首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Mammalian ovary is metabolically active organ and generates by‐products such as reactive oxygen species (ROS) and reactive nitrogen species (RNS) on an extraordinary scale. Both follicular somatic cells as well as oocyte generate ROS and RNS synchronously and their effects are neutralized by intricate array of antioxidants. ROS such as hydrogen peroxide (H2O2) and RNS such as nitric oxide (NO) act as signaling molecules and modulate various aspects of oocyte physiology including meiotic cell cycle arrest and resumption. Generation of intraoocyte H2O2 can induce meiotic resumption from diplotene arrest probably by the activation of adenosine monophosphate (AMP)‐activated protein kinase A (PRKA)—or Ca2+‐mediated pathway. However, reduced intraoocyte NO level may inactivate guanylyl cyclase‐mediated pathway that results in the reduced production of cyclic 3′,5′‐guanosine monophosphate (cGMP). The reduced level of cGMP results in the activation of cyclic 3′,5′‐adenosine monophosphate (cAMP)‐phosphodiesterase 3A (PDE3A), which hydrolyses cAMP. The reduced intraoocyte cAMP results in the activation of maturation promoting factor (MPF) that finally induces meiotic resumption. Thus, a transient increase of intraoocyte H2O2 level and decrease of NO level may signal meiotic resumption from diplotene arrest in mammalian oocytes. J. Cell. Biochem. 111: 521–528, 2010. © 2010 Wiley‐Liss, Inc.  相似文献   

2.
3.
Ability of ovarian oocytes from the domestic dog to complete nuclear maturation in vitro (IVM) varies markedly among donors and generally is 20% or less of all oocytes cultured. To identify the cause(s) underlying these significant variations in meiotic maturation (to metaphase II; MII), we retrospectively analyzed data from 1,643 oocytes recovered from 90 bitches for which stage of reproduction and season of year were known. Neither stage of reproduction (proestrus/estrus, diestrus, anestrus, or prepuberty) nor season (P > 0.05) influenced the ability of oocytes to achieve nuclear maturation in vitro. A second study was conducted to examine the impact of follicular size on meiotic maturation. Populations of large oocytes were recovered from four categories of follicles (ranging from <0.5 to > 2 mm in diameter) and cultured in TCM 199 for 48 hr. Follicular size influenced (P < 0.05) meiotic competence. Mean percentages of MII oocytes were 16.9 +/- 9.2, 26.1 +/- 7.6, 38.4 +/- 9.2, and 79.5 +/- 10.9 for oocytes recovered from < 0.5 mm, > or = 0.5-< 1 mm, 1-2 mm, and > 2 mm diameter follicles, respectively. In summary, stage of reproduction and season have no impact on the ability of dog oocytes to achieve nuclear maturation in vitro. However, we demonstrated for the first time that dog oocytes acquire meiotic competency during follicular development. IVM success of selected oocytes from large size follicles (almost 80%) is about 60% higher than measured in most previous studies involving randomly collected oocytes.  相似文献   

4.
In this study we have examined the meiosis-inducing influence of adenosine analogs in mouse oocytes. When a varied group of nucleosides and nucleotides were tested on overnight cultures of hypoxanthine-arrested, cumulus cell-enclosed oocytes (CEO), halogenated adenosine nucleosides, but not native adenosine, exhibited a significant meiosis-inducing capability. When tested under a variety of conditions, meiotic induction by 8-bromo-adenosine (8-Br-Ado) and a second adenosine analog, methylmercaptopurine riboside (MMPR), was especially potent in denuded oocytes (DO) compared to CEO and was not dependent on the type of inhibitor chosen to maintain meiotic arrest. Germinal vesicle breakdown (GVB) was stimulated with rapid kinetics and was preceded by an increase in AMP-activated protein kinase (AMPK) activity. Moreover, compound C, an inhibitor of AMPK, blocked the meiosis-inducing activities of both adenosine analogs. When tested for an effect on meiotic progression to metaphase II (MII) in spontaneously maturing CEO, 8-Br-Ado and the AMPK activator, 5-aminoimidazole-4-carboxamide 1-beta-D-ribofuranoside (AICAR), increased the percentage of MII-stage oocytes, but MMPR decreased this number. Adenosine and inhibitors of de novo purine synthesis had no effect on the completion of maturation, while compound C suppressed this process. These results support the proposition that oocyte AMPK mediates the positive influence of AICAR and 8-Br-Ado on both the initiation and completion of meiotic maturation. The role of AMPK in MMPR action is less clear.  相似文献   

5.
6.
Cyclic adenosine monophosphate (cAMP) has been implicated as an important regulator of meiotic maturation in mammalian oocytes. A decrease in cAMP, brought about by the action of cAMP phosphodiesterase (PDE), is thought to initiate germinal vesicle breakdown (GVB) by the inactivation of cAMP-dependent protein kinase. However, the product of PDE activity, 5'-AMP, is a potent activator of an important regulatory enzyme, AMP-activated protein kinase (AMPK). The aim of this study was to evaluate a possible role for AMPK in meiotic induction, using oocytes obtained from eCG-primed, immature mice. Alpha-1 and -2 isoforms of the catalytic subunit of AMPK were detected in both oocytes and cumulus cells. When 5-aminoimidazole-4-carboxamide 1-beta-d-ribofuranoside (AICA riboside), an activator of AMPK, was tested on denuded oocytes (DO) and cumulus cell-enclosed oocytes (CEO) maintained in meiotic arrest by dbcAMP or hypoxanthine, GVB was dose-dependently induced. Meiotic induction by AICA riboside in dbcAMP-supplemented medium was initiated within 3 h in DO and 4 h in CEO and was accompanied by increased AMPK activity in the oocyte. AICA riboside also triggered GVB when meiotic arrest was maintained with hypoxanthine, 8-AHA-cAMP, guanosine, or milrinone, but was ineffective in olomoucine- or roscovitine-arrested oocytes, indicating that it acts upstream of maturation-promoting factor. Adenosine monophosphate dose-dependently stimulated GVB in DO when meiotic arrest was maintained with dbcAMP or hypoxanthine. This effect was not mimicked by other monophosphate or adenosine nucleotides and was not affected by inhibitors of ectophosphatases. Combined treatment with adenosine and deoxycoformycin, an adenosine deaminase inhibitor, stimulated GVB in dbcAMP-arrested CEO, suggesting AMPK activation due to AMP accumulation. It is concluded that phosphodiesterase-generated AMP may serve as a transducer of the meiotic induction process through activation of AMPK.  相似文献   

7.
Microtubule and microfilament organization in porcine oocytes during maturation in vivo and in vitro was imaged by immunocytochemistry and laser scanning confocal microscopy. At the germinal vesicle stage, microtubules were not detected in the oocyte. After germinal vesicle breakdown, a small microtubule aster was observed near the condensed chromatin. During the prometaphase stage, microtubule asters were found in association with each chromatin mass. The asters then elongated and encompassed the chromatin at the metaphase-I stage. At anaphase-I and telophase-I microtubules were detected in the meiotic spindle. Microtubules were observed only in the second meiotic spindle at the metaphase-II stage. The meiotic spindle was a symmetric, barrel-shaped structure containing anastral broad poles, located peripherally and radially oriented. Taxol, a microtubule-stabilizing agent, did not induce microtubules in oocytes at the germinal vesicle stage. After germinal vesicle breakdown, numerous cytoplasmic foci of microtubules were formed in the entire oocyte when oocytes were incubated in the presence of taxol. Microfilaments were observed as a relatively thick uniform area around the cell cortex and were also found throughout the cytoplasm of oocytes at the germinal vesicle stage. After germinal vesicle breakdown, the microfilaments were concentrated close to the female chromatin. During prometaphase, microfilaments were chromatin moved to the peripheral position. At metaphase-I, two domains, a thick and a thin microfilament area, existed in the egg cortex. Chromosomes were located in the thick microfilament domain of the cortex. In summary, these results suggest that both micro-tubules and microfilaments are closely involved with chromosomal dynamics after germinal vesicle breakdown and during meiotic maturation in porcine oocytes. © 1996 Wiley-Liss, Inc.  相似文献   

8.
Oocytes of wild-type mice are ovulated as the secondary oocytes arrested at metaphase of the second meiotic division. Their fertilization or parthenogenetic activation triggers the completion of the second meiotic division followed by the first embryonic interphase. Oocytes of the LT/Sv strain of mice are ovulated either at the first meiotic metaphase (M I) as primary oocytes or in the second meiotic metaphase (M II) as secondary oocytes. We show here that duringin vitromaturation a high proportion of LT/Sv oocytes progresses normally only until metaphase I. In these oocytes MAP kinase activates shortly after histone H1 kinase (MPF) activation and germinal vesicle breakdown. However, MAP kinase activation is slightly earlier than in oocytes from wild-type F1 (CBA/H × C57Bl/10) mice. The first meiotic spindle of these oocytes forms similarly to wild-type oocytes. During aging, however, it increases in size and finally degenerates. In those oocytes which do not remain in metaphase I the extrusion of first polar bodies is highly delayed and starts about 15 h after germinal vesicle breakdown. Most of the oocytes enter interphase directly after first polar body extrusion. Fusion between metaphase I LT/Sv oocytes and wild-type mitotic one-cell embryos results in prolonged M-phase arrest of hybrids in a proportion similar to control LT/Sv oocytes and control hybrids made by fusion of two M I LT/Sv oocytes. This indicates that LT/Sv oocytes develop cytostatic factor during metaphase I. Eventually, anaphase occurs spontaneously and the hybrids extrude the polar body and form pronuclei in a proportion similar as in controls. In hybrids between LT/Sv metaphase I oocytes and wild-type metaphase II oocytes (which contain cytostatic factor) anaphase I proceeds at the time observed in control LT/Sv oocytes and hybrids between two M I LT/Sv oocytes, and is followed by the parthenogenetic activation and formation of interphase nuclei. Also the great majority of hybrids between M I and M II wild-type oocytes undergoes the anaphase but further arrests in a subsequent M-phase. These observations suggest that an internally triggered anaphase I occurs despite the presence of the cytostatic activity both in LT/Sv and wild-type M I oocytes. Anaphase I triggering mechanism must therefore either inactivate or override the CSF activity. The comparison between spontaneous and induced activation of metaphase I LT/Sv oocytes shows that mechanisms involved in anaphase I triggering are altered in these oocytes. Thus, the prolongation of metaphase I in LT/Sv oocytes seems to be determined by delayed anaphase I triggering and not provoked directly by the cytostatic activity.  相似文献   

9.
Human chorionic gonadotropin (hCG) mimics the action of luteinizing hormone (LH) and triggers meiotic maturation and ovulation in mammals. The mechanism by which hCG triggers meiotic resumption in mammalian oocytes remains poorly understood. We aimed to find out the impact of hCG surge on morphological changes, adenosine 3′,5′‐cyclic monophosphate (cAMP), guanosine 3′,5′‐cyclic monophosphate (cGMP), cell division cycle 25B (Cdc25B), Wee1, early mitotic inhibitor 2 (Emi2), anaphase‐promoting complex/cyclosome (APC/C), meiotic arrest deficient protein 2 (MAD2), phosphorylation status of cyclin‐dependent kinase 1 (Cdk1), its activity and cyclin B1 expression levels during meiotic resumption from diplotene as well as metaphase‐II (M‐II) arrest in cumulus oocyte complexes (COCs). Our data suggest that hCG surge increased cyclic nucleotides level in encircling granulosa cells but decreased their level in oocyte. The reduced intraoocyte cyclic nucleotides level is associated with the decrease of Cdc25B, Thr161 phosphorylated Cdk1 and Emi2 expression levels. On the other hand, hCG surge increased Wee1, Thr14/Tyr15 phosphorylated Cdk1, APC/C as well as MAD2 expression levels. The elevated APC/C activity reduced cyclin B1 level. The changes in phosphorylation status of Cdk1 and reduced cyclin B1 level might have resulted in maturation promoting factor (MPF) destabilization. The destabilized MPF finally triggered resumption of meiosis from diplotene as well as M‐II arrest in rat oocytes.  相似文献   

10.
Pre-pubertal pig oocytes display reduced developmental competence compared with adult oocytes following in vitro maturation (IVM). Exposure to dibutyryl cyclic adenosine monophosphate (dbcAMP) for the first 20 hr IVM improves development of pre-pubertal oocytes, suggesting that their cAMP content may be inadequate. This study examined the effect of 1 mM dbcAMP treatment for the first 22 hr of IVM on the cAMP content, meiotic progression, and embryo development of pre-pubertal and adult oocytes. In control groups, a two-fold increase in cAMP was observed in adult oocytes after 22 hr IVM, with no change in pre-pubertal oocyte cAMP content. At 22 hr IVM, dbcAMP treatment resulted in two- and five-fold increases in pre-pubertal and adult oocyte cAMP, respectively. After 22 hr control IVM, a greater proportion of pre-pubertal oocytes occupied metaphase I (MI) compared with adult oocytes (69% vs. 49%). dbcAMP treatment reduced the proportion of pre-pubertal and adult oocytes in MI stage at 22 hr. Despite dbcAMP treatment, the proportion of pre-pubertal oocytes in the MI stage at 22 hr remained higher than that of adult oocytes. In control groups, adult oocytes displayed a greater ability to form blastocysts compared with pre-pubertal oocytes following either parthenogenetic activation (59% vs. 25%) or in vitro fertilization (IVF) (47% vs. 19%). dbcAMP treatment increased subsequent blastocyst formation rates of pre-pubertal oocytes, whereas blastocyst formation rates of adult oocytes remained unchanged. Our results suggest that the reduced developmental capacity of pre-pubertal oocytes may be a consequence of their reduced ability to accumulate cAMP during IVM.  相似文献   

11.
Butyrolactone-I (BL-I) and roscovitine (ROSC) are selective inhibitors of the cyclin-dependent kinases, and both have been shown to reversibly inhibit meiotic resumption in cattle oocytes for 24 hr without having a negative affect on subsequent development to the blastocyst stage. The aim of the present study was to describe the morphological changes occurring in fully grown immature and in vitro matured bovine oocytes following exposure to either BL-I or ROSC for 24 hr at concentrations known to be consistent with normal development. Immature bovine cumulus oocyte complexes, recovered from the ovaries of slaughtered heifers, were incubated for 24 hr in the presence of one of the inhibitors. They were then either fixed immediately and processed for transmission electron microscopy (TEM), or cultured for a further 24 hr in the absence of the inhibitor, in conditions permissive to maturation, and subsequently processed for TEM. A control group of oocytes were processed for TEM immediately upon recovery (0 hr) or following in vitro maturation (IVM) for 24 hr. In general, incubation with either inhibitor disrupted the integrity of the surrounding cumulus cells and affected their subsequent expansion during IVM. Within the oocyte cytoplasm, swelling of the mitochondrial cristae was immediately noticeable following meiotic inhibition in the presence of ROSC, while an increased population of pleomorphic mitochondria and mitochondria with electron lucent matrices following BL-I treatment was not observed until after the subsequent IVM period. Both inhibitors caused degeneration of the cortical granules, effectively reducing the population, most noticeably following IVM. At the level of the nucleus, both inhibitory treatments caused convolution of the nuclear membrane, furthermore, aberrant structures were observed within the nucleoplasm of ROSC-treated cumulus oocyte complexes (COCs). In conclusion, while it has been shown that inhibition of meiotic resumption using specific cdk inhibitors is possible and that such oocytes are capable of undergoing maturation, fertilization, and early embryo development, there is as yet no definitive proof that oocytes treated in this way can ultimately give rise to normal offspring. We have shown here that some modifications are induced in the oocytes at the ultrastructural level. Whether or not these modifications are compatible with normal gestation and the birth of a live calf remain to be elucidated.  相似文献   

12.
In mammalian females, oocytes are stored in the ovary and meiosis is arrested at the diplotene stage of prophase I. When females reach puberty oocytes are selectively recruited in cycles to grow, overcome the meiotic arrest, complete the first meiotic division and become mature (ready for fertilization). At a molecular level, the master regulator of prophase I arrest and meiotic resumption is the maturation-promoting factor (MPF) complex, formed by the active form of cyclin dependent kinase 1 (CDK1) and Cyclin B1. However, we still do not have complete information regarding the factors implicated in MPF activation.In this study we document that out of three mammalian serum-glucocorticoid kinase proteins (SGK1, SGK2, SGK3), mouse oocytes express only SGK1 with a phosphorylated (active) form dominantly localized in the nucleoplasm. Further, suppression of SGK1 activity in oocytes results in decreased CDK1 activation via the phosphatase cell division cycle 25B (CDC25B), consequently delaying or inhibiting nuclear envelope breakdown. Expression of exogenous constitutively active CDK1 can rescue the phenotype induced by SGK1 inhibition. These findings bring new insights into the molecular pathways acting upstream of MPF and a better understanding of meiotic resumption control by presenting a new key player SGK1 in mammalian oocytes.  相似文献   

13.
Xenopus oocytes are blocked in prophase of the first meiotic division. During the G2/M transition drastic changes occur both in the cytoskeletal organization and in the capacity of tubulin to polymerize. Posttranslational modification of tubulin isoforms might be one of the factors that control the dynamic properties of microtubules. We have therefore analysed, by two-dimensional polyacrylamide gel electrophoresis, the isotubulins purified from Xenopus oocytes, and we show that tubulin is resolved into at least four alpha-isoforms and four beta-isoforms. We have identified a basic alpha (alpha b)-tubulin isoform which is specific to prophase arrested oocyte and that progressively disappears during meiotic maturation; its decrease is initiated when the nuclear envelope breaks down and is controlled by the nucleus. Using 35S methionine labelled oocytes we demonstrate that the disappearance of the alpha b isotubulin results from both an arrest of its biosynthesis after maturation, and from posttranslational modification which induces a shift of this alpha-isoform to a more acidic pI. Moreover, in vitro experiments using 35S prelabelled tubulin purified from prophase oocytes show that metaphase extracts containing MPF activity are able to induce the acidification of the alpha b-isoform, suggesting that the observed posttranslational modification might be regulated by p34cdc2. However, the nature of this modification remains to be elucidated.  相似文献   

14.
In several species of starfish, it has been reported that the meiotic divisions in fertilized oocytes occur precociously compared to those in unfertilized oocytes. The nature of the 'acceleration' of meiosis was studied using Pisaster ochraceus oocytes. The extent of the acceleration of first polar body formation was found to be completely dependent on the time of fertilization (or artificial activation); fertilization at about 100 min after 1–methyladenine application accelerated meiosis I the most, while earlier or later fertilization resulted in a smaller extent of accelerations of meiosis I. Observation of isolated meiotic spindles and fluorescent visualization of meiotic spindles in whole oocytes showed that progression of meiosis I in Pisaster oocytes pauses transiently at metaphase I for more than 40min unless they are activated. The activation shortened the duration of metaphase I, which resulted in the acceleration of first polar body formation. A new term 'metaphase pause' is proposed to define this long duration of metaphase I in starfish oocytes.  相似文献   

15.
Adenosine is present in the mouse follicular fluid and has been shown to interfere with oocyte maturation in vitro. To clarify the mechanism of adenosine action on meiotic arrest, we have characterized the synergistic action of this purine with forskolin on the meiotic resumption of mouse denuded oocytes. Forskolin delays meiotic resumption by approximately 1 hour; adenosine at concentrations ranging between 30–750 μM has no significant effect. Conversely, adenosine treatment together with forskolin produces a further delay in the resumption of meiosis. This adenosine effect is dose-dependent and mimicked by adenosine analogs like N6-phenylisopropyl adenosine (PIA), 2-chloroadensoine (2-CLA), 5′-N-ethylcarboxamide (NECA). Dipyridamole, which inhibits adenosine transport, does not prevent the meiosis-arresting synergistic effect of adenosine with forskolin. Adenosine causes a 50% increase of adenosine triphosphate (ATP) content in the oocyte. However, this increase is not directly responsible for the observed delay in the oocyte maturation for the following reasons: (1) the dose response of inhibition of meiotic resumption does not correlate with the doses of adenosine producing an increase in ATP; (2) dipyridamole blocks the increase in intracellular ATP, but it has no effect on the adenosine inhibition of maturation; (3) adenosine analogs inhibit oocyte maturation but do not affect intracellular ATP levels. These results suggest that the synergism of adenosine with forskolin on meiotic arrest does not require uptake of the nucleoside nor its conversion to ATP and that the adenosine effects are exerted at the level of the oocyte plasma membrane.  相似文献   

16.
To test the hypothesis that culture conditions influence meiotic regulation in mouse oocytes, we have examined the effects of six culture media, four organic buffers, and pH on spontaneous maturation, the maintenance of meiotic arrest and ligand-induced maturation in cumulus cell-enclosed oocytes from hormonally primed immature mice. The media tested were Eagle's minimum essential medium (MEM), Ham's F-10 (F-10), M199, M16, Waymouth's MB 752/1 (MB 752/1), and Leibovitz's L-15 (L-15). All six media supported ≥94% spontaneous germinal vesicle breakdown (GVB) during a 17–18 hr incubation period, but polar body formation was lower in M199 and MB 752/1 than in the other media. The incidence of polar bodies could be increased in these two media by the addition of pyruvate. With the exception of M16 and MB 752/1, 4 mM hypoxanthine maintained a significant number of cumulus cell-enclosed oocytes in meiotic arrest. Inhibition could be restored by the addition of glutamine to M16 and pyruvate to MB 752/1. Folliclestimulating hormone (FSH) and epidermal growth factor (EGF) stimulated GVB in those media in which hypoxanthine was inhibitory. dbcAMP was able to maintain meiotic arrest in all of the media, but was least effective in M16. FSH stimulated GVB in all dbcAMP-arrested groups except L-15, and FSH became stimulatory in L-15 when the pyruvate level was reduced to 0.23 mM and galactose was replaced with 5.5 mM glucose. When MEM was buffered principally with the organic buffers MOPS, HEPES, DIPSO, or PIPES (at 20 mM), high frequencies of GVB and polar body formation were observed in inhibitor-free medium. dbcAMP suppressed GVB in all groups; hypoxanthine also maintained meiotic arrest in all buffering conditions, although this effect was nominal in PIPES-buffered medium. FSH and EGF stimulated GVB in all dbcAMP- and hypoxanthine-treated groups. When the concentration of HEPES was increased from 20 mM to 25 mM, a more pronounced suppressive effect on maturation in both dbcAMP- and hypoxanthine-supplemented groups was observed in the absence of FSH. But whereas HEPES reduced the induction of maturation by FSH in dbcAMP-arrested oocytes, this buffer had no effect on FSH action in hypoxanthine-treated oocytes. When MEM was buffered with HEPES and the pH was adjusted to 6.8, 7.0, 7.2, or 7.4, a dramatic effect of pH on meiotic maturation was observed. pH had no significant effect on hypoxanthine salvage by oocyte-cumulus cell complexes, but FSH-induced de novo purine synthesis was significantly augmented by increased pH, in parallel with increased induction of GVB. The results of this study demonstrate that the use of different culture media, or minor changes in culture conditions, can lead to significant variation in (1) the spontaneous maturation of oocytes, (2) the ability of meiotic inhibitors to suppress GVB, or (3) the efficacy of meiosis-inducing ligands. Furthermore, such observations provide a unique opportunity to examine specific molecules and metabolic pathways that can account for this variation and thereby gain valuable insights into the mechanisms involved in meiotic regulation. Mol. Reprod. Dev. 46:551–566, 1997. © 1997 Wiley-Liss, Inc.  相似文献   

17.
The newly cloned gene Spin encodes a 30-kDa protein, a well-defined abundant molecule found in mouse oocytes and early embryos. This protein SPIN undergoes metaphase-specific phosphorylation and binds to the spindle. To understand the role of SPIN in oocyte meiosis, oocytes were treated with drugs that affect the cell cycle by activating or inactivating specific kinases. The posttranslational modification of SPIN in the treated oocytes was then investigated by one- and two-dimensional gel electrophoresis. Modification of SPIN is inhibited by treatment with 6-dimethylaminopurine (DMAP), suggesting that SPIN is phosphorylated by a serine-threonine kinase. Furthermore, SPIN from cycloheximide-treated oocytes that lack detectable MAP kinase activity is only partially phosphorylated, indicating that SPIN may be phosphorylated by the MOS/MAP kinase pathway. To confirm this observation, SPIN was analyzed in Mos-null mutant mice lacking MAP kinase activity. Normal posttranslational modification of SPIN did not occur in Mos-null mutant oocytes. In addition, there is reduced association of SPIN with the metaphase I spindle in Mos-null mutant oocytes, as determined by immunohistochemical analysis. These findings suggest that SPIN is a substrate in the MOS/MAP kinase pathway and further that this phosphorylation of SPIN may be essential for its interaction with the spindle. Mol. Reprod. Dev. 50:240–249, 1998. © 1998 Wiley-Liss, Inc.  相似文献   

18.
The objective of this article was to study the effects of low temperature and roscovitine (ROS) on meiotic resumption and developmental potential of goat oocytes. Goat oocytes were cultured at different temperatures in medium containing different concentrations of ROS, and at the end of culture, oocytes were either matured or processed for light/confocal microscopy. The matured oocytes were activated chemically or fertilized in vitro for embryo development. Meiotic arrest was successfully maintained for 24 hr with 0, 50, and 200 microM ROS at 5, 20, and 38.5 degrees C, respectively. Following chemical activation, morulae/blastocysts (M/B) rates similar to untreated oocytes were obtained in oocytes that had been inhibited for 24 hr at 5 degrees C without ROS (Protocol 5C) or at 20 degrees C with 50 microM ROS (Protocol 20C) or for 8 hr at 38.5 degrees C with 200 microM ROS (Protocol 8 hr), but no blastulation was observed after oocytes were inhibited at 38.5 degrees C with 200 microM ROS for 24 hr. Following fertilization, however, while M/B rates similar to controls were achieved in oocytes treated with protocols 5C and 20C, few oocytes inhibited with Protocol 8 hr developed into morulae, due to a high incidence of polyspermy. Changes in GV chromatin configuration were not observed after inhibition with Protocol 5C, but were apparent after inhibition with protocols 20C and 8 hr, leading to a precocious germinal vesicle breakdown (GVBD) during subsequent maturation. Cortical granule (CG) migration and the formation of microtubule organizing centers occurred during inhibition and were more obvious in the absence of ROS. Significantly more oocytes inhibited by protocols 5C and 20C than by Protocol 8 hr completed CG migration after maturation. In conclusion, goat oocytes were tolerant to chilling and culture at lower temperatures with less ROS was better than culture at higher temperatures with more ROS for oocyte GVBD inhibition.  相似文献   

19.
In vitro fertilization (IVF) is being routinely used in humans and several domestic species, however, limited success has been achieved in the horse. Although immature equine oocytes are capable of completing meiosis in vitro, subsequent fertilization, and embryonic development of those oocytes are questionable. The lack of development of these oocytes could be attributed to an impaired cytoplasmic maturation. In the horse, the study of oocyte cytoplasmic maturation and post-fertilization development has been hindered by the lack of progress in IVF. In mammalian oocytes, migration of cortical granules (CG) has been used as an important criterion to evaluate cytoplasmic maturation. The aim of this study was to describe and quantify the CG distribution of equine oocytes during in vitro meiotic maturation and to assess activation of oocytes with calcium ionophore based upon fluorescein isothiocyanate (FITC)-labeled Lens culinaris agglutinin (LCA) and laser confocal microscopy. The results of this study indicate that CG are distributed throughout the cytoplasm of oocytes at the germinal vesicle (GV) stage (immature). As maturation proceeds, a progressive centripetal migration of CG to the oocyte cortex occurs with the formation of a monolayer adjacent to the plasma membrane starting by the end of a 30 hr incubation period and increasing significantly after 36 hr. After activation, significant reduction in the number of CG was observed (P < 0.001) suggesting that oocytes cultured under the present conditions possess the ability to release CG in response to the elevation of intracellular free calcium.  相似文献   

20.
Meiotic maturation of mammalian oocytes is a complex process during which microfilaments and microtubules provide the framework for chromosomal reorganisation and cell division. The aim of this study was to use fluorescence and confocal laser scanning microscopy to examine changes in the distribution of these important cytoskeletal elements and their relationship to chromatin configuration during the maturation of horse oocytes in vitro. Oocytes were cultured in M199 supplemented with pFSH and eLH and, at 0, 12, 24, and 36 hr after the onset of culture, they were fixed for immunocytochemistry and stained with markers for microtubules (a monoclonal anti-alpha-tubulin antibody), microfilaments (AlexaFluor 488 Phalloidin) and DNA (TO-PRO(3)). At the germinal vesicle stage, oocyte chromatin was amorphous and poorly condensed and the microfilaments and microtubules were distributed relatively evenly throughout the ooplasm. After germinal vesicle breakdown, the microtubules were aggregated around the now condensed chromosomes and the microfilaments had become concentrated within the oocyte cortex. During metaphase I, microtubules were detected only in the meiotic spindle, as elongated asters encompassing the aligned chromosomes, and, as maturation progressed through anaphase-I and telophase-I, the spindle assumed a more eccentric position and gradually rotated to assist in the separation of the homologous chromosomes and in the subsequent formation of the first polar body. During metaphase II, the meiotic spindle was a symmetrical, barrel-shaped structure with two poles and with the chromosomes aligned along its midline. At this stage, microtubules were found intermingled with chromatin within the polar body and, although, the bulk of the microfilaments remained within the oocyte cortex, a rich domain was found overlying the spindle. Thus, during the in vitro maturation of horse oocytes both the microfilament and microtubular elements of the cytoskeleton were seen to reorganise dramatically in a fashion that appeared to enable chromosomal alignment and segregation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号