共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Worrall D Liang YK Alvarez S Holroyd GH Spiegel S Panagopulos M Gray JE Hetherington AM 《The Plant journal : for cell and molecular biology》2008,56(1):64-72
In mammalian cells sphingosine-1-phosphate (S1P) is a well-established messenger molecule that participates in a wide range of signalling pathways. The objective of the work reported here was to investigate the extent to which phosphorylated long-chain sphingoid bases, such as sphingosine-1-phosphate and phytosphingosine-1-phosphate (phytoS1P) are used in plant cell signalling. To do this, we manipulated Arabidopsis genes capable of metabolizing these messenger molecules. We show that Sphingosine kinase1 (SPHK1) encodes an enzyme that phosphorylates sphingosine, phytosphingosine and other sphingoid long-chain bases. The stomata of SPHK1-KD Arabidopsis plants were less sensitive, whereas the stomata of SPHK1-OE plants were more sensitive, than wild type to ABA. The rate of germination of SPHK1-KD was enhanced, whereas the converse was true for SPHK1-OE seed. Reducing expression of either the putative Arabidopsis S1P phosphatase (SPPASE) or the DPL1 gene, which encodes an enzyme with S1P lyase activity, individually, had no effect on guard-cell ABA signalling; however, stomatal responses to ABA in SPPASEDPL1 RNAi plants were compromised. Reducing the expression of DPL1 had no effect on germination; however, germination of SPPASE RNAi seeds was more sensitive to applied ABA. We also found evidence that expression of SPHK1 and SPPASE were coordinately regulated, and discuss how this might contribute to robustness in guard-cell signalling. In summary, our data establish SPHK1 as a component in two separate plant signalling systems, opening the possibility that phosphorylated long-chain sphingoid bases such as S1P and phytoS1P are ubiquitous messengers in plants. 相似文献
3.
The relationship between guard cell water potential and the aperture of stomata in Populus 总被引:1,自引:0,他引:1
Abstract Previous work with clones of Populus trichocarpa demonstrated that the water vapour conductance of leaves from well-watered cuttings of this species does not decline with loss of turgor from the bulk leaf. In the present study, stomatal responses to water potential in Populus were examined with detached epidermal strips. Stomata in epidermal strips from well-watered plants of P. trichocarpa did not close at low water potentials which led to plasmolysis of the guard cells. In contrast, stomata of P. deltoides and a P. trichocarpa×deltoides hybrid closed when the guard cells lost turgor. A period of water stress preconditioning resulted in modified stomatal responses in P. trichocarpa such that stomata of stressed and re-watered plants nearly closed when guard cell turgor was lost. 相似文献
4.
Stomatal closure is regulated by a complex network of signalling events involving numerous intermediates, among them nitric oxide (NO). Little is known about the signalling events occurring downstream of NO. Previous studies have shown that NO modulates cytosolic calcium concentration and the activation of plasma membrane ion channels. Here we provide evidence that supports the involvement of the lipid second messenger phosphatidic acid (PA) in NO signalling during stomatal closure. PA levels in Vicia faba epidermal peels increased upon NO treatment to maximum levels within 30 min, subsequently decreasing to control levels at 60 min. PA can be generated via phospholipase D (PLD) or via phospholipase C (PLC) in concerted action with diacylglycerol kinase (DGK). Our results showed that NO-induced PA is produced via the activation of both pathways. NO-induced stomatal closure was blocked either when PLC or PLD activity was inhibited. We have shown that PLC- and PLD-derived PA represents a downstream component of NO signalling cascade during stomatal closure. 相似文献
5.
Bright J Desikan R Hancock JT Weir IS Neill SJ 《The Plant journal : for cell and molecular biology》2006,45(1):113-122
Nitric oxide (NO) and hydrogen peroxide (H(2)O(2)) are key signalling molecules produced in response to various stimuli and involved in a diverse range of plant signal transduction processes. Nitric oxide and H(2)O(2) have been identified as essential components of the complex signalling network inducing stomatal closure in response to the phytohormone abscisic acid (ABA). A close inter-relationship exists between ABA and the spatial and temporal production and action of both NO and H(2)O(2) in guard cells. This study shows that, in Arabidopsis thaliana guard cells, ABA-mediated NO generation is in fact dependent on ABA-induced H(2)O(2) production. Stomatal closure induced by H(2)O(2) is inhibited by the removal of NO with NO scavenger, and both ABA and H(2)O(2) stimulate guard cell NO synthesis. Conversely, NO-induced stomatal closure does not require H(2)O(2) synthesis nor does NO treatment induce H(2)O(2) production in guard cells. Tungstate inhibition of the NO-generating enzyme nitrate reductase (NR) attenuates NO production in response to nitrite in vitro and in response to H(2)O(2) and ABA in vivo. Genetic data demonstrate that NR is the major source of NO in guard cells in response to ABA-mediated H(2)O(2) synthesis. In the NR double mutant nia1, nia2 both ABA and H(2)O(2) fail to induce NO production or stomatal closure, but in the nitric oxide synthase deficient Atnos1 mutant, responses to H(2)O(2) are not impaired. Importantly, we show that in the NADPH oxidase deficient double mutant atrbohD/F, NO synthesis and stomatal closure to ABA are severely reduced, indicating that endogenous H(2)O(2) production induced by ABA is required for NO synthesis. In summary, our physiological and genetic data demonstrate a strong inter-relationship between ABA, endogenous H(2)O(2) and NO-induced stomatal closure. 相似文献
6.
Alex A. R. Webb Mark G. Larman Lucy T. Montgomery Jane E. Taylor Alistair M. Hetherington 《The Plant journal : for cell and molecular biology》2001,26(3):351-362
There is much interest in the transduction pathways by which abscisic acid (ABA) regulates stomatal movements (ABA-turgor signalling) and by which this phytohormone regulates the pattern of gene expression in plant cells (ABA-nuclear signalling). A number of second messengers have been identified in both the ABA-turgor and ABA-nuclear signalling pathways. A major challenge is to understand the architecture of ABA-signalling pathways and to determine how the ABA signal is coupled to the appropriate response. We have investigated whether separate Ca2+-dependent and -independent ABA-signalling pathways are present in guard cells. Our data suggest that increases in [Ca2+]i are a common component of the guard cell ABA-turgor and ABA-nuclear signalling pathways. The effects of Ca2+ antagonists on ABA-induced stomatal closure and the ABA-responsive CDeT6-19 gene promoter suggest that Ca2+ is involved in both ABA-turgor signalling and ABA-nuclear signalling in guard cells. However, the sensitivity of these pathways to alterations in the external calcium concentration differ, suggesting that the ABA-nuclear and ABA-turgor signalling pathways are not completely convergent. Our data suggest that whilst Ca2+-independent signalling elements are present in the guard cell, they do not form a completely separate Ca2+-independent ABA-signalling pathway. 相似文献
7.
XIN LI JIAN‐HUA LI WEI WANG NAI‐ZHI CHEN TONG‐SUO MA YA‐NAN XI XIAO‐LU ZHANG HAI‐FEI LIN YANG BAI SHAN‐JIN HUANG YU‐LING CHEN 《Plant, cell & environment》2014,37(7):1548-1560
Multiple cellular events like dynamic actin reorganization and hydrogen peroxide (H2O2) production were demonstrated to be involved in abscisic acid (ABA)‐induced stomatal closure. However, the relationship between them as well as the underlying mechanisms remains poorly understood. Here, we showed that H2O2 generation is indispensable for ABA induction of actin reorganization in guard cells of Arabidopsis that requires the presence of ARP2/3 complex. H2O2‐induced stomatal closure was delayed in the mutants of arpc4 and arpc5, and the rate of actin reorganization was slowed down in arpc4 and arpc5 in response to H2O2, suggesting that ARP2/3‐mediated actin nucleation is required for H2O2‐induced actin cytoskeleton remodelling. Furthermore, the expression of H2O2 biosynthetic related gene AtrbohD and the accumulation of H2O2 was delayed in response to ABA in arpc4 and arpc5, demonstrating that misregulated actin dynamics affects H2O2 production upon ABA treatment. These results support a possible causal relation between the production of H2O2 and actin dynamics in ABA‐mediated guard cell signalling: ABA triggers H2O2 generation that causes the reorganization of the actin cytoskeleton partially mediated by ARP2/3 complex, and ARP2/3 complex‐mediated actin dynamics may feedback regulate H2O2 production. 相似文献
8.
Abstract. It is now clear that drying of the soil does not always result in an early change in shoot water status. This may be because stomata close and leaf growth slows to reduce water loss. When this is the case, it is necessary to ask how the change in soil water status has been 'sensed'by the shoot. The current view is that soil drying results in some type of chemical signalling between roots and shoots. The sensitivity of the response and experiments involving the manipulation of small parts of root systems suggest that the signalling involves more than a simple change in root activity in response to soil drying. In this paper, we consider the evidence for chemical signalling between roots and shoots and discuss the possible candidates for such signals. In some plants, root-sourced ABA can apparently influence shoot physiology and growth in the absence of any perturbation of shoot water relations. The ABA produced is quantitatively sufficient to account for the responses observed. Applied ABA can mimic many of the effects of soil drying on plants, including effects at the plasma membrane and on gene expression. Perhaps uniquely, ABA seems to be involved in signalling between different plant organs, and in signalling at the transmembrane and genome levels. We review the effects of ABA on leaf cells with a view to gaining some understanding of how soil drying may influence plant development. 相似文献
9.
KEITH A. MOTT 《Plant, cell & environment》2009,32(11):1479-1486
The mechanisms by which stomata respond to red light and CO2 are unknown, but much of the current literature assumes that these mechanisms reside wholly within the guard cells. However, responses of guard cells in isolated epidermes are typically much smaller than those in leaves, and there are several lines of evidence in the literature suggesting that the mesophyll is necessary for these responses in leaves. This paper advances the opinion that although guard cells may have small direct responses to red light and CO2 , most of the stomatal response to these factors in leaves is caused by an unknown signal that originates in the mesophyll. 相似文献
10.
Abstract. Previous mathematical analyses of stomatal mechanics have demonstrated, and experimental measurements have confirmed, that the turgor-generated force of the epidermal cells dominates that of the guard cells in determining aperture. DcMichele & Sharpe (1973) termed the phenomenon the mechanical advantage of the epidermal cells, while Cooke et al. (1976) expressed it as an antagonism ratio. Both of these formulations, however, have theoretical or practical limitations. This study presents a biophysical analysis demonstrating that the effective forces in the stomatal system may be studied in terms of simple stomatal geometry. From this analysis, the mechanical advantage can be redefined and interpreted based upon simple geometric relationships calculated from measurable anatomical dimensions. 相似文献
11.
D'Angelo C Weinl S Batistic O Pandey GK Cheong YH Schültke S Albrecht V Ehlert B Schulz B Harter K Luan S Bock R Kudla J 《The Plant journal : for cell and molecular biology》2006,48(6):857-872
Intracellular release of calcium ions belongs to the earliest events in cellular stress perception. The molecular mechanisms integrating signals from different environmental cues and translating them into an optimized response are largely unknown. We report here the functional characterization of CIPK1, a protein kinase interacting strongly with the calcium sensors CBL1 and CBL9. Comparison of the expression patterns indicates that the three proteins execute their functions in the same tissues. Physical interaction of CIPK1 with CBL1 and CBL9 targets the kinase to the plasma membrane. We show that, similarly to loss of CBL9 function, mutation of either CBL1 or CIPK1 renders plants hypersensitive to osmotic stress. Remarkably, in contrast to the cbl1 mutant and similarly to the cbl9 mutant, loss of CIPK1 function impairs abscisic acid (ABA) responsiveness. We therefore suggest that, by alternative complex formation with either CBL1 or CBL9, the kinase CIPK1 represents a convergence point for ABA-dependent and ABA-independent stress responses. Based on our genetic, physiological and protein-protein interaction data, we propose a general model for information processing in calcium-regulated signalling networks. 相似文献
12.
13.
Webb AA 《The New phytologist》2008,179(3):568-570
14.
15.
16.
17.
Osmotic and turgor pressures of guard cells 总被引:3,自引:0,他引:3
18.
19.
《植物生理与分子生物学学报》1997,(3)
植物在不同的逆境条件下可以生成一类受脱落酸(ABA)诱导的蛋白质[脱落酸响应蛋白(ABAresPonsiveProtein,RABpr。tein)](Bray1993)。RAB蛋白分布在不同的物种之中,许多[如Lea(Lateembryogen-。isabundant)蛋白(Dure1993)]形成于植物胚胎成熟失水过程中,但也有一些是植物受到不同逆境处理后在营养器官内所形成的「如脱水蛋白(Dehrdrin)](Dure1993)。已发现的70余个RAB蛋白中,有30余个属于脱水蛋白。(Close等1993)RAB蛋白在植物体内的功能目前尚不了解(Bray1993)。由蛋白质的氨基酸组成分析表明,这些… 相似文献
20.
After a pretreatment of 2 h exposure to a solution containing 2 × 10−4 M ABA, reopening of stomata occurred in epidermal strips of Vicia faba L. cv. Cavalier on an ABA-free incubation solution. After pretreatment with exogenous ABA stomatal apertures were greater when higher levels of KCl were incorporated into the solution used for reopening. Prolonged exposure to exogenous ABA (14 h) did not prevent stomatal reopening upon transfer to ABA-free solutions. However, for both ABA and ABA-free pretreatments, prolonged incubation (1 day after removal of epidermis) resulted in enhanced stomatal apertures when the epidermal strips were exposed to light. This effect was lost 2 days after removal of the epidermis and opening did not occur after 3 days. Epidermal strips containing endogenous ABA were obtained from wilted leaves. Reopening was greatly reduced by the endogenous ABA treatment, and variation of KCl concentration in the incubation solution had little effect on stomatal aperture. It is postulated that during wilting endogenous ABA becomes reversibly bound without loss of activity for a longer period than is obtained using exogenous ABA. The presence of other unidentified compounds may be involved in this process. 相似文献