首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
Sorbitol-fermenting Escherichia coli O157:NM (SF O157) is an emerging pathogen suggested to be more virulent than nonsorbitol-fermenting Escherichia coli O157:H7 (NSF O157). Important virulence factors are the Shiga toxins (stx), encoded by stx1 and/or stx2 located within prophages integrated in the bacterial genome. The stx genes are expressed from p(R) (') as a late protein, and anti-terminator activity from the Q protein is necessary for read through of the late terminator t(R) (') and activation of p(R) (') . We investigated the regulation of stx2(EDL933) expression at the genomic level in 17 Norwegian SF O157. Sequencing of three selected SF O157 strains revealed that the anti-terminator q gene and genes upstream of stx2(EDL933) were identical or similar to the ones observed in the E.?coli O111:H- strain AP010960, but different from the ones observed in the NSF O157 strain EDL933 (AE005174). This suggested divergent stx2(EDL933) -encoding bacteriophages between NSF O157 and the SF O157 strains (FR874039-41). Furthermore, different DNA structures were detected in the SF O157 strains, suggesting diversity among bacteriophages also within the SF O157 group. Further investigations are needed to elucidate whether the q(O111:H) (-) gene observed in all our SF O157 contributes to the increased virulence seen in SF O157 compared to NSF O157. An assay for detecting q(O111:H) (-) was developed.  相似文献   

2.
3.
As it descended from Escherichia coli O55:H7, Shiga toxin (Stx)-producing E. coli (STEC) O157:H7 is believed to have acquired, in sequence, a bacteriophage encoding Stx2 and another encoding Stx1. Between these events, sorbitol-fermenting E. coli O157:H(-) presumably diverged from this clade. We employed PCR and sequence analyses to investigate sites of bacteriophage integration into the chromosome, using evolutionarily informative STEC to trace the sequence of acquisition of elements encoding Stx. Contrary to expectations from the two currently sequenced strains, truncated bacteriophages occupy yehV in almost all E. coli O157:H7 strains that lack stx(1) (stx(1)-negative strains). Two truncated variants were determined to contain either GTT or TGACTGTT sequence, in lieu of 20,214 or 18,895 bp, respectively, of the bacteriophage central region. A single-nucleotide polymorphism in the latter variant suggests that recombination in that element extended beyond the inserted octamer. An stx(2) bacteriophage usually occupies wrbA in stx(1)(+)/stx(2)(+) E. coli O157:H7, but wrbA is unexpectedly unoccupied in most stx(1)-negative/stx(2)(+) E. coli O157:H7 strains, the presumed progenitors of stx(1)(+)/stx(2)(+) E. coli O157:H7. Trimethoprim-sulfamethoxazole promotes the excision of all, and ciprofloxacin and fosfomycin significantly promote the excision of a subset of complete and truncated stx bacteriophages from the E. coli O157:H7 strains tested; bile salts usually attenuate excision. These data demonstrate the unexpected diversity of the chromosomal architecture of E. coli O157:H7 (with novel truncated bacteriophages and multiple stx(2) bacteriophage insertion sites), suggest that stx(1) acquisition might be a multistep process, and compel the consideration of multiple exogenous factors, including antibiotics and bile, when chromosome stability is examined.  相似文献   

4.
Shiga toxins 1 and 2 (Stx1 and Stx2) are encoded by prophages lysogenized in enterohemorrhagic Escherichia coli (EHEC) O157:H7 strains. Lytic growth of the phage particles carrying the stx1 genes (stx1A and stx1B) of the EHEC O157:H7 strain RIMD 0509952, which was derived from the Sakai outbreak in 1996 in Japan, was induced after treatment with mitomycin C, but the plaque formation of the phage was not detected. We have determined the complete nucleotide sequence of the prophage VT1-Sakai. The integration site of the prophage was identified within the yehV gene at 47.7 min on the chromosome. The stx1 genes were downstream of the Q gene in the prophage genome, suggesting that their expression was regulated by the Q protein, the regulator of the late gene expression of the phage, which is similar to that of the stx1 or stx2 genes carried by the lambdoid phages reported previously. The sequences of the N gene and its recognition sites, nutL and nutR, were not homologous to those of the phages carrying the stx genes thus far reported, but they were very similar to those of bacteriophage phi21. The sequences of the repressor proteins, CI and Cro, that regulate expression of the early genes had low similarities with those of the known repressors of other phages, and their operator sequences were different from any sequence reported. These data suggest that multiple genetic recombination among bacteriophages with different immunities took place to generate the prophage VT1-Sakai. Comparison between the sequences of VT1-Sakai and lambda suggests that the ancestor of VT1-Sakai was produced by illegitimate excision, like lambda gal and bio phages.  相似文献   

5.
The enterohemorrhagic Escherichia coli (EHEC) O157:H7 strain RIMD 0509952, derived from an outbreak in Sakai city, Japan, in 1996, produces two kinds of verotoxins, VT1 and VT2, encoded by the stx1 and stx2 genes. In the EHEC strains, as well as in other VT-producing E. coli strains, the toxins are encoded by lysogenic bacteriophages. The EHEC O157:H7 strain RIMD 0509952 did not produce plaque-forming phage particles upon inducing treatments. We have determined the complete nucleotide sequence of a prophage, VT2-Sakai, carrying the stx2A and stx2B genes on the chromosome, and presumed the putative functions of the encoded proteins and the cis-acting DNA elements based on sequence homology data. To our surprise, the sequences in the regions of VT2-Sakai corresponding to the early gene regulators and replication proteins, and the DNA sequences recognized by the regulators share very limited homology to those of the VT2-encoding 933W phage carried by the EHEC O157:H7 strain EDL933 reported by Plunkett et al. (J. Bacteriol., p1767-1778, 181, 1999), although the sequences corresponding to the structural components are almost identical. These data suggest that these two phages were derived from a common ancestral phage and that either or both of them underwent multiple genetic rearrangements. An IS629 insertion was found downstream of the stx2B gene and upstream of the lysis gene S, and this might be responsible for the absence of plaque-forming activity in the lysate obtained after inducing treatments.  相似文献   

6.
Shiga toxin 2-converting phage was isolated from Escherichia coli O157:H7 associated with an outbreak that occurred in Okayama, Japan in 1996 (M. Watarai, T. Sato, M. Kobayashi, T. Shimizu, S. Yamasaki, T. Tobe, C. Sasakawa and Y. Takeda, Infect. Immun. 61 (1998) 3210-3204). In this study, we analyzed the complete nucleotide sequence of Shiga toxin 2-converting phage, designated Stx2phi-I, and compared it with three recently reported Stx2-phage genomes. Stx2phi-I consisted of 61,765 bp, which included 166 open reading frames. When compared to 933W, VT2-Sakai and VT2-Sa phages, six characteristic regions (regions I-VI) were found in the Stx2 phage genomes although overall homology was more than 95% between these phages. Stx2phi-I exhibited remarkable differences in these regions as compared with VT-2 Sakai and VT2-Sa genes but not with 933W phage. Characteristic repeat sequences were found in regions I-IV where the genes responsible for the construction of head and tail are located. Regions V and VI, which are the most distinct portion in the entire phage genome were located in the upstream and downstream regions of the Stx2 operons that are responsible for the immunity and replication, and host lysis. These data indicated that Stx2phi-I is less homologous to VT2-Sakai and VT2-Sa phages, despite these three phages being found in the strains isolated at the almost same time in the same geographic region but closely related to 933W phage which was found in the E. coli O157 strain 933W isolated 14 years ago in a different geographic area.  相似文献   

7.
8.
Shiga toxin-producing Escherichia coli strains are human pathogens linked to hemorrhagic colitis and hemolytic uremic syndrome. The major virulence factors of these strains are Shiga toxins Stx1 and Stx2. The majority of the genes coding for these toxins are borne by bacteriophages. Free Stx2-encoding bacteriophages have been found in aquatic environments, but there is limited information about the lysogenic strains and bacteria present in the environment that are susceptible to phage infection. The aim of this work was to study the prevalence and the distribution of the stx(2) gene in coliform bacteria in sewage samples of different origins. The presence of the stx(2) gene was monitored every 2 weeks over a 1-year period in a municipal sewage treatment plant. A mean value of 10(2) genes/ml was observed without significant variation during the study period. This concentration was of the same order of magnitude in raw municipal sewage of various origins and in animal wastewater from several slaughterhouses. A total of 138 strains carrying the stx(2) gene were isolated by colony hybridization. This procedure detected approximately 1 gene-carrying colony per 1,000 fecal coliform colonies in municipal sewage and around 1 gene-carrying colony per 100 fecal coliform colonies in animal wastewaters. Most of the isolates belonged to E. coli serotypes other than E. coli O157, suggesting a low prevalence of strains of this serotype carrying the stx(2) gene in the wastewater studied.  相似文献   

9.
In 2006, a severe foodborne EHEC outbreak occured in Norway. Seventeen cases were recorded and the HUS frequency was 60%. The causative strain, Esherichia coli O103:H25, is considered to be particularly virulent. Sequencing of the outbreak strain revealed resemblance to the 2011 German outbreak strain E. coli O104:H4, both in genome and Shiga toxin 2-encoding (Stx2) phage sequence. The nucleotide identity between the Stx2 phages from the Norwegian and German outbreak strains was 90%. During the 2006 outbreak, stx(2)-positive O103:H25 E. coli was isolated from two patients. All the other outbreak associated isolates, including all food isolates, were stx-negative, and carried a different phage replacing the Stx2 phage. This phage was of similar size to the Stx2 phage, but had a distinctive early phage region and no stx gene. The sequence of the early region of this phage was not retrieved from the bacterial host genome, and the origin of the phage is unknown. The contaminated food most likely contained a mixture of E. coli O103:H25 cells with either one of the phages.  相似文献   

10.
Aims:  To quantify the variability of the Shiga toxin 2 (Stx2) production by a panel of stx2 -positive Escherichia coli O157:H7/H7- isolates from healthy cattle before and after induction with enrofloxacin.
Methods and Results:  ProSpecT® ELISA was used to quantify the Stx2 production by stx2 -positive E. coli O157:H7/H7- isolates in native conditions (basal level) or after induction with enrofloxacin. Whereas only 15·2% of the E. coli O157:H7/H7- strains studied displayed significant amounts of detectable Stx2 without induction, most of them were shown to be inducible, and at various levels, in presence of subinhibitory concentrations of enrofloxacin.
Conclusions:  We demonstrated the capability of a highly elevated proportion of stx2 -positive, but constitutively Stx2 -negative, E. coli O157:H7/H7- isolates from healthy cattle to produce significant levels of Shiga toxin Stx2 in presence of subtherapeutic concentrations of enrofloxacin, an antibiotic of the fluoroquinolones family only licensed for veterinary use.
Significance and Impact of the Study:  This study documents the risk that bovine-associated Shiga toxin producing E. coli isolates may become more frequently pathogenic to humans as a side-effect of the increasing use of veterinary fluoroquinolones in the oral treatment of food animals like cattle or poultry.  相似文献   

11.
Isogenic strains of Escherichia coli O157:H7, missing either stx(2) or the entire Stx2-encoding phage, were compared with the parent strain for their abilities to colonize sheep. The absence of the phage or of the Shiga toxin did not significantly impact the magnitude or duration of shedding of E. coli O157:H7.  相似文献   

12.
13.
[目的]对8株源自大肠杆菌O157编码Stx2毒素的噬菌体生物学特性进行研究.[方法]丝裂霉素C诱导8株大肠杆菌O157菌株释放噬菌体,采用PCR作初步鉴定,分离、纯化噬菌体基因组,随机引物法地高辛(DIG)标记stx2基因片段作为探针,对纯化的噬菌体采用Southernblot进行Stx2噬菌体再次鉴定,透射电子显微镜观察纯化的8株Stx2噬菌体的形态特征,通过限制性内切酶图谱分析,确定噬菌体的核酸类型和基因组大小、以及限制性内切酶酶切片段多态性,并分析噬菌体的蛋白质组成特征.[结果]Southern blot证实分离的8株噬菌体为Stx2噬菌体,电镜下观察的各株Stx2噬菌体形态一致,头部均为正六边形,尾部很短,属于短尾噬菌体科,各株噬菌体之间存在相同的蛋白结构模式,基因组为双链DNA,限制性内切酶片段长度表现出一定的多态性,噬菌体的基因组大小从48.0-65.3 kb不等.[结论]来源不同菌株的8株编码Stx2噬菌体均为短尾噬菌体,其蛋白结构模式一致,但基因组具有不同组成.  相似文献   

14.
Six of 37 non-O157 Escherichia coli strains possessing Shiga toxin (Stx) 2 gene variant stx(2d) or stx(2e) secreted no detectable Stx. These isolates produced significantly less stx mRNA than Stx2d, Stx2e, Stx2c, or Stx2 secretors did. Standard screening procedures miss a significant subset of E. coli harboring stx(2) variants.  相似文献   

15.
The prevalence and nature of Shiga toxin (Stx)-producing Escherichia coli (STEC) and Stx phage were investigated in 720 swine fecal samples randomly collected from a commercial breeding pig farm in China over a 1-year surveillance period. Eight STEC O157 (1.1%), 33 STEC non-O157 (4.6%), and two stx-negative O157 (0.3%) isolates were identified. Fecal filtrates were screened directly for Stx phages using E. coli K-12 derivative strains MC1061 as indicator, yielding 15 Stx1 and 57 Stx2 phages. One Stx1 and eight Stx2 phages were obtained following norfloxacin induction of the eight field STEC O157 isolates. All Stx1 phages had hexagonal heads with long tails, while Stx2 phages had three different morphologies. Notably, most of field STEC O157 isolates released more free phages and Stx toxin after induction with ciprofloxacin. Furthermore, upon infection with the recombinant phage ΦMin27(Δstx::cat), E. coli laboratory strains produced both lysogenic and lytic phage, whereas two of the eight O157 STEC isolates produced only lysogens. The lysogens from laboratory strains produced infectious particles similar to ΦMin27. Similarly, the lysogens from the STEC O157 isolates released Stx phage too, although free ΦMin27(Δstx::cat) particles were not detected. Collectively, our results reveal that breeding pig farms could be important reservoirs for Stx phages and that residual antibacterial agents may enhance the release of Stx phages and the expression of Stx.  相似文献   

16.
Probiotics are known to have an inhibitory effect against the growth of various foodborne pathogens, however, the specific role of probiotics in Shiga-toxin-producing Escherichia coli (STEC) virulence gene expression has not been well defined. Shiga toxins are members of a family of highly potent bacterial toxins and are the main virulence marker for STEC. Shiga toxins inhibit protein synthesis in eukaryotic cells and play a role in hemorrhagic colitis and hemolytic uremic syndrome. STEC possesses Shiga toxin 1 (Stx1) and Shiga toxin 2 (Stx2), both of which have A and B subunits. Although STEC containing both Stx1 and Stx2 has been isolated from patients with hemorrhagic colitis, Stx2 is more frequently associated with human disease complications. Thus, the effect of Lactobacillus, Pediococcus, and Bifidobacterium strains on stx2A expression levels in STEC was investigated. Lactic acid bacteria and bifidobacteria were isolated from farm animals, dairy, and human sources and included L. rhamnosus GG, L. curvatus, L. plantarum, L. jensenii, L. acidophilus, L. casei, L. reuteri, P. acidilactici, P. cerevisiae, P. pentosaceus, B. thermophilum, B. boum, B. suis and B. animalis. E. coli O157:H7 (EDL 933) was coincubated with sub-lethal concentrations of each probiotic strain. Following RNA extraction and cDNA synthesis, relative stx2A mRNA levels were determined according to a comparative critical threshold (Ct) real-time PCR. Data were normalized to the endogenous control glyceraldehyde-3-phosphate dehydrogenase (GAPDH) and the level of stx2A expression between treated and untreated STEC was compared. Observed for all probiotic strains tested, stx2A was down-regulated, when compared to the control culture. Probiotic production of organic acids, as demonstrated by a decrease in pH, influenced stx2A gene expression.  相似文献   

17.
Shiga toxigenic Escherichia coli O157 is the leading cause of hemolytic uremic syndrome (HUS) worldwide. The frequencies of stx genotypes and the incidences of O157-related illness and HUS vary significantly between Argentina and Australia. Locus-specific polymorphism analysis revealed that lineage I/II (LI/II) E. coli O157 isolates were most prevalent in Argentina (90%) and Australia (88%). Argentinean LI/II isolates were shown to belong to clades 4 (28%) and 8 (72%), while Australian LI/II isolates were identified as clades 6 (15%), 7 (83%), and 8 (2%). Clade 8 was significantly associated with Shiga toxin bacteriophage insertion (SBI) type stx(2) (locus of insertion, argW) in Argentinean isolates (P < 0.0001). In Argentinean LI/II strains, stx(2) is carried by a prophage inserted at argW, whereas in Australian LI/II strains the argW locus is occupied by the novel stx(1) prophage. In both Argentinean and Australian LI/II strains, stx(2c) is almost exclusively carried by a prophage inserted at sbcB. However, alternative q(933)- or q(21)-related alleles were identified in the Australian stx(2c) prophage. Argentinean LI/II isolates were also distinguished from Australian isolates by the presence of the putative virulence determinant ECSP_3286 and the predominance of motile O157:H7 strains. Characteristics common to both Argentinean and Australian LI/II O157 strains included the presence of putative virulence determinants (ECSP_3620, ECSP_0242, ECSP_2687, ECSP_2870, and ECSP_2872) and the predominance of the tir255T allele. These data support further understanding of O157 phylogeny and may foster greater insight into the differential virulence of O157 lineages.  相似文献   

18.
We have isolated Shiga toxin (Stx)-producing Escherichia coli (STEC) strains from the feces of feral pigeons which contained a new Stx2 variant gene designated stx(2f). This gene is most similar to sltIIva of patient E. coli O128:B12 isolate H.I.8. Stx2f reacted only weakly with commercial immunoassays. The prevalence of STEC organisms carrying the stx(2f) gene in pigeon droppings was 12.5%. The occurrence of a new Stx2 variant in STEC from pigeons enlarges the pool of Stx2 variants and raises the question whether horizontal gene transfer to E. coli pathogenic to humans may occur.  相似文献   

19.
20.
We examined 219 Shiga toxin-producing Escherichia coli (STEC) strains from meat, milk, and cheese samples collected in Germany between 2005 and 2006. All strains were investigated for their serotypes and for genetic variants of Shiga toxins 1 and 2 (Stx1 and Stx2). stx(1) or variant genes were detected in 88 (40.2%) strains and stx(2) and variants in 177 (80.8%) strains. Typing of stx genes was performed by stx-specific PCRs and by analysis of restriction fragment length polymorphisms (RFLP) of PCR products. Major genotypes of the Stx1 (stx(1), stx(1c), and stx(1d)) and the Stx2 (stx(2), stx(2d), stx(2-O118), stx(2e), and stx(2g)) families were detected, and multiple types of stx genes coexisted frequently in STEC strains. Only 1.8% of the STEC strains from food belonged to the classical enterohemorrhagic E. coli (EHEC) types O26:H11, O103:H2, and O157:H7, and only 5.0% of the STEC strains from food were positive for the eae gene, which is a virulence trait of classical EHEC. In contrast, 95 (43.4%) of the food-borne STEC strains carried stx(2) and/or mucus-activatable stx(2d) genes, an indicator for potential high virulence of STEC for humans. Most of these strains belonged to serotypes associated with severe illness in humans, such as O22:H8, O91:H21, O113:H21, O174:H2, and O174:H21. stx(2) and stx(2d) STEC strains were found frequently in milk and beef products. Other stx types were associated more frequently with pork (stx(2e)), lamb, and wildlife meat (stx(1c)). The combination of serotyping and stx genotyping was found useful for identification and for assignment of food-borne STEC to groups with potential lower and higher levels of virulence for humans.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号