首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
种子特异表达ipt转基因棉花根和纤维的改变   总被引:12,自引:0,他引:12  
将种子特异表达的菜豆蛋白启动子(Ph/P)与ipt基因融合,构建了植物表达载体。该载体含有由35S启动子驱动的gus报告基因。应用该载体通过花粉管通道法转化棉花(Gossypium hirsutum L.),种子萌发后剪取幼根进行GUS染色,获得GUS阳性植株23棵。PCR检测证明有3棵GUS阳性植株中含有Ph/P-ipt基因,并进一步用地高辛标记的DNA探针作杂交验证了上述结果。分析表明2棵转基  相似文献   

2.
Explants of cotton (Gossypium hirsutum L. cv. Jingmian 7) were transformed with Agrobacterium tumefaciens (Smith et Townsend ) Conn LBA4404 harboring an expression cassette composed of CoYMV (Commelina Yellow Mottle Virus) promoter-gus-nos terminator on the plant expression vector pBcopd2. Transgenic plants were regenerated and selected on a medium containing kanamycin. GUS (β-glucuronidase) activity assays and Southern blot analysis confirmed that the chimerical gus gene was integrated into and expressed in the regenerated cotton plants. Plant expression vector pBI121 was also transferred into the same cotton variety and the regenerated transgenic plants were used as a positive control in GUS activity analysis. Evidences from histochemical analysis of GUS activity demonstrated that under the control of a 597 bp CoYMV promoter the gus gene was highly expressed in the vascular tissues of leaves, petioles, stems, roots, hypocotyls, bracteal leaves and most of the flower parts while GUS activity could not be detected in stigma, anther sac and developing cotton fibers of the transgenic cotton plants. GUS specific activity in various organs and tissues from transgenic cotton lines was determined and the results indicated that the CoYMV promoter-gus activities were at the same level or higher than that of CaMV 35S promoter-gus in leaf veins and roots where the vascular tissues occupy a relatively larger part of the organs, but in other organs like leaves, cotyledons and hypocotyls where the vascular tissues occupy a smaller part of the organs the CoYMV promoter-gus activity was only 1/3-1/5 of the CaMV 35S promoter-gus activity. The GUS activity ratio between veins and leaves was averaged 0.5 for 35S-GUS plants and about 2.0 for CoYMV promoter-gus transgenic plants. These results further demonstrated the vascular specific property of the promoter in transgenic cotton plants. An increasing trend of GUS activity in leaf vascular tissues of transgenic cotton plants developing from young to older was observed.  相似文献   

3.
4.
5.
6.
青蒿转杜松烯合成酶基因发根系的培养   总被引:10,自引:2,他引:8  
将已克隆的棉花杜松烯合成酶的cDNA(cadC14)插入到植物表达载体pBI121中,构建含CaMV35S启动子驱动下的杜松烯合成酶基因的植物表达载体pBIC14。用含pBIC14质粒的发根农杆菌(Agrobacteriumrhizogenes)15834感染青蒿(ArtemisiaannuaL.)叶片并诱导发根,共建立121个生长迅速的发根系。经浓度为20mg/L的Kan筛选,获得12个抗Kan阳性根系。PCR和Southernbloting分析表明,外源杜松烯合成酶基因已整合到青蒿基因组中,其转基因频率为3%。RTPCR分析表明,外源杜松烯合成酶基因在C37根系中,在转录水平上已有表达。  相似文献   

7.
转基因烟草中Bt毒蛋白基因的表达行为   总被引:4,自引:0,他引:4  
Bt toxin genes were the insecticidal genes most widely used in genetic engineering of pest resistant plant, were of important significance to study their expression behavior in transgenic plants. In this work, a plant expression vector, pBinMoBc, was constructed. It contained the Cry IA(c) gene under control of chimeric OM promoter and the Ω factor. The vector was transferred into tobacco (Nicotiana tabacum L.) plant via Agrobacterium-mediated transformation. ELISA assay showed that the expression levels of the Cry IA(c) gene in transgenic tobacco plants were significantly higher than that in wild-type tobacco plants. The highest could be up to 0.255% of total soluble proteins; the expression level of CryIA(c) gene in transgenic tobacco plant was changeable during the development stages of tobacco plant. Bioassay showed that pBinMoBc transgenic tobacco plants had more notable insecticidal activity than the wild-type tobacco plants. The above results indicated that pBinMoBc was an effective pest-resistent plant expression vector. This study would be very helpful in screening transgenic cotton with high resistance to cotton bollworm (Heliothis armigeva Hubner).  相似文献   

8.
9.
Kamo KK 《Plant cell reports》2003,21(8):797-803
UidA silencing did not occur following three seasons of dormancy for 23 independently transformed lines of Gladiolus plants carrying the bar- uidA fusion gene under control of either the cauliflower mosaic virus 35S (CaMV 35S), ubiquitin ( UBQ3), mannopine synthase ( mas2), or rolD promoters. The highest levels of GUS (beta-glucuronidase) expression were observed in callus, shoots, and roots of plants carrying the bar- uidA fusion gene under control of the CaMV 35S promoter and in shoots and roots of greenhouse-grown plants that contained the rolD promoter. There was no major difference in GUS expression when plants carrying the fusion gene driven by either the CaMV 35S, mas2, or UBQ3 promoters were grown in vitro as compared to growth in the greenhouse, although plants containing the rolD promoter expressed at 4- to 11-fold higher levels in shoots and roots, respectively, when grown in the greenhouse. The levels of GUS expression in greenhouse-grown plants were higher in roots than shoots for all four promoters. Of the 21 plants analyzed, 20 contained one to three copies of the bar- uidA fusion gene. Of the 23 plants analyzed, 11 had rearrangements of the transgene, but without apparent effects on levels of GUS expression.  相似文献   

10.
11.
12.
13.
14.
Zhu YQ  Xu KX  Luo B  Wang JW  Chen XY 《Plant physiology》2003,133(2):580-588
  相似文献   

15.
16.
Breeding of naturally colored cotton fiber has been hampered by the limited germplasm, an alternative way is to use transgenic approach to create more germplasm for breeding. Here, we report our effort to engineer anthocyanin production in cotton. The maize Lc gene, under the control of the constitutive 35S promoter, was introduced into cotton through genetic transformation. Our data showed that the expression of the Lc gene alone is sufficient to trigger the accumulation of anthocyanin in a variety of cell types including fiber cells in cotton. However, the accumulation of colored anthocyanin in cotton fibers requires the participation of light signaling. These data indicate that it is feasible to engineer colored fibers through transgenic approach in cotton. Furthermore, we showed that the Lc-transgenic cotton plants are resistant to cotton bollworm. These transgenic plants are, therefore, potentially useful for cotton breeding against cotton bollworm.  相似文献   

17.
Alfalfa (Medicagosativa L.) is one of the most widely grown crops in the USA. Phosphate (P) deficiency is common in areas where forage crops are grown. To improve the use of organic phosphate by alfalfa, two Medicagotruncatula genes, phytase (MtPHY1) and purple acid phosphatase (MtPAP1), were overexpressed in alfalfa under the control of the constitutive CaMV35S promoter or the root-specific MtPT1 promoter. Root enzyme activity analyses revealed that although both genes lead to similar levels of acid phosphatase activities, overexpression of the MtPHY1 gene usually results in a higher level of phytase activity than overexpression of the MtPAP1 gene. The MtPT1 promoter was more effective than the CaMV35S promoter in regulating gene expression and extracellular secretion under P-deficient conditions. Measurement of growth performance of the transgenic lines further proved that the best promoter-gene combination is the MtPHY1 gene driven by the MtPT1 promoter. Compared to the control, the plants with high levels of transgene expression showed improved growth. The biomass of several transgenic lines was three times that of the control when plants were grown in sand supplied with phytate as the sole P source. When the plants were grown in natural soils without additional P supplement, the best performing transgenic lines produced double the amount of biomass after 12?weeks (two cuts) of growth. Transgene effects were more obvious in soil with lower pH and lower natural P reserves than in soil with neutral pH and relatively higher P storage. The total P concentration in leaf tissues of the high-expressing transgenic lines was significantly higher than that of the control. The transgenes have great potential for improving plant P acquisition and biomass yield in P-deficient agricultural soils. ELECTRONIC SUPPLEMENTARY MATERIAL: The online version of this article (doi:10.1007/s11032-011-9628-0) contains supplementary material, which is available to authorized users.  相似文献   

18.
Pu L  Li Q  Fan X  Yang W  Xue Y 《Genetics》2008,180(2):811-820
  相似文献   

19.
通过花粉管通道技术,以该实验室自育陆地棉品系TH1和TH2为材料,将诸葛菜(Orychophragmus vidaceus)抗逆转录因子OvDREB2B基因构建到植物表达载体后,导入棉花基因组,经卡那霉素筛选和分子鉴定表明目的基因已整合到棉花基因组中并表达。将T1代转基因植株和受体对照在温室中栽培,待植株生长至四叶一心时,用不同渗透势的PEG-6000水溶液进行渗透胁迫处理,分析探讨转基因植株的抗旱效果及其抗旱机理。结果显示:当渗透势为0和0.5 MPa处理时,转基因植株和对照无明显差异;当渗透势为0.8 MPa和1.1 MPa处理时转基因植株较对照抗旱性明显提高。当渗透势为1.1 MPa处理96 h时,对照植株Fv/Fm降至0.2左右,而转基因植株仍正常生长,Fv/Fm值约为0.51,而且初始荧光(F0)值、净光合速率(Pn)、胞间CO2浓度(Ci)、蒸腾速率(Tr)等一系列参数转基因植株都明显优于对照,表明DREB2B基因能够提高棉花对水分胁迫的耐受性。  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号