首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
G D Carr  N M White 《Life sciences》1983,33(25):2551-2557
Rats received injections of d-amphetamine sulphate (10 micrograms in 0.5 ul) in nucleus accumbens and were placed into one of two (randomly assigned) distinctive environments. The next day the rats were placed into the other environment and received either a saline injection or no treatment. This procedure was repeated six times. When the rats were allowed a free choice between the two environments they showed a significant preference for the one that had been paired with amphetamine. This finding suggests that amphetamine-stimulated release of dopamine in nucleus accumbens can increase the incentive value of neutral stimuli with which it is paired. When the same procedure was carried out with a group of rats that received amphetamine injections in the dorsolateral caudate nucleus, no preference for the side paired with the drug was evident. This suggests that there is functional differentiation between different parts of the dopaminergic terminal system.  相似文献   

2.
The ability of amphetamine to alter the extracellular level of ascorbate, an apparent modulator of neostriatal function, was assessed voltammetrically in the neostriatum and nucleus accumbens of awake, behaving rats. Whereas acute administration (1.0 and 5.0 mg/kg d-amphetamine) produced a dose-dependent rise in neostriatal ascorbate, there was no change in the nucleus accumbens. Vehicle injections had no significant effect on ascorbate levels in either location. Administration of 5.0 mg/kg d-amphetamine for one week enhanced neostriatal ascorbate release even further, but this effect returned to acute levels when treatment continued for a second week. Multiple amphetamine injections for up to two weeks failed to alter extracellular ascorbate in the nucleus accumbens. The results of these experiments confirm a site-specific action of amphetamine on ascorbate release and suggest complex changes in the extracellular level of this substance in the neostriatum with long-term treatment.  相似文献   

3.
Chronic stress induces in rats a decreased reactivity toward noxious stimuli (escape deficit), which can be reverted by antidepressant treatments. The present study reports that this condition of behavioral deficit is accompanied by a decreased level of extracellular dopamine in the nucleus accumbens shell. To assess whether this finding was the result of a decreased release or of an enhanced removal of dopamine, we acutely administered cocaine, and 2 h later d-amphetamine, to stressed and control rats. The increases in dopamine output observed in stressed animals after cocaine administration were significantly lower than those observed in control rats; whereas the total amount of dopamine released after d-amphetamine administration was similar in both groups of rats. These data suggest a reduced activity of dopaminergic neurons as the possible mechanism underlying dopamine basal level reduction in stressed animals. It is interesting that the stress group showed a locomotor response to cocaine not different from control rats, thus suggesting a condition of sensitization to dopamine receptor stimulation. Imipramine administered daily concomitantly with stress exposure completely reverted the escape deficit condition of chronically stressed rats. Moreover, stressed rats treated with imipramine showed basal and cocaine stimulated levels of extraneuronal dopamine similar to those observed in control animals.  相似文献   

4.
Rats infected with the protozoan parasite Toxoplasma gondii exhibit reduced avoidance of predator odours. This behavioural change is likely to increase transmission of the parasite from rats to cats. Here, we show that infection with T. gondii increases the propensity of the infected rats to make more impulsive choices, manifested as delay aversion in an intertemporal choice task. Concomitantly, T. gondii infection causes reduction in dopamine content and neuronal spine density of the nucleus accumbens core, but not of the nucleus accumbens shell. These results are consistent with a role of the nucleus accumbens dopaminergic system in mediation of choice impulsivity and goal-directed behaviours. Our observations suggest that T. gondii infection in rats causes a syndromic shift in related behavioural constructs of innate aversion and making foraging decisions.  相似文献   

5.
G P Mereu  C Pacitti  A Argiolas 《Life sciences》1983,32(12):1383-1389
The effect of (-)-cathinone (CAT), an alkaloid from khat leaves, on brain dopamine (DA) metabolism and on the firing rate of nigral DA neurons was studied in rats, in comparison with that of d-amphetamine. Like d-amphetamine, CAT (8-40 mg/kg i.p.) decreased DOPAC levels in the caudate nucleus, nucleus accumbens and frontal cortex, without modifying DA concentrations. CAT showed approximately one fifth of the potency of d-amphetamine in this effect. CAT, injected i.v. to unanesthetized, paralyzed rats, inhibited the firing rate of DA neurons in the substantia nigra, pars compacta, showing a similar potency to that of d-amphetamine in this respect. CAT-induced inhibition of dopaminergic firing was reversed by haloperidol.  相似文献   

6.
We hypothesize that drug addiction can be viewed as the endpoint of a series of transitions from initial voluntary drug use through the loss of control over this behaviour, such that it becomes habitual and ultimately compulsive. We describe evidence that the switch from controlled to compulsive drug seeking represents a transition at the neural level from prefrontal cortical to striatal control over drug-seeking and drug-taking behaviours as well as a progression from ventral to more dorsal domains of the striatum, mediated by its serially interconnecting dopaminergic circuitry. These neural transitions depend upon the neuroplasticity induced by chronic self-administration of drugs in both cortical and striatal structures, including long-lasting changes that are the consequence of toxic drug effects. We further summarize evidence showing that impulsivity, a spontaneously occurring behavioural tendency in outbred rats that is associated with low dopamine D2/3 receptors in the nucleus accumbens, predicts both the propensity to escalate cocaine intake and the switch to compulsive drug seeking and addiction.  相似文献   

7.
It is generally accepted that the dopamine system in the nucleus accumbens is activated and is involved in avoidance and escape behavior under aversive conditions. This study shows that the central dopamine system is involved in the jumping escape behavior in mice exposed to heat. In this study, the dopamine catabolite ratio in the nucleus accumbens was increased and dopamine 2 (D2) antagonists, chlorpromazine and haloperidol, inhibited the jumping escape behavior in mice exposed to 38.5 °C. Chlorpromazine increased hyperthermia in mice exposed to 38.5 °C, while haloperidol had no effect on rectal temperature in mice exposed to 38.5 °C. These results indicate that D2 antagonists inhibit the jumping escape behavior in mice exposed to heat and the inhibition mechanism of D2 antagonists is independent of the disturbance of autonomic thermoregulation.  相似文献   

8.
The in vivo effects of amperozide, a novel atypical antipsychotic drug, on the release of dopamine (DA) and the output of its metabolite, 3,4-dihydroxyphenylacetic acid (DOPAC), were investigated in the striatum and the nucleus accumbens of awake, freely moving rats using microdialysis. Amperozide (2-10 mg/kg, s.c.) significantly increased extracellular levels of DA in both the striatum and nucleus accumbens in a dose-dependent manner. It had a similar but lesser effect on extracellular DOPAC levels in both regions. d-Amphetamine (2 mg/kg, s.c.) alone produced a very large (43-fold) increase in DA release, together with a 70% decrease in DOPAC levels in both the striatum and the nucleus accumbens. Amperozide (1-5 mg/kg, s.c.) 30 min before d-amphetamine (2 mg/kg) dose-dependently attenuated d-amphetamine-induced DA release but had no effect on the d-amphetamine-induced decrease in extracellular DOPAC levels in both regions. The effect of amperozide on d-amphetamine-induced DA release in the nucleus accumbens may explain the inhibitory effect of amperozide on amphetamine-induced locomotor activity. However, the failure of amperozide to block amphetamine-induced stereotypy, despite marked inhibition of striatal DA release, suggests the need to reexamine the importance of striatal DA for amphetamine-induced stereotypy.  相似文献   

9.
Rats with electrolytic lesions of the medial part of the nucleus accumbens, comprising the shell region, were compared to sham-operated rats in tests of exploration in a T-maze, in a hole-board, and in an elevated (+)-maze and in a test of water maze spatial learning. Rats with medial nucleus accumbens lesions had higher choice latencies than sham-operated controls during the beginning of the spontaneous alternation test. A higher number of hole pokes was found in the lesioned group, but only during the beginning of the second day of testing. In the elevated (+)-maze, lesioned rats had a higher number of closed and total arm entries and spent more time in the center region. The lesioned group did not differ from the control group for the number of alternations in the T-maze, for horizontal and vertical motor activity in the hole-board, and for acquisition or reversal of spatial learning in the Morris water maze. These results indicate that lesions of the medial nucleus accumbens slowed down decision time during spontaneous alternation testing and increased exploration in a time and test-specific manner without altering acquisition of a reference memory task.  相似文献   

10.
In previous experiments rats pretreated with slow-release d-amphetamine (d-Amp) pellets for 412 days, given a 12-hr drug-free period, and then injected with d-Amp have been found to show a behavioral syndrome which has similarities to that induced by acute injections of the hallucinogens LSD and mescaline. The present results indicate that rats administered this same drug regimen have large decreases in Dopamine (DA), dihydroxyphenyl acetic acid (Dopac), and homovanillic acid (HVA) in caudate nucleus, smaller decreases in DA with no changes in Dopac and HVA levels in nucleus accumbens, but no alterations in 5-hydroxytryptamine (5HT) and 5-hydroxyindole acetic acid (5HIAA) levels in caudate, accumbens, brainstem and hippocampus. Increased 5HIAA levels are found in rats sacrificed with pellets intact following 3 days of continuous d-Amp administration, while sleep deprived and in motor stereotypies. The late and hallucinatory stage following continuous d-amp is correlated more closely with alterations in dopamine than of 5HT.  相似文献   

11.
In the present study, the influence of opioidergic system of the ventral hippocampus, the nucleus accumbens or the central amygdala on anxiety-related behaviour was investigated in rats. As a model of anxiety, the elevated plus maze which is a useful test to investigate the effects of anxiogenic or anxiolytic drugs in rodents was used. Bilateral microinjection of different doses of morphine (2.5, 5 and 7.5 microg/rat) into the ventral hippocampus or the nucleus accumbens increased the percentage of open arm time (%OAT) and open arm entries (%OAE) but not locomotor activity, indicating an anxiolytic response. However, intra-central amygdala administration of the opioid did not show any response. On the other hand, microinjection of a dose of naloxone into the ventral hippocampus (2 microg/rat) or the nucleus accumbens (1 microg/rat) increased open arm time (%OAT), but not open arm entry (%OAE) which may indicate an anxiolytic effect. Pre-treatment administration of naloxone (0.5, 1 and 2 microg/rat) reversed the anxiolytic effect of morphine (7.5 microg/rat) injected into the ventral hippocampus in a dose-dependent manner. A dose of the antagonist (1 microg/rat) also reduced the morphine response (2.5 microg/rat) when injected in the nucleus accumbens. In conclusion, it seems that the opioidergic system in the ventral hippocampus and the nucleus accumbens are involved in anxiety-related behaviors and the ventral hippocampus may be the main site of action of the anxiolytic properties of morphine.  相似文献   

12.
The low doses of neuroleptics restored the ability of 1-DOPA treated rats to escape behaviour from acute stress situation (in the extrapolation escape test). Non-antipsychotic benzamides and phenothiazine, antidepressants and benzodiazepine tranquilizers were inactive. On the whole, the effectiveness of neuroleptics was in accordance with clinical data. The loss of ability to escape in 1-DOPA treated rats was accompanied by stereotypes hyperlocomotion in the water. Various psychotropic drugs decreased only hyperactivity without the influence on escape behaviour. Both forms of behavioral pathology were prevented by central aromatic acid decarboxylase inhibitor. However, the loss of ability to escape behavior only is selective and sensitive to neuroleptics action.  相似文献   

13.
Previous studies have shown that clock genes are expressed in the suprachiasmatic nucleus (SCN) of the hypothalamus, other brain regions, and peripheral tissues. Various peripheral oscillators can run independently of the SCN. However, no published studies have reported changes in the expression of clock genes in the rat central nervous system and peripheral blood mononuclear cells (PBMCs) after withdrawal from chronic morphine treatment. Rats were administered with morphine twice daily at progressively increasing doses for 7 days; spontaneous withdrawal signs were recorded 14 h after the last morphine administration. Then, brain and blood samples were collected at each of eight time points (every 3 h: ZT 9; ZT 12; ZT 15; ZT 18; ZT 21; ZT 0; ZT 3; ZT 6) to examine expression of rPER1 and rPER2 and rCLOCK . Rats presented obvious morphine withdrawal signs, such as teeth chattering, shaking, exploring, ptosis, and weight loss. In morphine-treated rats, rPER1 and rPER2 expression in the SCN, basolateral amygdala, and nucleus accumbens shell showed robust circadian rhythms that were essentially identical to those in control rats. However, robust circadian rhythm in rPER1 expression in the ventral tegmental area was completely phase-reversed in morphine-treated rats. A blunting of circadian oscillations of rPER1 expression occurred in the central amygdala, hippocampus, nucleus accumbens core, and PBMCs and rPER2 expression occurred in the central amygdala, prefrontal cortex, nucleus accumbens core , and PBMCs in morphine-treated rats compared with controls. rCLOCK expression in morphine-treated rats showed no rhythmic change, identical to control rats. These findings indicate that withdrawal from chronic morphine treatment resulted in desynchronization from the SCN rhythm, with blunting of rPER1 and rPER2 expression in reward-related neurocircuits and PBMCs.  相似文献   

14.
Two important aspects of striatal function, exploratory behaviour and motor co-ordination, require the integrity of the dopamine D4 receptor subtype. These receptors are also implicated in the pathophysiology of certain neuropsychiatric disorders. However, the distribution of D4 receptors in the striatum has not yet been described and this situation impairs our understanding of the anatomical substrate in which D4 receptors function. We developed a D4 receptor-specific antibody that has permitted us to investigate the regional and cellular localization of the receptor in the neostriatum of the rat, mouse, cat and monkey. The subcellular distribution and the synaptic organization of this receptor were also determined in the rat striatum. We found moderate levels of D4 receptor expression in the caudoputamen and lower levels in the nucleus accumbens. These receptors were expressed in cell bodies and in the neuropil and were heterogeneously distributed among different striatal compartments, being more abundant in striosomes than in the matrix. At the subcellular level, the receptor immunoreactivity was mainly localized to dendritic shafts and spines. The prominent immunoreactivity observed in the striosomes indicates that integrative processes involved in D4-mediated limbic behaviours occurs through the striosomes rather than accumbens, whereas the motor behaviour is based in the striatal matrix.  相似文献   

15.
Rats raised in an enriched environmental condition (EC) exhibit a decreased (35%) maximal velocity (V(max)) of [3H]dopamine (DA) uptake in medial prefrontal cortex (mPFC) compared with rats raised in an impoverished condition (IC); however, no differences between EC and IC groups in V(max) for [3H]DA uptake were found in nucleus accumbens and striatum. Using biotinylation and immunoblotting techniques, the present study examined whether the brain region-specific decrease in DA transporter (DAT) function is the result of a reduction in DAT cell surface expression. In mPFC, nucleus accumbens and striatum, total DAT immunoreactivity was not different between EC and IC groups. Whereas no differences in cell surface expression of DAT were found in nucleus accumbens and striatum, DAT immunoreactivity in the biotinylated cell surface fraction of mPFC was decreased (39%) in EC compared with IC rats, consistent with the magnitude of the previously observed decrease in V(max) for [3H]DA uptake in mPFC in EC rats. These results suggest that the decrease in DAT cell surface expression in the mPFC may be responsible for decreased DAT function in the mPFC of EC compared with IC rats, and that there is plasticity in the regulatory mechanisms mediating DAT trafficking and function.  相似文献   

16.
Rats (N=15) were implanted with cannulae above the dopaminergic A10 ventral tegmental area (VTA). Two weeks later, four measures of open field behavior were quantified for 10 minutes commencing 30 minutes after parenteral d-amphetamine (1.5 mg/kg) and directly after bilateral infusion of 1.5 μl of: (a) artificial CSF only (VEH), (b) 1.25 μg desulfated CCK (DS-CCK), or (c) 1.25 μg sulfated CCK (CCK). Additional rats with bilateral cannulae directed toward the A10 terminal zones of nucleus accumbens were similarly tested with either VEH (N=2) or sulfated CCK (N=2). With VTA infusions, both the number of occurrences and duration of rearing were significantly reduced in CCK rats, while neither the number of square crossings nor duration of forward locomotion were significantly modified from controls. With nuclei accumbens septi (NAS) infusions, CCK-8 reduced rearing behavior more than ambulatory behavior in this preliminary testing. With either VTA or NAS infusions, no significant differences from controls were found upon two derived measures of motoric performance, namely, “velocity” (number of squares crossed per second in locomotion) and “vertical stability” (seconds per rear). These results suggest a modulation of dopaminergically-mediated behavior by (sulfated) CCK-8 at the cell body region and terminal fields of the mesolimbic (A10) dopamine system.  相似文献   

17.
Using the apomorphine-induced stereotyped gnawing response as a selection criterion, two distinct groups of rats can be distinguished, apomorphine-susceptible (APO-SUS) and apomorphine-unsusceptible (APO-UNSUS) rats. These two lines differ in several components of both striatal and extrastriatal areas. This study deals with the expression of neuropeptide Y (NPY)mRNA-expressing neurons in the nucleus accumbens, caudate putamen and cerebral cortex of both rat lines, using non-radioactive in situ hybridisation. The morphology of the neurons in the three regions is similar, viz. oblong, rectangular or triangular, with two or three processes. The neurons are homogeneously distributed in all regions, and in the nucleus accumbens they are particularly numerous ventrally to the anterior commissure. Using automated image analysis, the mean numerical density of NPYmRNA-positive neurons per brain region and the mean NPYmRNA expression level per neuron per brain region were determined. No differences appear in the numerical densities of NPYmRNA-containing neurons in the nucleus accumbens, caudate putamen and cortex between APO-SUS and APO-UNSUS rats. However, distinct differences between the rat lines are present in the level of NPYmRNA expression per neuron in the nucleus accumbens and in the caudate putamen, showing that NPY contributes to the differential neurochemical make-up of these rat lines that is responsible for their obvious differences in behaviour, physiology and immune competence.  相似文献   

18.
Results of numerous studies indicate that the inhibitory neurotransmitter gamma-aminobutyric acid (GABA) modulates central dopamine systems, and that GABA(B) receptors may play a primary role in decreasing dopamine release. To determine if chronic cocaine administration alters the functional coupling of GABA(B) receptors to G-proteins in central dopamine systems, male F-344 rats received cocaine (15 mg/kg/injection) or saline three times a day at hourly intervals for fourteen consecutive days. Rats were decapitated one hour after the last injection and crude membrane preparations were made from the substantia nigra, caudate-putamen, ventral tegmental area, nucleus accumbens, and frontal cortex of individual rats. The ability of the specific GABA(B) receptor agonist baclofen to stimulate 35S-GTPgammaS binding in each of these regions was determined for individual animals. Additionally, baclofen-stimulated 35S-GTPgammaS binding in each of these regions in rats that received cocaine was compared to baclofen-stimulated 35S-GTPgammaS binding in rats that received control injections of saline. The EC50 of baclofen and maximal baclofen-stimulated 35S-GTPgammaS binding over basal levels were determined in each brain region in the saline group and in the cocaine group. Two-way ANOVA revealed a significant decrease in GABA(B) receptor-stimulated 35S-GTPgammaS binding in the ventral tegmental area of the cocaine group compared to the saline group. These data suggest that chronic exposure to cocaine decreases the functional coupling of GABA(B) receptors to G-proteins selectively in the ventral tegmental area. This finding may have implications in the augmented extracellular dopamine levels seen in the nucleus accumbens of rats that have been sensitized to cocaine.  相似文献   

19.
A growing body of evidence suggests that several protein kinases are involved in the expression of pharmacological actions induced by a psychostimulant methamphetamine. The present study was designed to investigate the role of the Rho/Rho-associated kinase (ROCK)-dependent pathway in the expression of the increase in extracellular levels of dopamine in the nucleus accumbens and its related behaviors induced by methamphetamine in rats. Methamphetamine (1 mg/kg, subcutaneously) produced a substantial increase in extracellular levels of dopamine in the nucleus accumbens, with a progressive augmentation of dopamine-related behaviors including rearing and sniffing. Methamphetamine also induced the decrease in levels of its major metabolites, 3,4-dihydroxyphenylacetic acid (DOPAC) and homovanilic acid (HVA). Both the increase in extracellular levels of dopamine and the induction of dopamine-related behaviors by methamphetamine were significantly suppressed by pretreatment with an intranucleus accumbens injection of a selective ROCK inhibitor Y-27632. In contrast, Y-27632 had no effect on the decrease in levels of DOPAC and HVA induced by methamphetamine. Under these conditions, there were no changes in protein levels of membrane-bound RhoA in the nucleus accumbens following methamphetamine treatment. It is of interest to note that the microinjection of Y-27632 into the nucleus accumbens failed to suppress the increases in extracellular levels of dopamine, DOPAC, and HVA in the nucleus accumbens induced by subcutaneous injection of a prototype of micro -opioid receptor agonist morphine (10 mg/kg). Furthermore, perfusion of a selective blocker of voltage-dependent Na+ channels, tetrodotoxin (TTx) into the rat nucleus accumbens did not affect the increase in extracellular levels of dopamine in the rat nucleus accumbens by methamphetamine, whereas the morphine-induced dopamine elevation was eliminated by this application of TTx. The extracellular level of dopamine in the nucleus accumbens was also increased by perfusion of a selective dopamine re-uptake inhibitor 1-[2-[bis(4-fluorophenyl)methoxy]-4-(3-phenylpropyl)piperazine (GBR-12909) in the nucleus accumbens. This effect was not affected by pretreatment with intranucleus accumbens injection of Y-27632. These findings provide first evidence that Rho/ROCK pathway in the nucleus accumbens may contribute to the increase in extracellular levels of dopamine in the nucleus accumbens evoked by a single subcutaneous injection of methamphetamine. In contrast, this pathway is not essential for the increased level of dopamine in this region induced by morphine, providing further evidence for the different mechanisms of dopamine release by methamphetamine and morphine in rats.  相似文献   

20.
Systemic administration of direct and indirect dopamine agonists resulted in increased extracellular ascorbic acid levels in the striatum and, to a lesser degree, in the nucleus accumbens as measured by in vivo voltammetry. Intraperitoneal d-amphetamine sulfate (5mg/kg) increased ascorbate concentrations in striatal extracellular fluid. Amphetamine also increased extracellular ascorbate levels in the nucleus accumbens although more gradually and to a lesser extent. Intraperitoneal phenethylamine hydrochloride (20 mg/kg) following pargyline hydrochloride pretreatment (20 mg/kg) increased extracellular ascorbate levels in the striatum significantly above the small increase seen in the nucleus accumbens. The direct acting dopamine agonists Ly-141865 and Ly-163502 when given i.p. at 1 mg/kg, resulted in increased extracellular ascorbate concentrations in both brain areas, again with a significantly greater effect in the striatum. These results indicate that brain extracellular ascorbate levels can be modulated by dopaminergic neuro-transmission and that this modulation is quantitatively different in different dopamine-containing brain structures.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号