首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Oestrus, conception and lambing performance were assessed in progesterone-primed seasonally anoestrous ewes induced to ovulate with gonadotrophin-releasing hormone (Gn-RH), which was administered intravenously for 48 h as either injections of 250 ng at 2-h intervals (n = 15) or as a continuous infusion at the rate of 125 ng/h (n = 12) or 250 ng/h (n = 12).In 1415 of the ewes injected with Gn-RH, a preovulatory LH peak was recorded at a mean time interval of 33.9 ± 1.8 h after the start of treatment. All ewes displayed oestrus and all ovulated, with a mean ovulation rate of 1.67 ± 0.13. Eleven ewes were diagnosed as pregnant and subsequently lambed. Following infusion of Gn-RH, preovulatory LH peaks were recorded in 2124 ewes at a mean time of 36.1 ± 2.9 h (125 ng/h) and 34.7 ± 2.0 h (250 ng/h). All but two of the ewes displayed oestrus and 2324 ovulated. The group mean ovulation rates of 1.27 ± 0.14 (125 ng/h) and 1.75 ± 0.22 (250 ng/h) were not significantly different. Eleven of the 22 ewes mated were diagnosed as pregnant and produced live lambs.These results suggest that fertility of Gn-RH-induced ovulations in seasonally anoestrous ewes is comparable to that apparent in ewes ovulating spontaneously during the breeding season.  相似文献   

2.
In two experiments carried out during seasonal anoestrus, Romney Marsh ewes were treated with small-dose (250 ng) multiple injections of GnRH at 2-h intervals with and without progesterone pretreatment. In Exp. 1, 8/8 progesterone-primed ewes ovulated and produced functionally normal corpora lutea compared with 2/9 non-primed ewes. Follicles were recovered from similarly treated animals 18 or 28 h after the start of GnRH treatment (at least 14 h before the estimated time of the LH peak) and assessed in terms of diameter, granulosa cell number, oestradiol, testosterone and progesterone concentrations in the follicular fluid, oestradiol production in vitro and binding of 125I-labelled hCG to granulosa and theca. There were no significant differences in any of these measures in 'ovulatory' follicles recovered from the progesterone-pretreated compared to non-pretreated animals. In Exp. 2, follicles were removed from similar treatment groups just before and 2 h after the start of the LH surge. Unlike 'ovulatory' follicles recovered from the non-pretreated ewes, those recovered from progesterone-pretreated ewes responded to the LH surge by significantly increasing oestradiol secretion (P less than 0.01) and binding of 125I-labelled hCG (P less than 0.05) to granulosa cells. Overall there was also more (P less than 0.05) hCG binding to granulosa and theca cells from progesterone-pretreated animals. Non-ovulatory follicles recovered from progesterone-primed ewes had more (P less than 0.05) binding of 125I-labelled hCG to theca and a higher testosterone concentration in follicular fluid (P less than 0.05) than did those from non-primed ewes. These results suggest that inadequate luteal function after repeated injections of GnRH may be due to a poor response to the LH surge indicative of a deficiency in the final maturational stages of the follicle.  相似文献   

3.
Pituitary and ovarian responses to subcutaneous infusion of GnRH were investigated in acyclic, lactating Mule ewes during the breeding season. Thirty postpartum ewes were split into 3 equal groups; Group G received GnRH (250 ng/h) for 96 h; Group P + G was primed with progestagen for 10 d then received GnRH (250 ng/h) for 96 h; and Group P received progestagen priming and saline vehicle only. The infusions were delivered via osmotic minipumps inserted 26.6 +/- 0.45 d post partum (Day 0 of the study). Blood samples were collected for LH analysis every 15 min from 12 h before until 8 h after minipump insertion, then every 2 h for a further 112 h. Daily blood samples were collected for progesterone analysis on Days 1 to 10 following minipump insertion, then every third day for a further 25 d. In addition, the reproductive tract was examined by laparoscopy on Day -5 and Day +7 and estrous behavior was monitored between Day -4 and Day +7. Progestagen priming suppressed (P < 0.05) plasma LH levels (0.27 +/- 0.03 vs 0.46 +/- 0.06 ng/ml) during the preinfusion period, but the GnRH-induced LH release was similar for Group G and Group P + G. The LH surge began significantly (P < 0.05) earlier (32.0 +/- 3.0 vs 56.3 +/- 4.1 h) and was of greater magnitude (32.15 +/- 3.56 vs 18.84 +/- 4.13 ng/ml) in the unprimed than the primed ewes. None of the ewes infused with saline produced a preovulatory LH surge. The GnRH infusion induced ovulation in 10/10 unprimed and 7/9 progestagen-primed ewes, with no significant difference in ovulation rate (1.78 +/- 0.15 and 1.33 +/- 0.21, respectively). Ovulation was followed by normal luteal function in 4/10 Group-G ewes, while the remaining 6 ewes had short luteal phases. In contrast, each of the 7 Group-P + G ewes that ovulated secreted progesterone for at least 10 d, although elevated plasma progesterone levels were maintained in 3/7 unmated ewes for >35 d. Throughout the study only 2 ewes (both from Group P + G) displayed estrus. These data demonstrate that although a low dose, continuous infusion of GnRH can increase tonic LH concentrations sufficient to promote a preovulatory LH surge and induce ovulation, behavioral estrus and normal luteal function do not consistently follow ovulation in the progestagen-primed, postpartum ewe.  相似文献   

4.
The specific requirement for FSH in the final stages of preovulatory follicle development was assessed in seasonally anoestrous ewes given 2-h injections of GnRH (250 ng/injection), with (N = 10) or without (N = 10) concurrent treatment with bovine follicular fluid (bFF: 2 ml given i.v. at 8-h intervals). Treatment with bFF significantly (P less than 0.01) suppressed plasma FSH concentrations, but, at least for the first 30 h of treatment, did not influence the magnitude of GnRH-induced LH episodes (mean max. conc. 3.00 +/- 0.39 and 3.63 +/- 0.51 ng/ml for bFF-treated and control ewes, respectively). Of 10 animals treated with GnRH for 72 h, 5/5 control ewes showed oestrus and ovulated whereas 0/5 bFF-treated ewes showed oestrus or ovulated in response to GnRH treatment. There was, however, a transient (13.2 +/- 1.0 h) increase in plasma LH concentrations in the ewes given bFF (mean max. conc. 4.64 +/- 1.57 ng/ml), which was coincident with the preovulatory LH surge recorded in animals given GnRH alone. In 10 GnRH-treated ewes slaughtered after 32 h of treatment, the mean diameter of the largest antral follicle was significantly (P less than 0.001) greater in control ewes (5.92 +/- 0.17 mm) than in animals that were also given bFF (3.94 +/- 0.14 mm). In addition, the incidence of atresia in the 3 largest antral follicles present at this time was greater in bFF-treated ewes. These results show that, when plasma FSH concentrations are suppressed by administration of bFF, although the magnitude of GnRH-induced LH episodes is unchanged, preovulatory follicular development is impaired and ovulation does not occur.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

5.
During the nonbreeding season the pituitary and ovarian responses to a subcutaneous GnRH infusion were investigated in acyclic, lactating Mule ewes which exhibit a deep seasonal anestrus and in Finn x Dorset ewes in which seasonal anestrus is ill-defined. Each breed received 10 d of progestagen priming before being subdivided into 3 groups. In Group L + G, 5 lactating ewes received GnRH (250 ng/h sc) for 96 h; in Group D + G, 5 dry ewes received GnRH (250 ng/h sc) for 96 h; in Group L, 5 lactating ewes received saline vehicle for 96 h. The infusions began when lactating and dry ewes were approximately 28 d and 120 d post partum, respectively. Blood samples were collected for LH, progesterone and estradiol analysis. Estrous behavior was monitored between Day -4 and Day +7. On Day +7 the reproductive tract was also examined. In the Mule ewes the mean plasma LH concentration increased (P < 0.05) following minipump insertion in each treatment group, although mean LH levels were greater (P < 0.05) in Group D + G, than in either Group L + G or Group L. Following the GnRH infusion, mean plasma estradiol levels increased (P < 0.05) in Group D + G but not in Group L + G. A preovulatory LH surge and subsequent ovulation occurred in 5 5 , 2 5 and 0 5 ewes from Group D + G, L + G and L, respectively, and estrus was recorded in 5 5 , 1 5 and 0 5 of these ewes, respectively. The LH surges began earlier (P < 0.05) (43.2 +/- 6.8 h vs 77.0 +/- 1.0 h) and the ovulation rate was greater (2.2 +/- 0.37 vs 1.00 +/- 0.00) in Group D + G than Group L + G. In the Finn x Dorset ewes mean LH concentrations increased (P < 0.05), to a similar level following minipump insertion in Groups D + G and L + G, but not Group L. The elevated LH levels were accompanied by increased (P < 0.05) plasma estradiol levels in Group D + G, but not in Group L + G. The GnRH infusion culminated in an LH surge and estrous behavior in 5 5 , 1 5 and 0 5 ewes from Groups D + G, L + D and L, respectively. The interval to the LH surge was similar between Group D + G (48.4 +/- 6.6 h) and Group L + G (46.0 h). Ovulation was evident in those ewes which exhibited an LH surge plus one additional ewe from Group L + G. The mean ovulation rate was greater in Group D + G (4.00 +/- 1.05) than in Group L + G (1.5 +/- 0.50). These data show that continuous GnRH infusion can consistently induce out of season breeding in the nonlactating Mule and Finn x Dorset ewe but can not break combined seasonal and lactational anestrous in these breeds. Further, between-breed differences are evident in the site along the hypothalamic-pituitary-ovarian axis at which reproduction is compromised in ewes at the same chronological stage post partum.  相似文献   

6.
A sustained volley of high-frequency pulses of GnRH secretion is a fundamental step in the sequence of neuroendocrine events leading to ovulation during the breeding season of sheep. In the present study, the pattern of GnRH secretion into pituitary portal blood was examined in ewes during both the breeding and anestrous seasons, with a focus on determining whether the absence of ovulation during the nonbreeding season is associated with the lack of a sustained increase in pulsatile GnRH release. During the breeding season, separate groups (n = 5) of ovary-intact ewes were sampled during the midluteal phase of the estrous cycle and following the withdrawal of progesterone (removal of progesterone implants) to synchronize onset of the follicular phase. During the nonbreeding season, another two groups (n = 5) were sampled either in the absence of hormonal treatments or following withdrawal of progesterone. Pituitary portal and jugular blood for measurement of GnRH and LH, respectively, were sampled every 10 min for 6 h during the breeding season or for 12 h in anestrus. During the breeding season, mean frequency of episodic GnRH release was 1.4 pulses/6 h in luteal-phase ewes; frequency increased to 7.8 pulses/6 h during the follicular phase (following progesterone withdrawal). In marked contrast, GnRH pulse frequency was low (mean less than 1 pulse/6 h) in both groups of anestrous ewes (untreated and following progesterone withdrawal), but GnRH pulse amplitude exceeded that in both luteal and follicular phases of the estrous cycle.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

7.
Anoestrous Romney Marsh ewes were treated with small-dose (250 ng) multiple injections of GnRH. Ewes in Groups 1 and 3 were hysterectomized 2 weeks before treatment, while those in Groups 2 and 4 were intact controls. Groups 1 and 2 were primed with progesterone (+P) and treated with 2 h injections of GnRH (250 ng) for 36 h, while Groups 3 and 4 were not pretreated (-P) but were given 2 h injections of GnRH (250 ng) for 18 h. Both treatment regimens were terminated with a bolus injection of GnRH (125 micrograms), given to synchronize the timing of the LH surge and subsequent luteal progesterone production. The plasma progesterone profiles of 5/5 animals in Group 2 (+P controls) and 2/5 animals in Group 4 (-P controls) were indicative of normal luteal function, while the remaining 3/5 animals in Group 4 produced plasma progesterone profiles typical of abnormal luteal function. However, in all the hysterectomized animals (Groups 1 and 3) peripheral plasma progesterone concentrations rose to reach a mean peak value of 1.3 ng/ml plasma on Day 8 which was maintained in all animals irrespective of progesterone pretreatment. The absence of a fall in progesterone concentrations precluded the identification of any animal in Group 4 showing abnormal luteal function. It was also noted that, after hysterectomy, although the corpus luteum was maintained, it was with reduced secretory capacity. The prevention of the expected proportion (70%) of -P animals from displaying a decline in plasma progesterone concentration after hysterectomy provides firm evidence that the uterus is involved in the premature regression of the short-cycle corpus luteum.  相似文献   

8.
Anoestrous Romney Marsh ewes with and without progesterone treatment (+P, -P) were treated with small-dose (250 ng) multiple injections of GnRH at 2-h intervals for 48 h. Animals were slaughtered on Days 4, 5, 7 and 11 after the end of GnRH treatment and luteal function was assessed by the measurement of daily plasma progesterone concentrations. In all animals which ovulated (29/32, 91%) peripheral progesterone concentrations rose to 0.5-1.0 ng/ml within 3 days of the end of GnRH treatment. In 7/7 (100%) +P animals and 5/22 (23%) -P animals, progesterone concentrations continued to rise and were maintained at levels greater than 1.5 ng/ml until slaughter. In the remaining -P animals, plasma progesterone concentrations declined to reach basal levels by Day 5. Corpora lutea recovered from these animals showed signs of premature regression on Day 5 and were fully regressed by Day 7. Progesterone priming delayed the occurrence of the LH surge which occurred 39.1 +/- 3.6 h after the end of GnRH treatment in the +P animals compared to 20.2 +/- 1.74 h (P less than 0.001) in the -P animals in which luteal function was abnormal and 22.4 +/- 4.35 h in the -P animals in which luteal function was normal. These results show that abnormal luteal function occurs in the majority of GnRH-treated ewes in the absence of progesterone pretreatment.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

9.
Two groups of 12 seasonally anoestrous ewes were infused with Gn-RH at the rate of 125 or 250 ng/h for 48 h. Four control ewes were infused with the saline vehicle alone. Mean LH concentrations increased significantly in response to Gn-RH infusion and were significantly higher (P less than 0.05) in ewes receiving 250 ng Gn-RH/h. LH concentrations remained unchanged in the control ewes. Oestrus was detected in 22/24 Gn-RH-treated ewes and occurred at a mean time of 37.0 +/- 1.2 h after the start of infusion. Ovulation occurred in all but one of the 24 Gn-RH-treated ewes with mean ovulation rates of 1.27 +/- 0.14 (125 ng-Gn-RH/h) and 1.75 +/- 0.22 (250 ng Gn-RH/h). These results demonstrate that a sustained elevation in mean circulating concentrations of LH induced by continuous administration of Gn-RH is sufficient to invoke the final phases of follicular development, and thereby ovulation, in the seasonally anoestrous ewe.  相似文献   

10.
Cycling standardbred mares were infused with saline or 20 micrograms gonadotropin-releasing hormone (GnRH) in a pulsatile pattern (one 5-sec pulse/h, 2 h or 4 h) beginning on Day 16 of the estrous cycle. Although serum concentrations of luteinizing hormone (LH) increased significantly earlier in all three GnRH-treated groups (within one day of the initiation of infusion) compared to saline-infused controls, there were no differences in peak periovulatory LH concentrations among treatments (overall mean +/- SEM, 8.98 +/- 0.55 ng/ml). The number of days from the start of treatment to ovulation was significantly less in mares infused with 20 micrograms GnRH/h (mean +/- SEM, 2.9 +/- 0.6 days after the initiation of treatment, or 18.9 days from the previous ovulation; N = 7) compared to mares treated with saline (5.9 +/- 0.3 days, or 21.9 days from previous ovulation; N = 7) or 20 micrograms GnRH per 4 h (5.4 +/- 0.9 days or 21.4 days from previous ovulation; N = 5). Although mares infused with 20 micrograms GnRH/2 h ovulated after 4.3 +/- 0.7 days of treatment (Day 20.3; N = 7), this was not significantly different from either the control or 20 micrograms GnRH/h treatment groups. Neither the duration of the resulting luteal phase nor the length of the estrous cycle was different between any of the treatment groups (combined means, 14.7 +/- 0.2 days and 21.3 +/- 0.4 days, respectively). We conclude that pulsatile infusion of GnRH is effective in advancing the time of ovulation in cycling mares, but that the frequency of pulse infusion is a critical variable.  相似文献   

11.
Nineteen Scottish Blackface ewes were given LH-RH (3 X 30 micrograms i.v., 90-min intervals) during anoestrus when prolactin levels were elevated. Plasma levels of prolactin were suppressed with CB 154 (twice daily, i.m.) on Days -5 to 0 (N = 5), 0 to +5 (N = 5) or -5 to +5 (N = 5) around the day of LH-RH treatment (Day 0). Control animals (N = 4) received saline on Days -5 to +5. Nine animals ovulated forming corpora lutea as judged by laparoscopy on Day +7. No difference in FSH or LH levels was found between treatments and ovulations occurred equally in all treatment groups. Progesterone levels were less than ng/ml in all animals up to Day 14. It is concluded that short-term suppression of prolactin does not affect the incidence of ovulation or corpus luteum progesterone production in LH-RH-treated anoestrous ewes.  相似文献   

12.
In the present study, we investigated the effects of reproductive status, size of follicles and plasma progesterone concentrations of mares at PRID insertion on the efficacy of the treatment, estrous cycle patterns, plasma concentrations of progesterone and LH. The progesterone-releasing device (PRID) was administered intravaginally to 28 Haflinger mares for 11 days at different reproductive stages: anestrus (n=6), estrus (n=11) and diestrus (n=11). Plasma concentrations of progesterone at insertion (Day 1) of PRID differed among treatment groups (anestrus: 0.2-0.6 ng mL(-1), estrus: 0.2-0.5 and diestrus: 1.6-10.8 ng mL(-1); P<0.001). Total secretion of progesterone (area under curve (AUC)) during treatment period revealed highest values in diestrus (38.2+/-3.1 ng mL(-1)h(-1)) followed by estrus (25.1+/-2.7) and anestrus (21.0+/-0.4 ng mL(-1)h(-1); P<0.05). Progesterone area under curve (AUC) was positively correlated with initial progesterone concentrations (R=0.5; P<0.05), but it did not correlate with the interval from PRID removal to ovulation. Plasma concentrations of LH during treatment period, were significantly lower in anestrous mares (184.6+/-28.6 ng mL(-1)h(-1)) when compared to estrous and diestrous mares (349.7+/-53.3 and 370.5+/-40.3 ng mL(-1)h(-1); P<0.05). Follicular size at PRID insertion had no effects on the intervals from PRID removal to subsequent estrus and ovulation. Follicle diameters at removal of PRID were significantly correlated with the interval from coil removal to estrus (R=-0.55, P<0.05) and ovulation (R=-0.72, P<0.0004) in cyclic mares. In anestrus 0 of 6 (0%) mares, in estrus 5 of 11 (45.5%) and in diestrus 6 of 11 (54.5%) mares ovulated within a defined interval of 1 day before to 1 day after mean interval from PRID removal to ovulation. In cyclic mares, response to treatment was significantly higher when compared to anestrous mares: almost all mares responded with estrus and ovulation independent from the stage of the estrous cycle at the start of treatment. However, accuracy of synchronization was still unsatisfactory. In cyclic mares, the plasma progesterone concentrations at insertion of PRID seem to be more important for the efficacy of the treatment than the assignment to estrous cycle stages.  相似文献   

13.
When ovulation is induced with gonadotrophin-releasing hormone (GnRH) in anoestrous ewes, a proportion of animals fail to form normal (full-lifespan) corpora lutea (CL). Progesterone treatment before GnRH prevents luteal inadequacy. It remains uncertain whether a similar effect, achieved with medroxyprogesterone acetate (MAP) from intravaginal sponges, is mediated by influences on growing ovarian follicles and/or secretion of gonadotrophic hormones, before and after GnRH treatment. Two experiments were performed, on 13 and 11 anoestrous Western white-faced ewes, respectively. Seven and six ewes, respectively, received MAP-containing sponges (60 mg) for 14 days; the remaining ewes served as untreated controls. To test the effect of timing of GnRH administration after pre-treatment with MAP-releasing sponges, GnRH injections (250 ng every 2h for 24h followed by a bolus injection of 125 microg of GnRH i.v.) were given either immediately (Experiment 1) or 24h after sponge removal in the treated ewes (Experiment 2). Ovarian follicular dynamics (follicles reaching >or=5mm in size) and development of luteal structures were monitored using transrectal ultrasonography. In Experiment 1, the mean ovulation rate (0.7+/-0.3 and 1.0+/-0.4) and proportion of ovulating ewes (57 and 67%, respectively) did not vary (P>0.05) between MAP-treated and control ewes. Normal (full-lifespan) CL were detected in 29% of treated and 67% of control ewes (P>0.05). In Experiment 2, the mean ovulation rate (2.3+/-0.2 and 1.2+/-0.6; P<0.05) and percentage of ewes with normal (full-lifespan) CL (100 and 40%, respectively; P<0.10) were greater in the treated compared to control ewes. In Experiment 1, the mean peak concentration of the GnRH-induced LH surge was lower (P<0.05) in MAP-treated than in control ewes. There were no significant differences between MAP-treated and control ewes in the characteristics of follicular waves, mean daily serum FSH concentrations, and secretory parameters of LH/FSH, based on intensive blood sampling conducted 1 day before sponging and 1 day before sponge removal. It is concluded that treatment with MAP has no effect on the tonic secretion of LH/FSH or follicular wave development in anoestrous ewes. However, the GnRH-stimulated LH discharge was attenuated in the ewes that received MAP-impregnated sponges for 14 days and were treated with GnRH immediately after sponge withdrawal. Ovulatory response and CL formation were increased when GnRH was administered 24 h after sponge removal.  相似文献   

14.
An increase in episodic release of LH is putatively the initial event leading to the onset of postpartum ovarian cyclicity in ewes. This experiment was conducted to determine the relationship between hypothalamic release of GnRH and onset of pulsatile secretion of LH during postpartum anestrus. Control ewes (n = 7) were monitored during the postpartum period to determine when normal estrous cycles resumed. In controls, the mean interval from parturition to the first postpartum estrus as indicated by a rise in serum progesterone greater than 1 ng/mg was 25.8 +/- 0.6 days. Additional ewes (n = 4-5) at 3, 7, 14, and 21 days postpartum (+/- 1 day) were surgically fitted with cannula for collection of hypophyseal-portal blood. Hypophyseal-portal and jugular blood samples were collected over a 6- to 7-h period at 10-min intervals. The number of GnRH pulses/6 h increased (p less than 0.05) from Day 3 postpartum (2.2 +/- 0.5) to Days 7 and 14 (3.6 +/- 0.2 and 3.9 +/- 0.4, respectively). A further increase (p less than 0.05) in GnRH pulse frequency was observed at Day 21 postpartum (6.4 +/- 0.4 pulses/6 h). Changes in pulsatile LH release paralleled changes observed in pulsatile GnRH release over Days 3, 7, 14, and 21 postpartum (0.83 +/- 0.3, 2.8 +/- 0.4, 2.9 +/- 0.6, and 4.0 +/- 1.1 pulses/6 h, respectively). GnRH pulse amplitude was higher at Day 21 than at Days 3, 7, or 14 postpartum. These findings suggest that an increase in the frequency of GnRH release promotes the onset of pulsatile LH release during postpartum anestrus in ewes.  相似文献   

15.
In a previous study in our laboratory, treatment of non-prolific Western White Face (WWF) ewes with PGF(2 alpha) and intravaginal sponges containing medroxyprogesterone acetate (MAP) on approximately Day 8 of a cycle (Day 0 = first ovulation of the interovulatory interval) resulted in ovulations during the subsequent 6 days when MAP sponges were in place. Two experiments were performed on WWF ewes during anestrus to allow us to independently examine if such ovulations were due to the direct effects of PGF(2 alpha) on the ovary or to the effects of a rapid decrease in serum concentrations of progesterone at PGF(2 alpha)-induced luteolysis. Experiment 1: ewes fitted with MAP sponges for 6 days (n = 12) were injected with PGF(2 alpha) (n = 6; 15 mg im), or saline (n = 6) on the day of sponge insertion. Experiment 2: ewes received progesterone-releasing subcutaneous implants (n = 6) or empty implants (n = 5) for 5 days. Six hours prior to implant removal, all ewes received a MAP sponge, which remained in place for 6 days. Ewes from both experiments underwent ovarian ultrasonography and blood sampling once daily for 6 days before and twice daily for 6 days after sponge insertion. Additional blood samples were collected every 4 h during sponge treatment. Experiment 1: 4-6 (67%) PGF(2 alpha)-treated ewes ovulated approximately 1.5 days after PGF(2 alpha) injection; these ovulations were not preceded by estrus or a preovulatory surge release of LH, and resulted in transient corpora hemorrhagica (CH). The growth phase was longer (P < 0.05) and the growth rate slower (P < 0.05) in ovulating versus non-ovulating follicles in PGF(2 alpha)-treated ewes. Experiment 2: in ewes given progesterone implants, serum progesterone concentrations reached a peak (1.7 2 ng/mL; P < 0.001) on the day of implant removal and decreased to basal concentrations (<0.17 ng/mL; P < 0.001) within 24 h of implant removal. No ovulations occurred in either the treated or the control ewes. We concluded that ovulations occurring after PGF(2 alpha) injection, in the presence of a MAP sponge, could be due to a direct effect of PGF(2 alpha) at the ovarian level, rather than a sudden decline in circulating progesterone concentrations.  相似文献   

16.
Plasma FSH concentrations were monitored in 34 seasonally anoestrous ewes in which ovulation was induced by the administration of low doses of GnRH, given as either a series of i.v. injections (75, 125, 250 or 500 ng/2 h) or as a continuous i.v. infusion (125 or 250 ng/h). Fifteen of the animals had been pretreated with progesterone for 14 days. Before the start of GnRH treatment, mean FSH concentrations did not differ between progesterone-pretreated and non-pretreated ewes (23 ± 3.0 and 20 ± 2.0 ng/ml, respectively). In a significant (P < 0.01) proportion of animals mean FSH concentrations were elevated for the first 2 h of GnRH treatment, but thereafter they declined progressively and were significantly (P < 0.001) lower than pretreatment levels over the second 12 h of GnRH treatment. These changes in FSH concentrations were not related to dose of GnRH, the mode of administration or to progesterone priming. These results demonstrate that the pattern of FSH secretion associated with GnRH-induced ovulation in the seasonally anoestrous ewe is similar to that observed from the time of luteal regression in the naturally cycling ewe. In addition, although pretreatment with progesterone has a marked effect on subsequent luteal function, this is not mediated through changes in plasma FSH concentrations.  相似文献   

17.
In several species, mating reduces the estrous length and advances ovulation. The aim of this study was to determine if multiple matings reduces the estrous length and modifies the moment of ovulation, as well as the estradiol and LH patterns in ewes. The estrous cycle of Corriedale ewes was synchronized, and the onset of receptivity was monitored every 3 h with rams, avoiding mating. At the estrous onset, ewes were assigned to two experimental groups (n=10 each): 1) estrous was monitored every 3 h with a ram avoiding mating (group CON), and 2) a ram was allowed to mate and ejaculate once every 3 h (group MAT). The ovaries were scanned with transrectal ultrasonography and blood samples were collected for measuring 17β-estradiol and LH concentrations every 3 h until ovulation. Estrus was shorter in MAT than CON ewes (24.7 ± 1.5 h vs. 30.4 ± 1.5 h, respectively; P=0.02); the proportion of animals that ovulated before the end of estrus was greater in CON ewes: (9/10 vs. 3/10, P=0.009). The area under the LH curve (AUC) was greater in MAT than CON ewes (36.1 ± 3.5 ng.h-1.mL-1 vs 24.9 ± 3.5 ng.h-1.mL-1 P=0.03). However, MAT ewes had a lower 17β-estradiol AUC than CON ewes (41.0 ± 4.9 pg.h-1.mL-1 vs 59.4 ± 4.9 pg.h-1.mL-1 P=0.01). Mating reduced the estrous length, induced a greater secretion of LH but less total 17β-estradiol secreted and, additionally, ovulation occurred more frequently after the end of estrus in mated ewes.  相似文献   

18.
Gonadotrophin releasing hormone (GnRH)-induced ovulation in seasonally anestrous ewes is associated with a high incidence of defective corpora lutea (CL), which can be completely eliminated by priming ewes with progesterone before GnRH treatment, but the physiological basis of this has remained elusive. This study tested the hypothesis that progesterone priming eliminates defective luteal function by altering the expression of Vascular Endothelial Growth Factor (VEGF), its receptor VEGFR-2, and angiopoietin (ANG)-1, ANG-2 and their receptorTIE-2 in the early CL. Fifteen seasonally anestrous ewes were treated by i.m. injection with 20 mg of progesterone 3 days before the start of GnRH treatment, while another 15 animals served as controls. Intravenous injections of 500 ng GnRH were given to all the ewes every 2 h for 28 h, followed by a 300 μg GnRH bolus injection to synchronize the preovulatory luteinizing hormone (LH) surge. Corpora lutea were collected 1, 2 and 4 days after ovulation and analyzed for protein and mRNA expression of VEGF, VEGFR-2, ANG-1, ANG-2 and Tie-2 using Western Immunoblotting and in situ hybridization. VEGF, VEGFR-2 and ANG-1 expression was significantly higher (P ≤ 0.05) in the CL of progesterone-primed animals compared to non-primed ones. However, no differences were observed in the ANG-2 or Tie-2 expression levels between the two treatment groups. These data suggest that progesterone priming of the preovulatory follicle alters the expression of some angiogenic growth factors in the early CL, leading to greater vascular stability and thereby normal luteal function.  相似文献   

19.
Silva ME  Colazo MG  Ratto MH 《Theriogenology》2012,77(9):1802-1810
Gonadotrophin releasing hormone (GnRH) is commonly used in llamas to induce ovulation; however, the consequence of reduced doses of GnRH on luteinizing hormone (LH) release, ovulatory response, and subsequent corpus luteum (CL) development and function have apparently not been investigated. Hence, we examined the effect of gradual reduction of gonadorelin acetate (GnRH) dosage on pituitary LH release, ovulatory response, CL development, and plasma progesterone concentrations in llamas. Non-pregnant, non-lactating adult llamas were examined once daily by transrectal ultrasonography, and those with a follicle ≥8 mm in diameter that had grown for three consecutive days were randomly assigned to receive 50 (GnRH50, n = 23), 25 (GnRH25, n = 29), 12.5 (GnRH12.5, n = 29), or 6.25 μg (GnRH6.25, n = 29) of GnRH, or 0.5 mL of PBS (Control group, n = 16) im. In a subset (7 or 8 animals/group), intense blood sampling was done to measure LH concentrations. All females were examined by ultrasonography every 12 h from treatment (Day 0) to Day 2 to determinate ovulation, and thereafter on alternate days until Day 16 to evaluate CL development (9-13 animals/group). Also, blood samples for progesterone determination were taken (9 or 10 animals/group) on alternate days from Days 0-16. Ovulatory response (%) was highest (P < 0.05) in the GnRH50 (82.6), intermediate in the GnRH25 (72.3) and GnRH12.5 (75.9) groups, and lowest in the GnRH6.25 group (48.3). No ovulations were detected in the Control group. Mean peak LH concentrations (ng/mL) were highest (P < 0.05) for GnRH50 (6.2), intermediate for GnRH25 (4.4) and GnRH12.5 (2.9), and lowest for GnRH6.25 (2.2) groups. In addition, based on regression analysis, llamas with an LH peak <4 ng/mL were less likely to ovulate. Llamas given 50 μg of GnRH released more (P < 0.05) pituitary LH and had an LH surge of longer duration than those given 25, 12.5, or 6.25 μg. However, in those that ovulated, neither GnRH treatment nor treatment by time interaction affected (P > 0.05) CL diameter or plasma progesterone concentrations. In summary, reducing the dose of GnRH gradually decreased the magnitude of the preovulatory LH surge and ovulatory response; however, subsequent CL development and plasma progesterone concentrations were not affected.  相似文献   

20.
Effects of season and supplementation on the incidence and rate of ovulation and hormone profiles in multiparous, nonlactating ewes were investigated under range and drylot conditions during anestrus (February through August). Ninety ewes received one of six nutritional treatments: 1) range forage, 2) range forage plus 0.33 kg.hd(-1).d(-1) pinto beans, 3) 0.45 kg.hd(-1).d(-1) alfalfa pellets, 4) dry lot plus 1.33 kg.hd(-1).d(-1) prairie hay only, 5) pinto beans or 6) alfalfa pellets at rates used on the range and prairie hay. Supplemented ewes were heavier (P < 0.05) than ewes fed range forage or prairie hay during most of the study. Seasonality of ovulation, in terms of incidence and rate, was not affected (P > 0.40) by supplementation in range ewes. The ovulation rate tended to be highest in prairie hay plus pinto bean drylot ewes in February (P = 0.21) and in prairie hay plus alfalfa pellet and prairie hay plus pinto bean ewes in March (P = 0.13) compared with prairie hay ewes. Generally, seasonality of ovulation was not influenced by supplementation (P > 0.40). The incidence of ovulation approached zero for drylot ewes in April, May, June and July, while it was 43, 27, 35 and 21% for range ewes, in those same months. Supplementation did not affect serum progesterone during the estrous cycle. Luteinizing hormone (LH) concentrations were similar (P > 0.50) among drylot treatment groups before a 50-ug gonadotropin releasing hormone (GnRH) challenge. Pinto bean supplementation enhanced serum LH response to GnRH (P < 0.10).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号