首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Root morphology in plants may be related to phosphorus (P) efficiency by affecting the absorption characteristics of the root system. However, genotypic variation in root morphological characteristics of common bean (Phaseolus vulgaris L.) as affected by P availability has not been well clarified. In the present study, systematic studies were conducted in a P-buffered sand culture system using three pairs of common bean parental materials with contrasting root traits in response to P deficiency. The results indicate that P availability significantly affects bean root morphology. Common bean tends to have smaller root system, shorter and coarser roots at low P availability. Genotypic variation in root morphology was observed among different genotypes in response to P availability. The P efficient genotypes appear to have larger, finer and longer root systems than the P inefficient genotypes, and such a variation was particularly obvious in the basal roots. From allomeric analysis, we found that morphological characteristics of the basal roots contribute more to P efficiency than those of the tap roots. Further studies with the F9 recombinant inbred lines derived from one of the most contrasting parental pairs, DOR364 and G19833, confirmed the above findings, indicating that those morphological characteristics are inheritable hence provide potential for genetic improvement. Root morphology in plants may be related to phosphorus (P) efficiency by affecting the absorption characteristics of the root system. However, genotypic variation in root morphological characteristics of common bean (Phaseolus vulgaris L.) as affected by P availability has not been well clarified. In the present study, systematic studies were conducted in a P-buffered sand culture system using three pairs of common bean parental materials with contrasting root traits in response to P deficiency. The results indicate that P availability significantly affects bean root morphology. Common bean tends to have smaller root system, shorter and coarser roots at low P availability. Genotypic variation in root morphology was observed among different genotypes in response to P availability. The P efficient genotypes appear to have larger, finer and longer root systems than the P inefficient genotypes, and such a variation was particularly obvious in the basal roots. From allomeric analysis, we found that morphological characteristics of the basal roots contribute more to P efficiency than those of the tap roots. Further studies with the F9 recombinant inbred lines derived from one of the most contrasting parental pairs, DOR364 and G19833, confirmed the above findings, indicating that those morphological characteristics are inheritable hence provide potential for genetic improvement.  相似文献   

2.
菜豆根形态特性的基因型差异与磷效率   总被引:5,自引:0,他引:5  
廖红  严小龙 《Acta Botanica Sinica》2001,43(11):1161-1166
应用磷控释砂培以及计算机图象分析技术,研究了磷效率差异显的菜豆(Phaseolus vulgaris L.)亲本及其重组自交系后代的根形态特性及其与磷效率的关系。试验结果表明,供磷状况显影响菜豆根系形态学特性。在低磷胁迫下,菜豆根系总根长变短、根部生物量减少,根直径增大。菜豆根形态特性对低磷有效性的适应性反应具有显的基因型差异。在低磷条件下磷高效率基因型的根系比磷低效率基因型相对根部生物量较大、总根长较长,根表面积较大。异计分析表明,菜豆基根根形态特性在低磷条件下的适应性变化对磷效率的贡献远远大于主根,并且这些适应性变化是可以遗传的,表明通过对菜豆根形态特性进行遗传改良来提高磷效率有一定的可行性。  相似文献   

3.
Effect of phosphorus availability on basal root shallowness in common bean   总被引:27,自引:2,他引:25  
Liao  Hong  Rubio  Gerardo  Yan  Xiaolong  Cao  Aiqin  Brown  Kathleen M.  Lynch  Jonathan P. 《Plant and Soil》2001,232(1-2):69-79
Root gravitropism may be an important element of plant response to phosphorus availability because it determines root foraging in fertile topsoil horizons, and thereby phosphorus acquisition. In this study we seek to test this hypothesis in both two dimensional paper growth pouch and three-dimensional solid media of sand and soil cultures. Five common bean (Phaseolus vulgaris L.) genotypes with contrasting adaptation to low phosphorus availability were evaluated in growth pouches over 6 days of growth, and in sand culture and soil culture over 4 weeks of growth. In all three media, phosphorus availability regulated the gravitropic response of basal roots in a genotype-dependent manner. In pouches, sand, and soil, the phosphorus-inefficient genotype DOR 364 had deeper roots with phosphorus stress, whereas the phosphorus-efficient genotype G19833 responded to phosphorus stress by producing shallower roots. Genotypes were most responsive to phosphorus stress in sand culture, where relative root allocation to the 0–3- and 3–6-cm horizons increased 50% with phosphorus stress, and varied 300% (3–6 cm) to 500% (0–3 cm) among genotypes. Our results indicate that (1) phosphorus availability regulates root gravitropic growth in both paper and solid media, (2) responses observed in young seedlings continue throughout vegetative growth, (3) the response of root gravitropism to phosphorus availability varies among genotypes, and (4) genotypic adaptation to low phosphorus availability is correlated with the ability to allocate roots to shallow soil horizons under phosphorus stress.  相似文献   

4.
Root architectural plasticity might be an important factor in the acquisition by plants of immobile nutrients such as phosphorus (P). In this study, we examined the effect of P availability on the orientation of basal roots with respect to gravity, and thereby on the growth angle of these roots of common bean (Phaseolus vulgaris L.). In one set of studies the growth angle of basal roots of bean seedlings was measured over time. Sixteen bean genotypes were examined; six showed a decrease in root orientation with respect to gravity in low P media, one increased orientation, and nine showed no difference within 5 d of basal root emergence. Bean taproots also showed decreased root orientation with respect to gravity in low P. Growth angle after 5 d was correlated with field performance of contrasting genotypes in low P tropical soils. Mineral deficiencies other than P did not cause changes in root angle. In a split pouch system that provided high or low P solution to different parts of the root system, the decrease in root angle in low P was found to be a response to global P availability, and not local to the portion of the root system in low P. Effects of P availability on root angle were associated with reduced shoot P concentration, but preceded effects on plant biomass accumulation and leaf area expansion. Results from growth pouches for genotype G 19833 were confirmed using a solid-phase buffered sand-culture system supplying P at three levels. Pea (Pisum sativum), soybean (Glycine max Williams), chickpea (Cicer arietinum), lima bean (Phaseolus lunatus), and lentil (Lens culinaris) were grown with and without P; soybean and pea also showed decreased basal root angles in low P.  相似文献   

5.
Ge  Zhenyang  Rubio  Gerardo  Lynch  Jonathan P 《Plant and Soil》2000,218(1-2):159-171
We have observed that low soil phosphorus availability alters the gravitropic response of basal roots in common bean (Phaseolus vulgaris L.), resulting in a shallower root system. In this study we use a geometric model to test the hypotheses that a shallower root system is a positive adaptive response to low soil P availability by (1) concentrating root foraging in surface soil horizons, which generally have the highest P availability, and (2) reducing spatial competition for P among roots of the same plant. The growth of nine root systems contrasting in gravitropic response over 320 h was simulated in SimRoot, a dynamic three-dimensional geometric model of root growth and architecture. Phosphorus acquisition and inter-root competition were estimated with Depzone, a program that dynamically models nutrient diffusion to roots. Shallower root systems had greater P acquisition per unit carbon cost than deeper root systems, especially in older root systems. This was due to greater inter-root competition in deeper root systems, as measured by the volume of overlapping P depletion zones. Inter-root competition for P was a significant fraction of total soil P depletion, and increased with increasing values of the P diffusion coefficient (De), with root age, and with increasing root gravitropism. In heterogenous soil having greater P availability in surface horizons, shallower root systems had greater P acquisition than deeper root systems, because of less inter-root competition as well as increased root foraging in the topsoil. Root P acquisition predicted by SimRoot was validated against values for bean P uptake in the field, with an r 2 between observed and predicted values of 0.75. Our results support the hypothesis that altered gravitropic sensitivity in P-stressed roots, resulting in a shallower root system, is a positive adaptive response to low P availability by reducing inter-root competition within the same plant and by concentrating root activity in soil domains with the greatest P availability. This revised version was published online in August 2006 with corrections to the Cover Date.  相似文献   

6.
At the genus and species level, variation in root anatomy and architecture may interact to affect strategies of drought avoidance. To investigate this idea, root anatomy and architecture of the drought‐sensitive common bean (Phaseolus vulgaris) and drought‐adapted tepary bean (Phaseolus acutifolius) were analyzed in relation to water use under terminal drought. Intraspecific variation for metaxylem anatomy and axial conductance was found in the roots of both species. Genotypes with high‐conductance root metaxylem phenotypes acquired and transpired more water per unit leaf area, shoot mass, and root mass than genotypes with low‐conductance metaxylem phenotypes. Interspecific variation in root architecture and root depth was observed where P. acutifolius has a deeper distribution of root length than P. vulgaris. In the deeper‐rooted P. acutifolius, genotypes with high root conductance were better able to exploit deep soil water than genotypes with low root axial conductance. Contrastingly, in the shallower‐rooted P. vulgaris, genotypes with low root axial conductance had improved water status through conservation of soil moisture for sustained water capture later in the season. These results indicate that metaxylem morphology interacts with root system depth to determine a strategy of drought avoidance and illustrate synergism among architectural and anatomical phenotypes for root function.  相似文献   

7.

Background and Aims

Root architectural phenes enhancing topsoil foraging are important for phosphorus acquisition. In this study, the utility of a novel phene is described, basal root whorl number (BRWN), that has significant effects on topsoil foraging in common bean (Phaseolus vulgaris).

Methods

Whorls are defined as distinct tiers of basal roots that emerge in a tetrarch fashion along the base of the hypocotyl. Wild and domesticated bean taxa as well as two recombinant inbred line (RIL) populations were screened for BRWN and basal root number (BRN). A set of six RILs contrasting for BRWN was evaluated for performance under low phosphorus availability in the greenhouse and in the field. In the greenhouse, plants were grown in a sand–soil media with low or high phosphorus availability. In the field, plants were grown in an Oxisol in Mozambique under low and moderate phosphorus availability.

Key Results

Wild bean accessions tended to have a BRWN of one or two, whereas cultivated accessions had BRWN reaching four and sometimes five. BRWN and BRN did not vary with phosphorus availability, i.e. BRWN was not a plastic trait in these genotypes. Greater BRWN was beneficial for phosphorus acquisition in low phosphorus soil. Genotypes with three whorls had almost twice the shoot biomass, greater root length and greater leaf area than related genotypes with two whorls. In low phosphorus soil, shoot phosphorus content was strongly correlated with BRWN (R2 = 0·64 in the greenhouse and R2 = 0·88 in the field). Genotypes with three whorls had shallower root systems with a greater range of basal root growth angles (from 10 to 45 ° from horizontal) than genotypes with two whorls (angles ranged from 60 to 85 ° from horizontal).

Conclusions

The results indicate that BRWN is associated with increased phosphorus acquisition and that this trait may have value for selection of genotypes with better performance in low phosphorus soils.  相似文献   

8.
Low phosphorus availability is a primary constraint to plant productivity in many natural and agricultural ecosystems. Plants display a wide array of adaptive responses to low phosphorus availability that generally serve to enhance phosphorus mobility in the soil and increase its uptake. One set of adaptive responses is the alteration of root architecture to increase phosphorus acquisition from the soil at minimum metabolic cost. In a series of studies with the common bean, work in our laboratory has shown that architectural traits that enhance topsoil foraging appear to be particularly important for genotypic adaptation to low phosphorus soils (phosphorus efficiency). In particular, the gravitropic trajectory of basal roots, adventitious rooting, the dispersion of lateral roots, and the plasticity of these processes in response to phosphorus availability contribute to phosphorus efficiency in this species. These traits enhance the exploration and exploitation of shallow soil horizons, where phosphorus availability is greatest in many soils. Studies with computer models of root architecture show that root systems with enhanced topsoil foraging acquire phosphorus more efficiently than others of equivalent size. Comparisons of contrasting genotypes in controlled environments and in the field show that plants with better topsoil foraging have superior phosphorus acquisition and growth in low phosphorus soils. It appears that many architectural responses to phosphorus stress may be mediated by the plant hormone ethylene. Genetic mapping of these traits shows that they are quantitatively inherited but can be tagged with QTLs that can be used in plant breeding programs. New crop genotypes incorporating these traits have substantially improved yield in low phosphorus soils, and are being deployed in Africa and Latin America.  相似文献   

9.
以7个马尾松(Pinus massoniana)一代种子园自由授粉家系为材料, 设置同质低磷(P)胁迫和异质低P胁迫模拟的盆栽试验, 系统研究马尾松家系对不同类型低P胁迫的适应机制和P效率变异规律。结果表明, 参试马尾松家系的苗高、地径和生物量等P效率指标均表现出显著的家系变异, 主要P效率指标的家系遗传力均较高, 干物质积累量的广义遗传力大于0.80, 揭示了马尾松P营养效率的较大遗传改良潜力。马尾松对不同类型低P胁迫的适应机制有所差异。在同质低P胁迫下, ‘3201’、‘1217’等高P效率家系的根系主要参数均高于低P效率家系, 表明整体根系参数的适应性变化是P效率和生物量形成的决定因素。在异质低P胁迫下, 高P效率马尾松家系在表层富P介质的根系分布量、分布比例均显著增加, 表层根系参数与马尾松家系P效率呈显著正相关, 揭示根系空间构型的适应性变化是决定马尾松高P效率的重要生物学基础。表层根系生物量、表层根相对比例的家系遗传力达0.88和0.72, 证实了以马尾松根构型的适应变化为突破口, 选育具有理想根构型和较高P效率的马尾松家系。  相似文献   

10.
Nielsen  Kai L.  Miller  Carter R.  Beck  Douglas  Lynch  Jonathan P. 《Plant and Soil》1999,206(2):181-190
Root growth and architecture are important for phosphorus acquisition due to the relative immobility of P in the soil. Fractal geometry is a potential new approach to the analysis of root architecture. Substantial genetic variation in root growth and architecture has been observed in common bean. Common bean (Phaseolus vulgaris L.) genotypes with contrasting root architecture were grown under moderate and low P conditions in a field experiment. Linear and planar fractal dimension were measured by tracing root intercepts with vertical planes. Linear fractal dimension increased over time in efficient genotypes, but remained fairly constant over time in inefficient genotypes. Planar fractal dimension increased over time for all genotypes, but was higher in efficient than inefficient genotypes at the end of the experiment. Planar fractal dimension of medium P plants was found to correlate with shoot P content indicating fractal dimension to be a possible indicator for root P uptake. The increasing fractal dimension over time indicates that fractal analysis is a sensitive measure of root branching intensity. A less destructive method for acquisition of data that allows for continuous analysis of fractal geometry and thereby screening for more P efficient genotypes in the field is suggested. This method will allow the researcher to conduct fractal analysis and still complete field trials with final yield evaluation.  相似文献   

11.
以30个不同根构型的大豆基因型为材料,通过盆栽试验,研究了生长介质磷有效性对大豆接种摩西球囊霉属丛枝菌根真菌的影响及其与根构型、磷效率的关系.结果表明:生长介质磷有效性显著地影响大豆菌根真菌的接种效果.低磷条件下接种菌根真菌效果明显,菌根侵染率较高,菌根对大豆磷吸收的贡献率较大;高磷条件下接种菌根真菌效果不显著,菌根侵染率较低,菌根对大豆磷吸收的贡献率较低.磷有效性和大豆根构型对菌根真菌接种的影响具有交互作用.低磷条件下,中间型和深根型大豆的菌根侵染率最高,浅根型最小.高磷条件下,根构型与菌根侵染率间的关系不明显.根构型和菌根侵染状况对大豆磷效率的贡献存在互利互补关系,磷效率高的大豆基因型一般具有较好的根构型或较高的菌根侵染率.  相似文献   

12.
Adventitious rooting contributes to efficient phosphorus acquisition by enhancing topsoil foraging. However, metabolic investment in adventitious roots may retard the development of other root classes such as basal roots, which are also important for phosphorus acquisition. In this study we quantitatively assessed the potential effects of adventitious rooting on basal root growth and whole plant phosphorus acquisition in young bean plants. The geometric simulation model SimRoot was used to dynamically model root systems with varying architecture and C availability growing for 21 days at 3 planting depths in 3 soil types with contrasting nutrient mobility. Simulated root architectures, tradeoffs between adventitious and basal root growth, and phosphorus acquisition were validated with empirical measurements. Phosphorus acquisition and phosphorus acquisition efficiency (defined as mol phosphorus acquired per mol C allocated to roots) were estimated for plants growing in soil in which phosphorus availability was uniform with depth or was greatest in the topsoil, as occurs in most natural soils. Phosphorus acquisition and acquisition efficiency increased with increasing allocation to adventitious roots in stratified soil, due to increased phosphorus depletion of surface soil. In uniform soil, increased adventitious rooting decreased phosphorus acquisition by reducing the growth of lateral roots arising from the tap root and basal roots. The benefit of adventitious roots for phosphorus acquisition was dependent on the specific respiration rate of adventitious roots as well as on whether overall C allocation to root growth was increased, as occurs in plants under phosphorus stress, or was lower, as observed in unstressed plants. In stratified soil, adventitious rooting reduced the growth of tap and basal lateral roots, yet phosphorus acquisition increased by up to 10% when total C allocation to roots was high and adventitious root respiration was similar to that in basal roots. With C allocation to roots decreased by 38%, adventitious roots still increased phosphorus acquisition by 5%. Allocation to adventitious roots enhanced phosphorus acquisition and efficiency as long as the specific respiration of adventitious roots was similar to that of basal roots and less than twice that of tap roots. When adventitious roots were assigned greater specific respiration rates, increased adventitious rooting reduced phosphorus acquisition and efficiency by diverting carbohydrate from other root types. Varying the phosphorus diffusion coefficient to reflect varying mobilities in different soil types had little effect on the value of adventitious rooting for phosphorus acquisition. Adventitious roots benefited plants regardless of basal root growth angle. Seed planting depth only affected phosphorus uptake and efficiency when seed was planted below the high phosphorus surface stratum. Our results confirm the importance of root respiration in nutrient foraging strategies, and demonstrate functional tradeoffs among distinct components of the root system. These results will be useful in developing ideotypes for more nutrient efficient crops.  相似文献   

13.
An optimization model is presented that examines the relationship between root architecture and multiple resource acquisition, specifically water and phosphorus in spatially heterogeneous environments. The basal root growth angle of an individual common bean plant, which determines the orientation and localization of the bulk of the root system, was modeled as the decision variable. The total payoff to the plant, the benefit obtained from water and phosphorus acquisition, minus the costs of spatial competition between roots, is given as a function of the (x,y) coordinates of the basal root in two-dimensional Cartesian space. We obtained a general solution and applied it to four unique environmental cases which are as follows: (1) the case of uniformly distributed water and phosphorus; (2) the case of localized shallow phosphorus; (3) the case of localized deep water; and (4) the case of shallow phosphorus and deep water. The general solution states that the optimal basal root growth angle will occur at the point where the total rate of change in the value of the resources acquired equals the total rate of change in cost that results from locating the root deeper in the soil. An optimizing plant locates its roots deeper in the soil profile until the marginal benefit exactly equals the marginal cost. The model predicts that the basal root angle of an optimizing plant will be shallower for Case 2 and deeper for Case 3, relative to the basal root angle obtained in the case of uniformly distributed water and phosphorus. The optimal basal root angle for Case 4 will depend on the marginal rate of substitution of water availability for phosphorus availability that occurs with depth. Empirical observations of bean root architecture in the greenhouse and in the field confirm model results and are discussed. In addition, the potential importance of phenotypic plasticity and phenotypic variation are discussed in relation to optimization of traits and adaptation to spatially heterogeneous environments.  相似文献   

14.
Basu P  Brown KM  Pal A 《Plant physiology》2011,155(4):2056-2065
Vertical placement of roots within the soil determines their efficiency of acquisition of heterogeneous belowground resources. This study quantifies the architectural traits of seedling basal roots of bean (Phaseolus vulgaris), and shows that the distribution of root tips at different depths results from a combined effect of both basal root growth angle (BRGA) and root length. Based on emergence locations, the basal roots are classified in three zones, upper, middle, and lower, with each zone having distinct architectural traits. The genotypes characterized as shallow on BRGA alone produced basal roots with higher BRGA, greater length, and more vertically distributed roots than deep genotypes, thereby establishing root depth as a robust measure of root architecture. Although endogenous indole-3-acetic acid (IAA) levels were similar in all genotypes, IAA and 1-N-naphthylphthalamic acid treatments showed different root growth responses to auxin because shallow and deep genotypes tended to have optimal and supraoptimal auxin levels, respectively, for root growth in controls. While IAA increased ethylene production, ethylene also increased IAA content. Although differences in acropetal IAA transport to roots of different zones can account for some of the differences in auxin responsiveness among roots of different emergence positions, this study shows that mutually dependent ethylene-auxin interplay regulates BRGA and root growth differently in different genotypes. Root length inhibition by auxin was reversed by an ethylene synthesis inhibitor. However, IAA caused smaller BRGA in deep genotypes, but not in shallow genotypes, which only responded to IAA in the presence of an ethylene inhibitor.  相似文献   

15.
A common response to low phosphorus availability is increased relative biomass allocation to roots. The resulting increase in root:shoot ratio presumably enhances phosphorus acquisition, but may also reduce growth rates by diverting carbon to the production of heterotrophic rather than photosynthetic tissues. To assess the importance of increased carbon allocation to roots for the adaptation of plants to low P availability, carbon budgets were constructed for four common bean genotypes with contrasting adaptation to low phosphorus availability in the field ("phosphorus efficiency"). Solid-phase-buffered silica sand provided low (1 microM), medium (10 microM), and high (30 microM) phosphorus availability. Compared to the high phosphorus treatment, plant growth was reduced by 20% by medium phosphorus availability and by more than 90% by low phosphorus availability. Low phosphorus plants utilized a significantly larger fraction of their daytime net carbon assimilation on root respiration (c. 40%) compared to medium and high phosphorus plants (c. 20%). No significant difference was found among genotypes in this respect. Genotypes also had similar rates of P absorption per unit root weight and plant growth per unit of P absorbed. However, P-efficient genotypes allocated a larger fraction of their biomass to root growth, especially under low P conditions. Efficient genotypes had lower rates of root respiration than inefficient genotypes, which enabled them to maintain greater root biomass allocation than inefficient genotypes without increasing overall root carbon costs.  相似文献   

16.
Rhizoeconomics: Carbon costs of phosphorus acquisition   总被引:4,自引:0,他引:4  
Plants display a wide array of physiological adaptations to low soil phosphorus availability. Here we discuss metabolic and ecological costs associated with these strategies, focusing on the carbon costs of root traits related to phosphorus acquisition in crop plants. We propose that such costs are an important component of adaptation to low phosphorus soils. In common bean, genotypes with superior low phosphorus adaptation express traits that reduce the respiratory burden of root growth, including greater allocation to metabolically inexpensive root classes, such as adventitious roots, and greater formation of cortical aerenchyma, which reduces specific root respiration. Root hair formation increases phosphorus acquisition at minimal carbon cost, but may have other unknown ecological costs. Mycorrhizas and root exudates enhance phosphorus acquisition in some taxa, but at significant carbon cost. Root architectural patterns that enhance topsoil foraging enhance phosphorus acquisition but appear to incur tradeoffs for water acquisition and spatial competition. A better understanding of the metabolic and ecological costs associated with phosphorus acquisition strategies is needed for an intelligent deployment of such traits in crop improvement programs.  相似文献   

17.
Araújo  A.P.  Teixeira  M.G.  de Almeida  D.L. 《Plant and Soil》1998,203(2):173-182
Genetic variation in plant growth under limited phosphorus (P) supply is necessary to obtain more productive cultivars on low P-available soils. Two pot experiments were conducted to evaluate the variability of some traits associated with efficiency of P absorption and utilization in wild and cultivated genotypes of common bean (Phaseolus vulgaris L.) under biological N2 fixation. At two P levels (20 and 80 mg P kg-1 soil, P1 and P2, respectively), 20 wild and 6 cultivated genotypes were grown in Experiment 1, and 4 wild and 27 cultivated genotypes were grown in Experiment 2. Plants were harvested at flowering, but in Experiment 1 wild accessions that did not flower were harvested at the beginning of leaf senescence. In Experiment 1, part of the genotypic variability of wild accessions was attributed to a less homogeneous ontogenetic stage at harvest, whereas in Experiment 2 some variation in biomass production was due to distinct phenologies of cultivated genotypes. Wild lines did not seem more tolerant to low P conditions, but the genotypic variation observed suggests these materials as a source of genetic diversity. Part of the variation in the root area and root efficiency ratio (total P content:root area) was compensatory, resulting in narrow genotypic differences in the total P content. The total P content and root efficiency ratio presented a wider amplitude of variation at P2 than at P1, and P uptake was more influenced by P supply than root production. Since the genotype × P level interaction was not significant for shoot biomass and shoot P concentration in Experiment 2, P utilization efficiency may be a useful selection criterion for cultivars between limited and adequate P supply. Within the sample of genetic diversity evaluated herein, there was large genotypic variability for traits related to P efficiency among wild and cultivated genotypes of common bean.  相似文献   

18.
植物根构型特性与磷吸收效率   总被引:57,自引:5,他引:57  
植物根构型,即根系在生长介质中的空间造型和分布,与磷吸收效率密切相关;认识植物根构型,可为植物磷效率的遗传改良提供依据。长期以来,人们试图定量描述植物根构型,确立一个能客观全面地描述根系三维立体构型的综合指标。试验指出,植物主要通过向地性变化和根冠之间的碳源分配来改变根构型,从而影响磷吸收效率;根系向地性变化可由缺磷等因素所诱导,且存在着一定的遗传变异性。有证据表明,根构型对低磷胁迫的适应性变化是  相似文献   

19.
Carbon cost of root systems: an architectural approach   总被引:16,自引:2,他引:14  
Root architecture is an important component of nutrient uptake and may be sensitive to carbon allocational changes brought about by rising CO2. We describe a deformable geometric model of root growth, SimRoot, for the dynamic morphological and physiological simulation of root architectures. Using SimRoot, and measurements of root biomass deposition, respiration and exudation, carbon/phosphorus budgets were developed for three contrasting root architectures. Carbon allocation patterns and phosphorus acquisition efficiencies were estimated for Phaseolus vulgaris seedlings with either a dichotomous, herringbone, or empirically determined bean root architecture. Carbon allocation to biomass, respiration, and exudation varied significantly among architectures. Root systems also varied in the relationship between C expenditure and P acquisition, providing evidence for the importance of architecture in nutrient acquisition efficiency.  相似文献   

20.
The involvement of ethylene in root architectural responses to phosphorus availability was investigated in common bean ( Phaseolus vulgaris L.) plants grown with sufficient and deficient phosphorus. Although phosphorus deficiency reduced root mass and lateral root number, main root length was unchanged by phosphorus treatment. This resulted in decreased lateral root density in phosphorus-deficient plants. The possible involvement of ethylene in growth responses to phosphorus deficiency was investigated by inhibiting endogenous ethylene production with amino-ethoxyvinylglycine (AVG) and aerating the root system with various concentrations of ethylene. Phosphorus deficiency doubled the root-to-shoot ratio, an effect which was suppressed by AVG and partially restored by exogenous ethylene. AVG increased lateral root density in phosphorus- deficient plants but reduced it in phosphorus-sufficient plants. These responses could be reversed by exogenous ethylene, suggesting ethylene involvement in the regulation of main root extension and lateral root spacing. Phosphorus-deficient roots produced twice as much ethylene per g dry matter as phosphorus-sufficient roots. Enhanced ethylene production and altered ethylene sensitivity in phosphorus-deficient plants may be responsible for root responses to phosphorus deficiency.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号