupied LH receptors in corpora lutea, and LH and progesterone concentrations in circulating plasma, were measured in non-pregnant gilts that had been treated with oestradiol-17 beta benzoate to prolong luteal function. Oestradiol benzoate (5 mg, administered on Day 12 after oestrus) delayed luteal regression and the decline in LH receptor levels at luteolysis and raised unoccupied receptor levels from 11.8 +/- 1.14 fmol/mg protein on Days 10--15 after oestrus to 31.8 +/- 3.26 fmol/mg protein on Days 15--21. There was no simultaneous rise in occupied receptor levels and occupancy decreased from 29.8 +/- 3.01 to 11.5 +/- 1.26%. Basal plasma LH concentrations were unchanged by oestradiol, but mean corpus luteum weight and plasma progesterone concentrations were slightly reduced. Oestradiol benzoate on Day 12 caused a similar increase in unoccupied receptor levels in gilts hysterectomized on Days 6--9 after oestrus, from 17.0 +/- 5.83 to 34.5 +/- 6.00 fmol/mg protein, determined on Days 15--18. Plasma concentrations of LH and progesterone were unchanged by oestradiol. Unoccupied receptor levels in corpora lutea and plasma LH and progesterone were unaltered by hysterectomy in untreated gilts. Occupied receptor levels were not influenced by hysterectomy or oestradiol. It is concluded that oestradiol-17 beta raises luteal LH receptor levels by a mechanism independent of the uterus.  相似文献   

14.
A study was conducted to evaluate the effectiveness of gonadotropin-releasing hormone (GnRH) pulse infusion to stimulate follicular development and induce ovulation in seasonally anestrous standardbred mares. Seventeen mares were selected for use in this experiment, on the basis of a previous normal reproductive history, and were housed under a photoperiod of 8L:16D beginning one week prior to the start of the experiment (second week in January). Mares were infused with 20 micrograms (n = 7) or 2 micrograms (n = 6) GnRH/h, or were subjected to photoperiod treatment only (controls, n = 4). Serum concentrations of luteinizing hormone (LH), follicle-stimulating hormone (FSH), and progesterone did not vary, and neither significant follicular development nor ovulation was observed in any control mare throughout the experimental period (greater than 60 days). By contrast, both groups of GnRH-treated mares showed elevated serum concentrations of LH and FSH within one day after the start of infusion. Mares infused with 20 micrograms GnRH/h had at least one follicle greater than or equal to 25 mm in 7.4 +/- 1.3 (mean +/- SEM) days following the start of infusion, and ovulated in 12.0 +/- 0.7 days. In the 2-microgram-GnRH/h treatment group, a 25-mm follicle was detected in 5.7 +/- 0.7 days, and ovulation occurred after 10.0 +/- 0.3 days of infusion. Ovulation in every instance was followed by a functional luteal phase, as indicated by the profiles of progesterone secretion.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

15.
Anestrous postpartum (PP) Hereford cows (n =20) were used to determine the effects of repeated injections of human chorionic gonadotropin (hCG) on the progesterone (P4) secretion and functional lifespan of gonadotropin-releasing hormone (GnRH)-induced corpora lutea (CL). Suckling was reduced to once a day from Day 21 to Day 25 PP, and all cows received injections of 200 micrograms GnRH at 1500 h on Day 24 PP to induce ovulation. Treated cows (HCG, n = 10) received 200 IU hCG b.i.d. from 1900 h on Day 27 PP to 1900 h on Day 33 PP; control cows (CTRL, n=10) were not injected. Blood was collected on Days 21, 23, 25, and 27 to 33, 35, 37, and 39 PP. Serum P4 concentration was measured by radioimmunoassay and used to classify luteal lifespan and the associated estrous cycle as short (SHORT) or normal (NORM) in duration. Treatment with hCG resulted in more (p less than 0.01) cows with SHORT cycles (7 of 9 vs. 4 of 9). Serum P4 concentrations were similar (p greater than 0.20) between groups from 4 days before until 6 days after GnRH injection. Cows with NORM cycles (n = 7) had greater serum P4 concentrations (p less than 0.05) on Days 7 to 11 after GnRH than cows with SHORT cycles (n = 11). By Day 39 PP, all cows with SHORT cycles appeared to have undergone a second ovulation. Charcoal-stripped serum pools from before (PRE) and during hCG injection (INJ) were assayed for total luteinizing hormone-like bioactivity (LH-BA) using a dispersed mouse-Leydig cell bioassay.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

16.
The aim of the study was to investigate the effect of the GnRH agonist Buserelin given on day 10 after ovulation on pregnancy rate and concentrations of progesterone and LH. Altogether 191 warmblood mares were used for two trials. Fresh or frozen/thawed semen from 27 stallions was used for A.I. In trial A 171 mares received either Buserelin (Receptal, Hoechst, Germany, 40 microg/animal) or 10 ml 0.9% NaCl (placebo). On day 16 after A.I. pregnancy diagnosis was performed by ultrasound scanning of the uterus. For statistical analysis, data were analyzed by a mixed model, with four fixed factors (treatment, type of spermatozoa, A.I. number, reproductive status of the mare) and a random factor (stallion). Least Square Means (LSM) for pregnancy rate were 46.0% in GnRH agonist treated mares and 36.4% in the control group (P=0.22). In trial B 20 lactating and cycling mares were used for endocrine studies. Blood samples were recovered for analyses of progesterone and LH from days 0 to 11. The mean progesterone concentrations increased continuously from days 0 to 8 after ovulation in both groups (GnRH group: from 0.81+/-0.48 to 5.47+/-0.48 ng/ml, control group: from 0.63+/-0.68 to 5.83+/-0.68 ng/ml). Moreover, the progesterone concentrations from days 9 to 11 were not different between the GnRH and the control group. In contrast to this LH concentrations were markedly influenced by the GnRH agonist. On day 10 LH concentrations were significantly higher in GnRH agonist treated than in placebo treated animals. From the data obtained from individual animals it can be concluded that GnRH agonist, given during luteal phase may have different effect on luteal function.  相似文献   

17.
To examine the effect of purified LH on development and function of luteal cells, 27 ewes were assigned to: (1) hypophysectomy plus 2 micrograms ovine LH given i.v. at 4-h intervals from Days 5 to 12 of the oestrous cycle (oestrus = Day 0; Group H + LH; N = 7); (2) hypophysectomy with no LH replacement (Group N-LH; N = 6); (3) control (no hypophysectomy) plus LH replacement as in Group H + LH (Group S + LH; N = 7); (4) control with no LH treatment (Group S-LH; N = 7). Blood samples were collected at 4-h intervals throughout the experiment to monitor circulating concentrations of LH, cortisol and progesterone. On Day 12 of the oestrous cycle corpora lutea were collected and luteal progesterone concentrations, unoccupied receptors for LH and number and sizes of steroidogenic and non-steroidogenic luteal cell types were determined. Corpora lutea from ewes in Group H-LH were significantly smaller (P less than 0.05), had lower concentrations of progesterone, fewer LH receptors, fewer small luteal cells and fewer non-steroidogenic cells than did corpora lutea from ewes in Group S-LH. The number of large luteal cells was unaffected by hypophysectomy, but the sizes of large luteal cells, small luteal cells and fibroblasts were reduced. LH replacement in hypophysectomized ewes maintained luteal weight and the numbers of small steroidogenic and non-steroidogenic luteal cells at levels intermediate between those observed in ewes in Groups L-LH and S-LH. In Group H + LH ewes, luteal and serum concentrations of progesterone, numbers of luteal receptors for LH, and the sizes of all types of luteal cells were maintained. Numbers of small steroidogenic and non-steroidogenic cells were also increased by LH in hypophysectomized ewes. In Exp. II, 14 ewes were assigned to: (1) sham hypophysectomy with no LH replacement therapy (Group S-LH; N = 5); (2) sham hypophysectomy with 40 micrograms ovine LH given i.v. at 4-h intervals from Day 5 to Day 12 of the oestrous cycle (Group S + LH; N = 5); and (3) hypophysectomy plus LH replacement therapy (Group H + LH; N = 4). Experimental procedures were similar to those described for Exp. I. Treatment of hypophysectomized ewes with a larger dose of LH maintained luteal weight, serum and luteal progesterone concentrations and the numbers of steroidogenic and non-steroidogenic luteal cells at control levels.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

18.
The role of LH in luteal function in pregnant dogs was investigated at two different periods during pregnancy: (i) the transitional period from apparent total independence of the corpus luteum to relative hormonal dependence (days 20-35); and (ii) the period of full hormonal dependence (days 35-40). At both periods, LH neutralization, LH inhibition and LH administration studies were conducted. At both periods LH immunoneutralization had no significant effect on the secretion pattern of progesterone or prolactin. GnRH antagonist treatment (Nal-Glu) decreased plasma LH below the detection limit in all treatment periods. Nal-Glu had no effect on prolactin. When GnRH antagonist osmotic pumps were implanted, a transient decrease in plasma progesterone concentrations occurred on days 21-22 but not during the remaining implantation period. When GnRH antagonist was injected, plasma progesterone temporarily decreased (24 h) after the beginning of treatment starting on day 20, but decreased for 5 days when the treatment started on day 35. When purified pig LH was injected i.v. twice a day for 2 consecutive days either from day 30 or from day 40, plasma progesterone concentrations remained constant during treatment. However, on days 40 and 41, an increase in prolactin was observed. These results indicate that LH immunoneutralization may not impair corpus luteum function. In addition, GnRH antagonist induces dose- and time-dependent effects. Only high doses resulted in a decrease in progesterone, the duration of which increased as pregnancy progressed. Continuous GnRH antagonist administration, even when associated with complete LH inhibition, was not associated with detectable effects on progesterone. Finally, LH administration does not stimulate progesterone but may modify prolactin in the last third of pregnancy. Other studies indicated a corpus luteum prolactin dependency. The present study indicates that, in pregnant bitches, LH may not be necessary to sustain progesterone synthesis but that its role may vary in a time-dependent manner.  相似文献   

19.
To investigate the effects of prostaglandin (PGF 2alpha) plus GnRH at different stages of the luteal phase 13 ewes received PGF 2alpha on Day 9 of the synchronized cycle, followed 36 h later by GnRH. This control regimen resulted in ovulation and normal corpus luteum (CL) function. In the next cycle, the ewes were treated simultaneously with PGF 2alpha and GnRH either on Day 4 (early, n = 7) or Day 9 (late, n = 6). Ovarian activity was monitored daily by ultrasonography, and blood samples were obtained to monitor hormonal patterns. Size of the largest follicle present when GnRH was administered was similar in all groups, but the preceding growth rate was greatest for the early group. In the 36 h after injection of PGF 2alpha, serum progesterone (P4) had declined to basal levels in the control cycles when GnRH was administered, but P4 concentrations were higher in the early group and were highest in the late group when the GnRH was administered with PGF 2alpha. The LH surges induced by GnRH were highest in the control cycles, and were lower in the 2 treated groups. In the early group, 6 of 7 ewes demonstrated ovulation within 48 h of GnRH, resulting in the formation of normal CL. In the late group, ovulation was delayed for about 5 d in 4 of 6 ewes, and subsequent luteal function was normal; no ovulation was detected in the other 2 ewes of this group, but the follicles became luteinized, resulting in a normal P4 profile in one and subnormal in the other. These results suggest that follicles present during the early luteal phase are capable of ovulating and forming fully functional CL in response to exogenous GnRH. In contrast, follicles present during the late luteal phase fail to ovulate in response to GnRH while P4 levels are high, even though the LH stimulus is adequate; however, these follicles persist and subsequently ovulate after P4 levels have decreased. Therefore, the endocrine milieu to which a follicle was exposed may be more important than its size in determining its ability to undergo ovulation and development into a normal CL.  相似文献   

20.
Dispersed horse luteal cells were used to evaluate the ability of horse LH, hCG and PMSG to stimulate progesterone secretion in vitro. Morphological characterization of these cells before gonadotrophin stimulation indicated the presence of two populations of cells based on cell diameters. In luteal cells incubated as suspended cells, horse LH and hCG stimulated (P less than or equal to 0.05) progesterone production at all levels of treatment. Stimulation of progesterone secretion by hCG was greater (P less than or equal to 0.05) than by horse LH over the range of concentrations utilized. When mares (N = 7) received an intramuscular injection of 1000 i.u. hCG on Days 3, 4 and 5 after the end of oestrus, there was an increase (P less than or equal to 0.05), in peripheral progesterone concentrations beginning on Day 7 and continuing until Day 14 compared with controls (N = 7). Peripheral progesterone concentrations continued to be elevated in hCG-treated mares for Days 15-30 after oestrus in those mares that conceived. Although treatment with hCG increased progesterone concentrations, it had no influence on anterior pituitary release of LH as measured by frequency and amplitude of LH discharge. We conclude that the mare corpus luteum is responsive to gonadotrophins in vitro and that exogenous hCG can enhance serum progesterone concentrations throughout the oestrous cycle and early pregnancy.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号