首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We have used our recently characterized human 3 beta-hydroxy-5-ene steroid dehydrogenase/delta 5-delta 4-isomerase (3 beta-HSD) cDNA as probe to isolate cDNAs encoding bovine 3 beta-HSD from a bovine ovary lambda gtll cDNA library. Nucleotide sequence analysis of two overlapping cDNA clones of 1362 bp and 1536 bp in length predicts a protein of 372 amino acids with a calculated molecular mass of 42,093 (excluding the first Met). The deduced amino acid sequence of bovine 3 beta-HSD displays 79% homology with human 3 beta-HSD while the nucleotide sequence of the coding region shares 82% interspecies similarity. Hybridization of cloned cDNAs to bovine ovary poly(A)+ RNA shows the presence of an approximately 1.7 kb mRNA species.  相似文献   

2.
Steryl glucosides are characteristic lipids of plant membranes. The biosynthesis of these lipids is catalyzed by the membrane-bound UDP-glucose:sterol glucosyltransferase (EC 2.4.1.173). The purified enzyme (Warnecke and Heinz, Plant Physiol 105 (1994): 1067–1073) has been used for the cloning of a corresponding cDNA from oat (Avena sativa L.). Amino acid sequences derived from the amino terminus of the purified protein and from peptides of a trypsin digestion were used to construct oligonucleotide primers for polymerase chain reaction experiments. Screening of oat and Arabidopsis cDNA libraries with amplified labeled DNA fragments resulted in the isolation of sterol glucosyltransferase-specific cDNAs with insert lengths of ca. 2.3 kb for both plants. These cDNAs encode polypeptides of 608 (oat) and 637 (Arabidopsis) amino acid residues with molecular masses of 66 kDa and 69 kDa, respectively. The first amino acid of the purified oat protein corresponds to the amino acid 133 of the deduced polypeptide. The absence of these N-terminal amino acids reduces the molecular mass to 52 kDa, which is similar to the apparent molecular mass of 56 kDa determined for the purified protein. Different fragments of these cDNAs were expressed in Escherichia coli. Enzyme assays with homogenates of the transformed cells exhibited sterol glucosyltransferase activity.  相似文献   

3.
The cDNA of the two isoforms of bovine cGMP-dependent protein kinase   总被引:9,自引:0,他引:9  
W Wernet  V Flockerzi  F Hofmann 《FEBS letters》1989,251(1-2):191-196
cDNAs encoding the isoform I alpha of the cGMP-dependent protein kinase were isolated from a bovine trachea smooth muscle cDNA library constructed in lambda gt10. The deduced protein sequence is identical with the protein sequence obtained by Edman degradation of the bovine lung enzyme [(1984) Biochemistry 23, 4207-4218]. Alternate cDNA clones were isolated which code for a protein slightly different within the aminoterminal part from the known amino acid sequence. These alternate cDNAs contain the sequence of a peptide identified in the isoform I beta of cGMP-dependent protein kinase. Northern blot analysis of poly(A)+ RNA from bovine trachea smooth muscle indicated the presence of two different mRNA species of about 6.2 kb.  相似文献   

4.
Ionizing radiation and radiomimetic compounds, such as hydrogen peroxide and bleomycin, generate DNA strand breaks with fragmented deoxyribose 3' termini via the formation of oxygen-derived free radicals. These fragmented sugars require removal by enzymes with 3' phosphodiesterase activity before DNA synthesis can proceed. An enzyme that reactivates bleomycin-damaged DNA to a substrate for Klenow polymerase has been purified from calf thymus. The enzyme, which has a Mr of 38,000 on SDS-PAGE, also reactivates hydrogen peroxide-damaged DNA and has an associated apurinic/apyrimidinic (AP) endonuclease activity. The N-terminal amino acid sequence of the purified protein matches that reported previously for a calf thymus enzyme purified on the basis of AP endonuclease activity. Degenerate oligonucleotide primers based on this sequence were used in the polymerase chain reaction to generate from a bovine cDNA library a fragment specific for the 5' end of the coding sequence. Using this cDNA fragment as a probe, several clones containing 1.35 kb cDNA inserts were isolated and the complete nucleotide sequence of one of these determined. This revealed an 0.95 kb open reading frame which would encode a polypeptide of Mr 35,500 and with a N-terminal sequence matching that determined experimentally. The predicted amino acid sequence shows strong homology with the sequences of two bacterial enzymes that repair oxidative DNA damage, ExoA protein of S. pneumoniae and exonuclease III of E. coli.  相似文献   

5.
cDNA encoding the human homologue of mouse APEX nuclease was isolated from a human bone-marrow cDNA library by screening with cDNA for mouse APEX nuclease. The mouse enzyme has been shown to possess four enzymatic activities, i.e., apurinic/apyrimidinic endonuclease, 3'-5' exonuclease, DNA 3'-phosphatase and DNA 3' repair diesterase activities. The cDNA for human APEX nuclease was 1420 nucleotides long, consisting of a 5' terminal untranslated region of 205 nucleotide long, a coding region of 954 nucleotide long encoding 318 amino acid residues, a 3' terminal untranslated region of 261 nucleotide long, and a poly(A) tail. Determination of the N-terminal amino acid sequence of APEX nuclease purified from HeLa cells showed that the mature enzyme lacks the N-terminal methionine. The amino acid sequence of human APEX nuclease has 94% sequence identity with that of mouse APEX nuclease, and shows significant homologies to those of Escherichia coli exonuclease III and Streptococcus pneumoniae ExoA protein. The coding sequence of human APEX nuclease was cloned into the pUC18 SmaI site in the control frame of the lacZ promoter. The construct was introduced into BW2001 (xth-11, nfo-2) strain and BW9109 (delta xth) strain cells of E. coli. The transformed cells expressed a 36.4 kDa polypeptide (the 317 amino acid sequence of APEX nuclease headed by the N-terminal decapeptide derived from the part of pUC18 sequence), and were less sensitive to methylmethanesulfonate and tert-butyl-hydroperoxide than the parent cells. The N-terminal regions of the constructed protein and APEX nuclease were cleaved frequently during the extraction and purification processes of protein to produce the 31, 33 and 35 kDa C-terminal fragments showing priming activities for DNA polymerase on acid-depurinated DNA and bleomycin-damaged DNA. Formation of such enzymatically active fragments of APEX nuclease may be a cause of heterogeneity of purified preparations of mammalian AP endonucleases. Based on analyses of the deduced amino acid sequence and the active fragments of APEX nuclease, it is suggested that the enzyme is organized into two domains, a 6 kDa N-terminal domain having nuclear location signals and 29 kDa C-terminal, catalytic domain.  相似文献   

6.
The complementary DNAs of the bovine liver membrane-associated 3,5,3'-triiodo-L-thyronine binding protein with 55 k-dalton (T3BP) were cloned and the nucleotide sequences were determined. Monospecific antibodies against T3BP were used to screen a bovine liver cDNA library in lambda gtll. We analyzed the sequences of two cloned T3BP cDNAs. The clones encoded a polypeptide of 510 amino acid residues, including a signal peptide of 20 amino acid. Northern blot analysis of bovine and human RNA showed that the mRNAs encoding T3BP are 2.7 kilobase in length. Amino acid sequence of N-terminal and other three peptides isolated from purified T3BP were found in the predicted amino acid sequence from the cDNA sequence. The predicted amino acid sequence is closely homologous (93%) with that of rat protein disulphide isomerase (EC 5.3.4.1), which catalyzes the isomerization of the protein disulphide bonds and has been shown to play an important role in post-translational regulation. The results suggest that T3BP and protein disulphide isomerase should be the same protein.  相似文献   

7.
Abstract A cDNA from Penicillium minioluteum HI-4 encoding a dextranase (1,6-α-glucan hydrolase, EC 3.2.1.11) was isolated and characterized. cDNA clones corresponding to genes expressed in dextran-induced cultures were identified by differential hybridization. Southern hybridization and restriction mapping analysis of selected clones revealed four different groups of cDNAs. The dextranase cDNA was identified after expressing a cDNA fragment from each of the isolated groups of cDNA clones in the Escherichia coli T7 system. The expression of a 2 kb cDNA fragment in E. coli led to the production of a 67 kDa protein which was recognized by an anti-dextranase polyclonal antibody. The cDNA contains 2109 bp plus a poly(A) tail, coding for a protein of 608 amino acids, including 20 N-terminal amino acid residues which might correspond to a signal peptide. There was 29% sequence identity between the P. minioluteum dextranase and the dextranase from Arthrobacter sp. CB-8.  相似文献   

8.
Phosphatidylinositol (PtdIns) transfer protein is a cytosolic protein that catalyzes the transfer of PtdIns between membranes. It is expressed in organisms from yeast to man, and activity has been found in all animal tissues examined. Using antibodies prepared against bovine brain PtdIns transfer protein, lambda gt11 rat brain cDNA libraries were screened and several clones isolated. DNA sequence analysis showed that the cDNAs encoded a polypeptide of 271 amino acids with a mass of 31,911 Da. Comparison of the deduced amino acid sequence with N-terminal sequence data obtained for the intact purified bovine brain protein and rat lung phospholipid transfer protein verified that the cDNAs were PtdIns transfer protein clones. The predicted protein shows no significant sequence similarity to other known (phospholipid)-binding proteins. DNA blot hybridization suggests that the rat genome may contain more than one gene encoding PtdIns transfer protein. RNA blot hybridization reveals that the PtdIns transfer protein gene is expressed at low levels in a wide variety of rat tissues; all tissues examined showed a major mRNA component of 1.9 kilobases and a minor component of 3.4 kilobases. The isolation of clones encoding rat PtdIns transfer protein will greatly facilitate studies of the structure and function of PtdIns transfer proteins and their role in lipid metabolism.  相似文献   

9.
Summary Arginine decarboxylase is the first enzyme in one of the two pathways of putrescine synthesis in plants. We purified arginine decarboxylase from oat leaves, obtained N-terminal amino acid sequence, and then used this information to isolate a cDNA encoding oat arginine decarboxylase. Comparison of the derived amino acid sequence with that of the arginine decarboxylase gene from Escherichia coli reveals several regions of sequence similarity which may play a role in enzyme function. The open reading frame (ORF) in the oat cDNA encodes a 66 kDa protein, but the arginine decarboxylase polypeptide that we purified has an apparent molecular weight of 24 kDa and is encoded in the carboxyl-terminal region of the ORF. A portion of the cDNA encoding this region was expressed in E. coli, and a polyclonal antibody was developed against the expressed polypeptide. The antibody detects 34 kDa and 24 kDa polypeptides on Western blots of oat leaf samples. Maturation of arginine decarboxylase in oats appears to include processing of a precursor protein.  相似文献   

10.
11.
The gene for the catalytic subunit of cellulose synthase from Acetobacter xylinum has been cloned by using an oligonucleotide probe designed from the N-terminal amino acid sequence of the catalytic subunit (an 83 kDa polypeptide) of the cellulose synthase purified from trypsin-treated membranes of A. xylinum. The gene was located on a 9.5 kb HindIII fragment of A. xylinum DNA that was cloned in the plasmid pUC18. DNA sequencing of approximately 3 kb of the HindIII fragment led to the identification of an open reading frame of 2169 base pairs coding for a polypeptide of 80 kDa. Fifteen amino acids in the N-terminal region (positions 6 to 20) of the amino acid sequence, deduced from the DNA sequence, match with the N-terminal amino acid sequence obtained for the 83 kDa polypeptide, confirming that the DNA sequence cloned codes for the catalytic subunit of cellulose synthase which transfers glucose from UDP-glucose to the growing glucan chain. Trypsin treatment of membranes during purification of the 83 kDa polypeptide cleaved the first 5 amino acids at the N-terminal end of this polypeptide as observed from the deduced amino acid sequence, and also from sequencing of the 83 kDa polypeptide purified from membranes that were not treated with trypsin. Sequence analysis suggests that the cellulose synthase catalytic subunit is an integral membrane protein with 6 transmembrane segments. There is no signal sequence and it is postulated that the protein is anchored in the membrane at the N-terminal end by a single hydrophobic helix. Two potential N-glycosylation sites are predicted from the sequence analysis, and this is in agreement with the earlier observations that the 83 kDa polypeptide is a glycoprotein [13]. The cloned gene is conserved among a number of A. xylinum strains, as determined by Southern hybridization.  相似文献   

12.
13.
Molecular characterization of tomato fruit polygalacturonase   总被引:5,自引:0,他引:5  
Summary Using the expression vector gt11 and immunological detection, cDNA clones of an endopolygalacturonase gene of tomato (Lycopersicon esculentum Mill.) were isolated and sequenced. The 1.6 kb cDNA sequence predicts a single open reading frame encoding a polypeptide of 457 amino acids. The PG2A isoform of tomato fruit endopolygalacturonase was purified and 80% of the amino acid sequence determined. The amino acid sequence predicted by the cDNA sequence was identical to the amino acid sequence of the PG2A isoform. The position of the codon for the N-terminal amino acid of mature PG2A in the open reading frame indicates the presence of a 71 amino acid N-terminal signal peptide which is post-translationally processed. The C-terminus of purified PG2A occurred 13 amino acids before the stop codon in the cDNA suggesting that C-terminal processing of PG2A may also occur. The nucleotide and amino acid sequence data predict a mature protein of 373 amino acids and a polypeptide molecular weight of 40279. The sequence contains four potential glycosylation sites. Northern analysis detected endopolyga-lacturonase mRNA in stage 3 (turning) and stage 6 (red) ripening fruit, but not in leaves, roots, or green fruit of normal cultivars or in mature fruit of the rin mutant.  相似文献   

14.
15.
T Hoffmann  B Hovemann 《Gene》1988,74(2):491-501
Mouse cDNA clones have been isolated with the help of Drosophila melanogaster 82-kDa heat-shock protein (Hsp82)-coding sequences as hybridization probe. Sequencing of the overlapping mouse clones reveals a long open reading frame (ORF) that encodes a polypeptide of 83.3 kDa which shows about 80% similarity to the respective Drosophila Hsp82 amino acid sequence. The N-terminal half of this cDNA cross-hybridizes to a different class of mouse cDNA clones indicating a related gene. Northern blot hybridization experiments reveal a 2.6-kb poly(A)+RNA when probed with the hsp84 clone and a 2.85-kb signal with the hsp84-related cDNA. The amino acid sequences deduced from the contiguous ORF of the hsp84 and the hsp84-related cDNA coincide with the N-terminal sequence of formerly identified 84-kDa and 86-kDa tumour-specific transplantation antigens (Ullrich et al., 1986). In addition, the amino acid composition of the putative 84-kDa mouse Hsp described here is very similar to that of the 84-kDa tumour antigen described by Ullrich et al. (1986). Both observations corroborate the assumption that these Hsps are identical to the described 84-kDa and 86-kDa tumour-specific transplantation antigens. Using these mouse hsp gene clones as hybridization probes we also isolated the corresponding pair of human cDNA clones. Comparison of the respective sequences reveals a strong evolutionary constraint on these two genes in mouse and man.  相似文献   

16.
The purified H+-ATPase from chromaffin granules is composed of several polypeptides, one of which has an apparent molecular weight of 39,000. Immunoblots with the antibody against this protein and various membrane preparations showed that similar or even identical polypeptides may be associated with the H+-ATPases from synaptic vesicle, kidney microsomes, and lysosomes. A cDNA library was constructed from bovine adrenal medulla, and the cDNA encoding the polypeptide was isolated and sequenced. Search in DNA and protein data banks revealed no significant homology to known genes. Hydrophobicity plot revealed no obvious transmembrane segments with the exception of one stretch of hydrophobic and neutral amino acid starting at leucine 16. The cDNA was shown to encode the entire polypeptide by the virtue of an amino acid sequence corresponding to the N terminus of the open reading frame and by subunit and site-specific antibodies. The cDNA was cloned into an expression vector, transcribed by T7 polymerase, and translated by reticulocyte lysate. Even though the cDNA encodes a protein with a molecular weight of 31,495, the translation product comigrated on sodium dodecyl sulfate gels with the subunit of the purified H+-ATPase. In line with several other subunits of vacuolar H+-ATPases, no signal sequence was detected in the translated gene. Northern blots revealed the presence of a single mRNA of about 1.6 kb in bovine adrenal medulla. However, liver, lung, and kidney may contain additional mRNA of about 1.7 kb.  相似文献   

17.
Summary SummarySeveral cDNA clones encoding the entire Rieske FeS-precursor protein of the chloroplast cytochrome b 6 f-complex have been isolated by high density plaque immunoscreening of a phage lambda gt11 cDNA expression library, made from poly A+-RNA of spinach seedlings. The identity of the cDNAs has been confirmed by N-terminal amino acid sequencing of the purified protein. The nucleotide sequence indicates a protein of 247 amino acid residues including a putative transit sequence of 68 amino acids corresponding to molecular masses of 26.3 kDa (precursor) and 18.8 kDa (mature protein; 179 amino acid residues). Alignteins of the sequence with sequences from Rieske FeS-proteins of respiratory electron transport chains, two of bacterial and three of mitochondrial origin, shows little sequence homology, but remarkable similarity in secondary structure including a putative N-terminal transmembrane segment of about 25 residues and the peptides CTHLGCV and CPCHGS in the C-terminal region of the protein that are involved in the binding of the Fe2S2-cluster.  相似文献   

18.
cDNAs encoding the human lysosomal hydrolase, arylsulfatase B (ASB; N-acetylgalactosamine-4-sulfatase, EC 3.1.6.1), were isolated from a hepatoma cell cDNA library using an ASB-specific oligonucleotide generated by the MOPAC (mixed oligonucleotide primed amplification of cDNA) technique. To facilitate cDNA cloning, human ASB was purified to apparent homogeneity and a total of 112 amino acid residues were microsequenced from the N-terminus and four internal tryptic peptides of the 47-kDa subunit. Based on the ASB N-terminal amino acid sequence, two oligonucleotide mixtures containing inosines to reduce the mixture complexity were constructed and used as primers to amplify an ASB-specific product from human placental cDNA by the polymerase chain reaction. DNA sequencing of this MOPAC product demonstrated colinearity with 21 N-terminal ASB amino acids. Based on this sequence and on codon usage for the adjacent conserved amino acids in human arylsulfatases A and C, a unique 66-mer was synthesized and used to screen a human hepatoma cell cDNA library. Four putative positive cDNA clones were isolated, and the largest insert (pASB-1) was sequenced in both orientations. The 1834-bp pASB-1 insert had a 1278-bp open reading frame encoding 425 amino acids that was colinear with 85 microsequenced amino acids of the purified enzyme, demonstrating its authenticity. Using the pASB-1 cDNA as a probe, a full-length cDNA clone, pASB-4, was isolated from a human testes library and sequenced in both orientations. pASB-4 had a 2811-bp insert containing a 559-bp 5' untranslated sequence, a 1602-bp open reading frame encoding 533 amino acids (six potential N-glycosylation sites), a 641-bp 3' untranslated sequence, and a 9-bp poly(A) tract. Comparison of the predicted amino acid sequences of arylsulfatases A, B, and C revealed regions of identity, particularly in their N-termini.  相似文献   

19.
20.
The B subunit is one of two nucleotide-binding polypeptides found in all members of the vacuolar class of H(+)-translocating ATPases. We have isolated aDNA clone encoding the bovine brain B (58 kDa) subunit and have deduced its amino acid sequence. The bovine brain amino acid sequence is 99% identical to a partial cDNA reported from human brain. Northern blot analysis of RNA isolated from bovine tissues and a bovine kidney cell line reveals that two messages of approximately 3.2 and 2.0 kilobases (kb) are expressed in all tissues examined except brain, where only the 3.2-kb message can be detected. Northern blotting of RNA isolated from human fibroblast and human lung tumor cell lines reveals that three messages of approximately 6.0, 3.2, and 2.0 kb are expressed, whereas only the 3.2-kb message is expressed in a human brain tumor cell line. This is the first demonstration of tissue-specific expression of multiple forms of a vacuolar H(+)-ATPase subunit. We have also isolated a partial cDNA clone from bovine brain which appears to encode an isoform of the B subunit. The deduced amino acid sequence is 82% identical to the major bovine brain B subunit sequence; it does not hybridize with either the 3.2- or 2.0-kb message on Northern blot. Southern blot analysis of bovine genomic DNA with probes derived from both isolated cDNAs indicates that the bovine B subunit is encoded by a multigene family.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号