首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Fu CH  Chen CL  Guo WW  Deng XX 《Plant cell reports》2004,23(6):391-396
Intergeneric somatic hybrids combining Goutou sour orange (Citrus aurantium L.) with trifoliate orange [Poncirus trifoliata (L.) Raf] were produced by electrofusion and their genetic inheritance analyzed by amplified fragment length polymorphism (AFLP), genomic in situ hybridization (GISH), and PCR-restriction fragment length polymorphism (PCR-RFLP). Sixteen mini-calluses were obtained after 20 days of culture; they all developed into embryoids on EME500 medium. Following several subcultures on shoot induction medium for a total culture period of 6 months, shoots regenerated. The plants grew vigorously with a well-developed root system and exhibited the trifoliate leaf character of P. trifoliata. Ploidy analysis verified that all of the regenerates were tetraploids (2n=4x=36) as expected. GISH analysis confirmed that 18 chromosomes came from trifoliate orange and the remaining 18 from Goutou sour orange, as with most symmetric somatic hybrid plants; moreover, chromosome translocations were also observed in one plant. AFLP analysis of 16 regenerates and their fusion parents indicated that all of the somatic hybrids except one were genetically uniform. Analysis of the somatic hybrid cytoplasmic genomes with universal primers revealed that their chloroplast DNA (cpDNA) banding patterns were identical to those of the mesophyll parent trifoliate orange, while their mitochondria (mt) genomes were of the callus parent sour orange. The potential of GISH in Citrus somatic hybrid analysis is discussed.The first two authors contributed equally to this paper.  相似文献   

2.
Citrus exocortis viroid (CEV) is widespread in citrus production areas where trifoliate orange [Poncirus trifoliata (L.) Raf.] is used as rootstock. Citrus reticulata Blanco cv. Red tangerine, a different rootstock, is tolerant to CEV. Embryogenic protoplasts of C. reticulata cv. Red tangerine were electrically fused with mesophyll protoplasts from P. trifoliata, and five embryoids were regenerated after 40 days of culture. The embryoids were cut into several pieces and subcultured on shoot induction medium. After 5 months and several subcultures, shoots initially regenerated. The plants grew vigorously with well-developed root systems and exhibited the trifoliate leaf character of P. trifoliata. Chromosome counts on four randomly selected root tips revealed them to be tetraploids (2n=4x=36). RAPD analysis of four randomly selected plants verified their hybridity. This hybridity was further confirmed by AFLP analysis using four primer pairs, from which a total of 65 specific bands were detected. Cytoplasmic genome analysis using universal primers revealed that their chloroplast DNA banding pattern was identical to that of trifoliate orange, while the banding pattern of mitochondrial DNA was identical to that of Red tangerine. The potential of this somatic hybrid as a means to control tree size and provide multi-resistance is discussed.  相似文献   

3.
柑桔细胞电融合再生两个种间体细胞杂种   总被引:3,自引:0,他引:3  
郭文武  邓秀新   《生物工程学报》2000,16(2):179-182
朋娜脐橙(Citrussinensis Osbeck)胚性细胞悬浮系原生质体分别与粗柠檬(C.jambhiri Lush)、枸头橙(C.aurantium)叶肉原生质体经电场诱导而融合。经培养,两组合均获得再生植株。对朋娜脐橙+粗柠檬的再生胚状体进行染色体计数,随机取样的52个胚状体中,26个为四倍体,另外26个为二倍体;对74棵再生植株进行染色体计数,由此说明都为四倍体;表明体细胞杂种在植株再生过程中具有明显的竞争优势。朋娜脐橙+枸头橙再生的14棵植株都为四倍体。对朋娜脐橙+粗柠檬部分植株进行POX同工酶和RAPD分析,表明所有检测植株都为杂种。朋娜脐橙+枸头橙再生植株经RAPD分析,表明也为杂种。  相似文献   

4.
Protoplast fusion between sweet orange and mandarin/mandarin hybrids scion cultivars was performed following the model ??diploid embryogenic callus protoplast?+?diploid mesophyll-derived protoplast??. Protoplasts were isolated from embryogenic calli of ??Pera?? and ??Westin?? sweet orange cultivars (Citrus sinensis) and from young leaves of ??Fremont??, Nules??, and ??Thomas?? mandarins (C. reticulata), and ??Nova?? tangelo [C. reticulata?×?(C. paradisi?×?C. reticulata)]. The regenerated plants were characterized based on their leaf morphology (thickness), ploidy level, and simple sequence repeat (SSR) molecular markers. Plants were successfully generated only when ??Pera?? sweet orange was used as the embryogenic parent. Fifteen plants were regenerated being 7 tetraploid and 8 diploid. Based on SSR molecular markers analyses all 7 tetraploid regenerated plants revealed to be allotetraploids (somatic hybrids), including 2 from the combination of ??Pera?? sweet orange?+???Fremont?? mandarin, 3 ??Pera?? sweet orange?+???Nules?? mandarin, and 2 ??Pera?? sweet orange?+???Nova?? tangelo, and all the diploid regenerated plants showed the ??Pera?? sweet orange marker profile. Somatic hybrids were inoculated with Alternaria alternata and no disease symptoms were detected 96?h post-inoculation. This hybrid material has the potential to be used as a tetraploid parent in interploid crosses for citrus scion breeding.  相似文献   

5.
原生质体电融合再生柑橘属间体细胞杂种   总被引:7,自引:0,他引:7  
Leaf derived protoplasts of Sour orange (Citrus aurantium L.) were fused electrically with embryogenic protoplasts of Microcitrus papuana Swingle. Plants were regenerated from the fusion products, which were characteristic with three types of leaf morphology. Most of the plants were identical to Sour orange (namely, Leaf-parent-type plant) and two plants had large and thick leaves whereas one plant had bifoliate and trifoliate leaves. Chromosome examination showed that these plants were diploid with 18 chromosomes (2n = 2x = 18). RAPD analysis was employed to verify the hybrid characteristics of the plants in the first two types. Four 10-mer arbitrary primers with polymorphism were chosen. Band pattern of the plants was similar with the leaf parent (Sour orange) for the primer OPAA-17. Band pattern of the plants was similar with either Sour orange or M. papuana for OPA-08. As for OPA-07 and OPA-04 three kinds of band profiles were detected. Results of RAPD marker, together with chromosome determination, indicated that all of the analyzed plants were intergeneric diploid somatic hybrids between Sour orange and M. papuana.  相似文献   

6.
电场诱导酸橙(CitrusaurantitumL.)叶肉原生质体与澳洲指橘(MicrocitruspapuanaSwingle)悬浮系原生质体融合,融合产物经培养再生出具有三种叶片形态的植株,绝大部分与酸橙叶片完全相似(即叶肉亲本型植株);有2棵植株叶片大且厚;有1棵植株出现二叶和三叶。细胞学检查表明这些植株均为二倍体。采用RAPD标记对前两种植株进行杂种特性分析,共选用4个10-mer随机引物进行扩增。在引物OPAA-17的扩增产物中,再生植株的带型与酸橙一致;在引物OPA-08的扩增产物中,再生植株的带型与酸橙或澳洲指橘相似;而在引物OPA-04和OPA-07的扩增产物中,再生植株的带型出现三种情况,4个引物的扩增结果证明所分析的植株均是体细胞杂种。综合染色体检查和RAPD标记的结果,表明获得了酸橙与澳洲指橘属间二倍体体细胞杂种植株。  相似文献   

7.
Protoplasts isolated from `Page' tangelo (Minneola tangelo × clementine) cell suspension cultures were electrically fused with mesophyll protoplasts of orange jessamine [Murraya paniculata (L.) Jack]. Shoots were regenerated after 6 – 10 months of culture, but they were extremely recalcitrant to producing roots in root-induction medium. Complete plantlets were formed via micrografting. Chromosome counting of shoot tips revealed they were tetraploids (2n = 4x = 36). Glutamateoxaloacetate transaminase isozyme and randomly amplified polymorphic DNA analysis confirmed their hybridity. Orange jessamine is immune to citrus huanglongbin, a severe disease of citrus, but sexual incompatibility and limited graft compatibility exist between Citrus and orange jessamine. The cell fusion technique may make it possible to transfer the huanglongbin resistance trait from orange jessamine to Citrus. Received: 17 January 1998 / Revision received: 12 June 1998 / Accepted: 14 July 1998  相似文献   

8.
Summary Nucellar cell suspension protoplasts of navel orange (Citrus sinsensis Osb.) were chemically fused with mesophyll protoplasts of Troyer citrange (C. sinensis x Poncirus trifoliata) and cultured in hormone-free Murashige and Tucker medium containing 0.6 M sucrose. Two types of plant were regenerated through embryogenesis. One type showed intermediate mono-and difoliate leaves and the other types was identical to Troyer citrange. The regenerated plants with intermediate morphology were demonstrated by chromosome counts and rDNA analysis to be amphidiploid somatic hybrids. Five clones of these somatic hybrids were grafted in the field. After 4 years, they set flowers having a morphology intermediate between those of the two parents. The pollen grains showed high stainability and sufficient germinability, and were larger than those of Troyer citrange. The fruits of the somatic hybrids were large and spherical with thick rinds. Most of them contained seeds with normal germinability. These results indicate that somatic hybridization is a useful tool for Citrus breeding.  相似文献   

9.
This study was primarily attempted to optimize the electrofusion parameters using protoplasts isolated from cell suspension cultures of "Page" tangelo ( Citrus reticulata Blanco x C. paradisi Macf) and mesophyll protoplasts of rough lemon ( Citrus jambhiri Lush) as fusion partners. It was shown that the binuclear heterokaryons frequency reached 15% with the following parameters: alternate current (AC) 125 V/cm, AC time 60 s, direct current (DC) 1 250 V/cm, DC pulse width 50 μs, DC pulse interval O. 5 s, No. of DC pulse 3. Considering the fact that different types of protoplasts have different specific weights, higher frequency of the binuclear heterokaryons was obtained by controlling the centrifugation time after fusion. The fusion products regenerated into plantlets after 3 to 4 months of culture. Chromosome counting of the root tips and morphological observation of the regenerants verified that 78% were tetraploids and the rest were diploids with the leaf morphology of mesophyll parent. Peroxidase (POX) isozyme and RAPD analysis indicated that interspecific somatic hybrids were obtained and an autotetraploid plant of mesophyll parent type was also verified.  相似文献   

10.
Intergeneric somatic hybrid plants between Hamlin sweet orange [Citrus sinensis (L.) Osbeck] and Flying Dragon trifoliate orange (Poncirus trifoliata Raf.) were regenerated following protoplast fusion. Hamlin protoplasts, isolated from an habituated embryogenic suspension culture, were fused chemically with Flying Dragon protoplasts isolated from juvenile leaf tissue. The hybrid selection scheme was based on complementation of the regenerative ability of the Hamlin protoplasts with the subsequent expression of the trifoliate leaf character of Flying Dragon. Hybrid plants were regenerated via somatic embryogenesis and multiplied organogenically. Hybrid morphology was intermediate to that of the parents. Chromosome counts indicated that the hybrids were allotetraploids (2n=4x=36). Malate dehydrogenase (MDH) isozyme patterns confirmed the hybrid nature of the regenerated plants. These genetically unique somatic hybrid plants will be evaluated for citrus rootstock potential. The cell fusion, selection, and regeneration scheme developed herein should provide a general means to expand the germplasm base of cultivated Citrus by intergeneric hybridization with related sexually incompatible genera.Abbreviations MDH malate dehydrogenase - CTV citrus tristeza virus - MT Murashige and Tucker basal medium - BH3 protoplast culture medium, Grosser and Chandler, 1987 - PEG polyethylene glycol - GA3 giberellic acid - BA N-(phenylmethyl)-1 H-purin-6-amine - HCl hydrochloric acid Florida Agricultural Experiment Station Journal Series No. 7972  相似文献   

11.
Polyploidization is an important speciation mechanism for all eukaryotes, and it has profound impacts on biodiversity dynamics and ecosystem functioning. Green fluorescent protein (GFP) has been used as an effective marker to visually screen somatic hybrids at an early stage in protoplast fusion. We have previously reported that the intensity of GFP fluorescence of regenerated embryoids was also an early indicator of ploidy level. However, little is known concerning the effects of ploidy increase on the GFP expression in citrus somatic hybrids at the plant level. Herein, allotetraploid and diploid cybrid plants with enhanced GFP (EGFP) expression were regenerated from the fusion of embryogenic callus protoplasts from ‘Murcott’ tangor (Citrus reticulata Blanco × Citrus sinensis (L.) Osbeck) and mesophyll protoplasts from transgenic ‘Valencia’ orange (C. sinensis (L.) Osbeck) expressing the EGFP gene, via electrofusion. Subsequent simple sequence repeat (SSR), chloroplast simple sequence repeat and cleaved amplified polymorphic sequence analysis revealed that the two regenerated tetraploid plants were true allotetraploid somatic hybrids possessing nuclear genomic DNA of both parents and cytoplasmic DNA from the callus parent, while the five regenerated diploid plants were cybrids containing nuclear DNA of the leaf parent and with complex segregation of cytoplasmic DNA. Furthermore, EGFP expression was compared in cells and protoplasts from mature leaves of these diploid cybrids and allotetraploid somatic hybrids. Results showed that the intensity of GFP fluorescence per cell or protoplast in diploid was generally brighter than in allotetraploid. Moreover, same hybridization signal was detected on allotetraploid and diploid plants by Southern blot analysis. By real-time RT-PCR and Western blot analysis, GFP expression level of the diploid cybrid was revealed significantly higher than that of the allotetraploid somatic hybrid. These results suggest that ploidy level conversion can affect transgene expression and citrus diploid cybrid and allotetraploid somatic hybrid represents another example of gene regulation coupled to ploidy.  相似文献   

12.
Long day photoperiod treatments given to Dancy and Clementine tangerines (Citrus reticulata Blanco.), the Mineola tangelo (C. parodisi Macf. × C. reticulata Blanco.) and the Rubideaux trifoliate (Poncirus trifoliata (L.) Raf.) produced 1.5 to 2.5 times the stem area, total linear growth and number of branches compared to short day treatments. Growing shoot tips were snbjected lo etectrophoretic analyses of tbe isoenzymic composition of esterases, teucine aminopeptidases, peroxidases and amylases. Differences were observed in the number and activity of the isoenzymes between the sbort and the long day treated plants of the three Citrus species aiid Hnbideaux trifoliate orange. The possible significance of tbese differences is discnssed in relation to Ihe growth in response to the photoperiodic treatments.  相似文献   

13.
Summary Protoplasts of navel orange, isolated from embryogenic nucellar cell suspension culture, were fused with protoplasts of grapefruit isolated from leaf tissue. The fusion products were cultured in the hormone-free medium containing 0.6 M sucrose. Under the culture conditions, somatic embryogenesis of navel orange protoplasts was suppressed, while cell division of grapefruit mesophyll protoplasts was not induced. Six embryoids were obtained and three lines regenerated to complete plants through embryogenesis. Two of the regenerated lines exhibited intermediate morphological characteristics of the parents in the leaf shape. Chromosome counts showed that these regenerated plants had expected 36 chromosomes (2n=2x=18 for each parent). The rDNA analysis using biotin-labeled rRNA probes confirmed the presence of genomes from both parents in these plants. This somatic hybridization system would be useful for the practical Citrus breeding.  相似文献   

14.
In order to obtain plants that were somatic hybrids of barley (Hordeum vulgare L.) and carrot (Daucus carota L.), we fused protoplasts that had been isolated from 6-month-old suspension cultures of carrot cells with protoplasts isolated from barley mesophyll by electrofusion. After culture for 1 month at 25°C , the cells were cultured for 5 weeks at 4°C , and were then returned to 25°C for culture on a shoot-inducing medium. Three plants (nos. 1, 2 and 3) were regenerated from the cells. The morphology of the regenerated plants closely resembled that of the parental carrot plants. A cytological analysis of callus cultures induced from these plants indicated that most of the cells had about 24 chromosomes, fewer than the sum of the numbers of parent chromosomes which was 32. Southern hybridization analysis with fragments of the rgp1 gene used as probe showed that the regenerated plants contained both barley and carrot genomic DNA. Chloroplast (ct) and mitochondrial (mt) DNAs were also analyzed with several probes. The ctDNA of the regenerated plants yielded hybridization bands specific for both barley and carrot when one fragment of rice ctDNA was used as probe. Furthermore, the regenerated plants yielded a barley specific band and a novel band with another fragment of rice ct DNA as a probe. One of the regenerated plants (no. 1) yielded a novel pattern of hybridized bands of mt DNA (with an atp6 probe) that was not detected with either of the parents. These results indicated that the regenerated plants were somatic hybrids of barley and carrot and that recombination of both the chloroplast genomes and the mitochondrial genomes might have occurred. Received: 28 May 1996 / Accepted: 2 August 1996  相似文献   

15.
A survey of citrus cultivars in Israel in orchards where Alternaria brown spot was common on Minneola tangelos (mandarin × grapefruit), revealed the occurrence of the disease as typical foliar and fruit lesions on Dancy and Ellendale (mandarins), on Murcott tangor (mandarin × sweet orange), on Nova and Idith (mandarin hybrids), on Calamondin, and on Sunrise and Redblush (grapefruit). Isolates of Alternaria alternata from each of these hosts were proven to be pathogenic to Minneola tangelo.
The host range of A. alternata pv. citri from Israel was assayed by inoculating leaves of diverse citrus genotypes. Several mandarins and their hybrids (Dancy, Kara, King, Wilking, Satsuma, Minneola, Orlando, Mikhal, Idith, Nova, Page, Murcott), grapefruit (Marsh seedless), grapefruit × pummelo (Oroblanco), sweet orange (Shamouti, Valencia, Washington navel) Calamondin, and Volkamer citrus were susceptible. Several mandarins and their hybrids (Clementine, Avana, Yafit, Ortanique), Cleopatra, one sweet orange cultivar (Newhall), pummelo (Chandler), lemon (Eureka), Rough lemon, Rangpur lime, sweet lime, citron, limequat, sour orange, Troyer citrange and Alemow were resistant.  相似文献   

16.
柑橘愈伤组织倍性变化及其与体细胞胚胎发生能力的关系   总被引:8,自引:0,他引:8  
柑橘愈伤组织是细胞融合、遗传转化等生物技术研究的良好材料。本实验室通过近20年的工作,先后诱导和保存了近80份不同种类和品种的柑橘愈伤组织。这些愈伤组织在MT基本培养基上继代保存。在长期保存过程中,部分材料仍然保持较好的胚胎发生能力。为研究愈伤组织在继代过程中的染色体变异趋势以及这种变异对胚胎发生能力的影响,本文选择有代表性的35份材料作为试材,在4年中连续3次使用流式细胞仪,对细胞DNA含量进行测定。结果发现,待测的35种愈伤组织均存在部分细胞DNA含量加倍的现象,而且,随着时间的推移,除佩奇橘柚、沙漠蒂甜橙、鲁斯脐橙、印度酸橘等4种愈伤组织的DNA含量加倍的细胞有减少的趋势外,其他愈伤组织的DNA含量加倍的细胞均有增加的趋势。数据分析表明,在待测的35种愈伤组织中,有71.4%的基因型的愈伤组织细胞出现了多倍体细胞增加的趋势。对这35种柑橘愈伤组织进行体细胞胚诱导,发现只有9种愈伤组织具有不同程度的胚胎发生能力,其他26种愈伤组织不能再生。相关性分析表明,柑橘愈伤组织细胞DNA含量增加的细胞比例与体细胞胚胎发生能力之间的相关性较小,相关系数为忙-0.10(P〈0.01),未达到显著水平。另外,柑橘胚性愈伤组织继代时间与体细胞胚胎发生能力之间的相关性也不显著。  相似文献   

17.
We have regenerated altotetraploid plants that are interspecific somatic hybrids between Citrus sinensis Osbeck cv. Yoshida navel orange and Citrus unshiu Marc cv. Okitsu satsuma mandarin. Protoplasts isolated from ‘Yoshida’ leaves were chemically fused with call us-derived protoplasts from ‘Okitsu’. After 6 months of culture, 102 plants were obtained. These hybrids were identified by differential leaf morphology, DNA fluorescence intensity, and DNA analysis. Ploidy analysis via the flow cytometry revealed that 15 of the 102 plants were tetraploids, with the rest being diploids that morphologically resembled their mesophyll parent. SRAP analysis confirmed that 9 of the tetraploid plants were allotetraploid somatic hybrids. These will be utilized as a possible pollen parents for improving seedy citrus cultivars, e.g., ponkan, mandarin, lemon and kumquat, in order to produce triploid seedless hybrids.  相似文献   

18.
Summary Somatic hybrids of Nicotiana knightiana (2n=2X=24) and an albino mutant of Nicotiana tabacum (2n=4X=48) were selected after polyethylene glycol induced protoplast fusion. Three lines were selected on the basis of the simultaneous expression of shoot inducibility and green pigmentation, traits originally separated in the parental species.The hybrid nature of the lines was confirmed by their characteristic isoenzyme patterns, the morphology of the regenerated plants, and by the appearance of heterochromatic blocks in the interphase nuclei.Chromosome numbers in the somatic hybrids varied greatly within individual plants. Variegation in leaf and flower colour and segregation for morphological traits in vegetatively multiplied plants are attributed to segregation of chromosomes in the somatic cells, a consequence of the numerical instability. Hybridity, caryotypic changes induced by tissue culture, and high chromosome numbers, are discussed as possible reasons for the observed genetic instability.  相似文献   

19.
Protoplast fusion using polyethylene glycol (PEG) was conducted to combine Citrus sinensis (L.) Osbeck cv. Hamlin sweet orange protoplasts, isolated from nucellus-derived embryogenic callus with Atalantia ceylanica (Arn.) Oliv, leaf protoplasts. Five plants regenerated from independent fusion events following protoplast culture were identified as intergeneric allotetraploid somatic hybrids of Hamlin sweet orange and A. ceylanica, and confirmed by isozyme analysis and chromosome number determination in root tip cells (2n=4x=36). Two different types of leaf morphology were observed among the hybrids (normal and narrow), although no differences in chromosome number nor isozyme banding patterns were observed. This is the first report of the production of hybrid plants between these sexually incompatible genera.Florida Agricultural Experiment Station Journal Series No. R-03069.  相似文献   

20.
Somatic hybridization can be an interesting alternative for the selection of heterozygous and vigorous potato plants through combination of dihaploid genomes. The resulting hybrids can harbour interesting characters and thus can be used in agriculture if they are in agreement with agronomic criteria.

In this report, we used an intraspecific somatic hybridization technique for the production of tetraploid potato lines. Two parental combinations were used in protoplast electrofusion procedure: Aminca-Cardinal and Cardinal-Nicola. The selection of somatic hybrids was based on in vitro plant vigour. Therefore, among the 75 regenerated plants obtained from Aminca-Cardinal fusion, 3 putative hybrids were retained and 2 plant lines were selected among the 54 regenerated from the Cardinal-Nicola fusion. Heterosis was observed in the larger hybrid tuber size compared to the parents’. Our results also showed a precocity in the in vitro tuberization for the hybrids. Moreover, all of the regenerated putative hybrids were tetraploid (2n=4x=48 chromosomes). Isocitrate dehydrogenase and malate dehydrogenase isoenzyme analyses confirmed the hybrid nature of these lines. A molecular characterization performed by PCR amplification of simple sequence repeats and inter-simple sequence repeats confirmed that all these lines were somatic hybrids.

The effect of potato virus Y infection on these hybrid lines was tested by mechanical inoculation of plants cultivated in a greenhouse. The majority displayed a reduction of infection rate associated with a delayed appearance of symptoms compared to the parents. Moreover, complete resistance was noted for one hybrid line (CN2). All hybrids also showed improved tolerance to Pythium aphanidermatum infection during tuber storage or after plant inoculation.  相似文献   


设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号