首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Stefanovic S  Hegde RS 《Cell》2007,128(6):1147-1159
Hundreds of proteins are anchored in intracellular membranes by a single transmembrane domain (TMD) close to the C terminus. Although these tail-anchored (TA) proteins serve numerous essential roles in cells, components of their targeting and insertion pathways have long remained elusive. Here we reveal a cytosolic TMD recognition complex (TRC) that targets TA proteins for insertion into the ER membrane. The highly conserved, 40 kDa ATPase subunit of TRC (which we termed TRC40) was identified as Asna-1. TRC40/Asna-1 interacts posttranslationally with TA proteins in a TMD-dependent manner for delivery to a proteinaceous receptor at the ER membrane. Subsequent release from TRC40/Asna-1 and insertion into the membrane depends on ATP hydrolysis. Consequently, an ATPase-deficient mutant of TRC40/Asna-1 dominantly inhibited TA protein insertion selectively without influencing other translocation pathways. Thus, TRC40/Asna-1 represents an integral component of a posttranslational pathway of membrane protein insertion whose targeting is mediated by TRC.  相似文献   

2.
The Bcl-2-family of proteins localize to intracellular membranes via a C-terminal hydrophobic membrane anchor (MA) domain, to exert their antiapoptotic or proapoptotic functions. In Drosophila, both Bcl-2 family members, DEBCL and BUFFY, contain an MA. In DEBCL the MA is necessary for the localization of protein to mitochondria and for its proapoptotic activity. BUFFY is highly similar to DEBCL but its localization and function are not clearly defined. Here, we report on comparative analysis of BUFFY and DEBCL to decipher the molecular basis for their subcellular localization. We show that these two proteins localize to distinct intracellular membranes, DEBCL predominantly to mitochondria and BUFFY to endoplasmic reticula (ER). Our results suggest that the MA-flanking residues in DEBCL, homologous to Bcl-X(L), are required for the targeting of DEBCL to mitochondria. The C-terminal positively charged residues present in DEBCL are absent in BUFFY, which allows for its localization to ER. The MA in both proteins is required for the correct targeting and proapoptotic activities of these proteins. Interestingly, a functional nuclear localization signal was identified in the N-terminal region of BUFFY and in the absence of the MA, BUFFY accumulated in the nucleus. The functional implications of these findings are discussed.  相似文献   

3.
Tail-anchored (TA) proteins have a single C-terminal transmembrane domain, making their biogenesis dependent on posttranslational translocation. Despite their importance, no dedicated insertion machinery has been uncovered for mitochondrial outer membrane (MOM) TA proteins. To decipher the molecular mechanisms guiding MOM TA protein insertion, we performed two independent systematic microscopic screens in which we visualized the localization of model MOM TA proteins on the background of mutants in all yeast genes. We could find no mutant in which insertion was completely blocked. However, both screens demonstrated that MOM TA proteins were partially localized to the endoplasmic reticulum (ER) in ∆spf1 cells. Spf1, an ER ATPase with unknown function, is the first protein shown to affect MOM TA protein insertion. We found that ER membranes in ∆spf1 cells become similar in their ergosterol content to mitochondrial membranes. Indeed, when we visualized MOM TA protein distribution in yeast strains with reduced ergosterol content, they phenocopied the loss of Spf1. We therefore suggest that the inherent differences in membrane composition between organelle membranes are sufficient to determine membrane integration specificity in a eukaryotic cell.  相似文献   

4.
Bcl-2 family proteins are central regulators of apoptosis. Various family members are located in the cytoplasm, endoplasmic reticulum, and mitochondrial outer membrane in healthy cells. However during apoptosis most of the interactions between family members that determine the fate of the cell occur at the membranes of intracellular organelles. It has become evident that interactions with membranes play an active role in the regulation of Bcl-2 family protein interactions. Here we provide an overview of various models proposed to explain how the Bcl-2 family regulates apoptosis and discuss how membrane binding affects the structure and function of each of the three categories of Bcl-2 proteins (pro-apoptotic, pore-forming, and anti-apoptotic). We also examine how the Bcl-2 family regulates other aspects of mitochondrial and ER physiology relevant to cell death.  相似文献   

5.
Control of mitochondrial permeability by Bcl-2 family members   总被引:32,自引:0,他引:32  
Programmed cell death (apoptosis) is regulated by the Bcl-2 family of proteins. Although it remains unclear how these family members control apoptosis, they clearly have the capacity to regulate the permeability of intracellular membranes to ions and proteins. Proapoptotic members of the Bcl-2 family, especially Bax and Bid, have been extensively analyzed for the ability to form channels in membranes and to regulate preexisting channels. Anti-apoptotic members of the family tend to have the opposing effects on membrane channel formation. The molecular mechanisms of the different models for the permeabilization of membranes by the Bcl-2 family members and the regulation of Bcl-2 family member subcellular localizations are discussed.  相似文献   

6.
A critical process in apoptosis is the permeabilization of the mitochondrial outer membrane (MOM). This process is known to be regulated by the multi-domain Bcl-2 family proteins. For example, the pro-apoptotic proteins Bax and Bak are responsible for forming pores at MOM. The anti-apoptotic proteins (including Bcl-2, Mcl-1 and Bcl-xL), on the other hand, can inhibit this pore-forming process. Interestingly, although these two subgroups of proteins perform opposite apoptotic functions, their structures are very similar. This raises two highly interesting questions: (1) Why do these structurally similar proteins play opposite roles in apoptosis? (2) What are the roles of different functional domains of a Bcl-2 family protein in determining its apoptotic property? In this study, we generated a series of deletion mutants and substitution chimera, and used a combination of molecular biology, bio-informatics and living cell imaging techniques to answer these questions. Our major findings are: (1) All of the Bcl-2 family proteins appear to possess an intrinsic pro-apoptotic property. (2) The N-termini of these proteins play an active role in suppressing their pro-apoptotic function. (3) The apoptotic potency is positively correlated with membrane affinity of the alpha 5/6 helix domains. (4) Charge distribution flanking the alpha 5/6 helices is also important for the apoptotic potency. These findings explain why different members of Bcl-2 family proteins with similar domain composition can function oppositely in the apoptotic process.  相似文献   

7.
It is assumed that the survival factors Bcl-2 and Bcl-x(L) are mainly functional on mitochondria and therefore must contain mitochondrial targeting sequences. Here we show, however, that only Bcl-x(L) is specifically targeted to the mitochondrial outer membrane (MOM) whereas Bcl-2 distributes on several intracellular membranes. Mitochondrial targeting of Bcl-x(L) requires the COOH-terminal transmembrane (TM) domain flanked at both ends by at least two basic amino acids. This sequence is a bona fide targeting signal for the MOM as it confers specific mitochondrial localization to soluble EGFP. The signal is present in numerous proteins known to be directed to the MOM. Bcl-2 lacks the signal and therefore localizes to several intracellular membranes. The COOH-terminal region of Bcl-2 can be converted into a targeting signal for the MOM by increasing the basicity surrounding its TM. These data define a new targeting sequence for the MOM and propose that Bcl-2 acts on several intracellular membranes whereas Bcl-x(L) specifically functions on the MOM.  相似文献   

8.
Tail‐anchored (TA) proteins insert into their target organelles by incompletely elucidated posttranslational pathways. Some TA proteins spontaneously insert into protein‐free liposomes, yet target a specific organelle in vivo. Two spontaneously inserting cytochrome b5 forms, b5‐ER and b5‐RR, which differ only in the charge of the C‐terminal region, target the endoplasmic reticulum (ER) or the mitochondrial outer membrane (MOM), respectively. To bridge the gap between the cell‐free and in cellula results, we analyzed targeting in digitonin‐permeabilized adherent HeLa cells. In the absence of cytosol, the MOM was the destination of both b5 forms, whereas in cytosol the C‐terminal negative charge of b5‐ER determined targeting to the ER. Inhibition of the transmembrane recognition complex (TRC) pathway only partially reduced b5 targeting, while strongly affecting the classical TRC substrate synaptobrevin 2 (Syb2). To identify additional pathways, we tested a number of small inhibitors, and found that Eeyarestatin I (ESI) reduced insertion of b5‐ER and of another spontaneously inserting TA protein, while not affecting Syb2. The effect was independent from the known targets of ESI, Sec61 and p97/VCP. Our results demonstrate that the MOM is the preferred destination of spontaneously inserting TA proteins, regardless of their C‐terminal charge, and reveal a novel, substrate‐specific ER‐targeting pathway.   相似文献   

9.
10.
Hydrophobic membrane proteins are cotranslationally targeted to the endoplasmic reticulum (ER) membrane, mediated by hydrophobic signal sequence. Mitochondrial membrane proteins escape this mechanism despite their hydrophobic character. We examined sorting of membrane proteins into the mitochondria, by using mitochondrial ATP-binding cassette (ABC) transporter isoform (ABC-me). In the absence of 135-residue N-terminal hydrophilic segment (N135), the membrane domain was integrated into the ER membrane in COS7 cells. Other sequences that were sufficient to import soluble protein into mitochondria could not import the membrane domain. N135 imports other membrane proteins into mitochondria. N135 prevents cotranslational targeting of the membrane domain to ER and in turn achieves posttranslational import into mitochondria. In a cell-free system, N135 suppresses targeting to the ER membranes, although it does not affect recognition of hydrophobic segments by signal recognition particle. We conclude that the N135 segment blocks the ER targeting of membrane proteins even in the absence of mitochondria and switches the sorting mode from cotranslational ER integration to posttranslational mitochondrial import.  相似文献   

11.
Endoplasmic reticulum (ER) stress-induced apoptosis may arise from multiple environmental and pharmacological causes, but the precise mechanism(s) involved are not completely known. Members of Bcl-2 protein family are important regulators of apoptosis. In this study, we report that in a process dependent on the proapoptotic Bcl-2 members Bax and Bak, exogenously expressed fluorescent protein localized to the ER lumen is released into the cytosol in cells undergoing ER stress. Upon ER stress induction, endogenous ER luminal proteins are also released into the cytosol in a similar manner accompanied by translocation and anchorage of Bax to the ER membrane. In addition, Bax and truncated-Bid (tBid) mediate a global increase in ER membrane permeability to ER luminal proteins in vitro. Importantly, antiapoptotic Bcl-XL antagonizes the effects of proapoptotic Bcl-2 proteins on ER membrane permeability. Consistent with Bax translocation to the ER membrane in whole apoptotic cells, there is also increased tight association of Bax with the ER membrane correlated with the increase in ER membrane permeability in vitro. Overall, these data suggest that the regulation of ER membrane permeability by Bcl-2 proteins could be an important molecular mechanism of ER stress-induced apoptosis.  相似文献   

12.
Members of the Bcl-2 protein family regulate apoptosis by controlling the release of apoptogenic proteins such as cytochrome c from the mitochondrial intermembrane space. Proapoptotic members induce release by increasing outer membrane permeability, while antiapoptotic members prevent this. The activity of Bcl-2 proteins depends mostly on their insertion into the mitochondrial membrane, which is reported to occur via putative channels formed by the two central hydrophobic helices. The pro- and antiapoptotic activity of Bcl-2 proteins can also be modulated by heterodimerization between antagonists through the BH3 domain of proapoptotic members, though the position of the heterodimer with respect to the membrane has never been elucidated. In this work, the membrane insertion capacity of the antiapoptotic Bcl-2 related protein Nr-13 was explored, using monolayer expansion measurements. Nr-13 penetrates into the monolayer with a molecular cross-section of 1100A(2), thereby implicating almost all alpha-helical domains of the molecule in this process. A mutant protein, bearing neutral instead of acidic residues in the loop between the two putative channel-forming fifth and sixth alpha-helices, retained the ability to interact with the lipid monolayer, suggesting that the membrane insertion of Nr-13 is not exclusively alpha5-alpha6-dependent. In contrast, the specific interaction of Nr-13 with the monolayer was prevented by heterodimer formation with the BH3 domain of proapoptotic Bax. These findings are discussed in terms of a model for monolayer insertion in which the antiapoptotic Nr-13 and proapoptotic proteins exert their antagonistic effects by preventing each other from reaching the membrane.  相似文献   

13.
Two major intracellular apoptosis signaling cascades have been characterized, the mitochondrial pathway and the death receptor pathway. The mitochondrial pathway is regulated by members of the Bcl-2 protein family. The members of this family can be subdivided into anti- and pro-apoptotic proteins. The pro-apoptotic members are further divided into two groups, the multidomain and the 'BH3 domain only' proteins. When cells are exposed to apoptotic stimulation, pro-apoptotic proteins are activated through post-translational modifications or changes in their conformation. The main site of action of the multidomain proteins are the mitochondria, where these proteins induce permeabilization of the outer membrane resulting in the release of proteins, including cytochrome c, from the intermembrane space. In the cytosol cytochrome c activates caspase cascades ultimately leading to cell death. Mounting evidence indicates that apoptosis is involved in a wide range of pathological conditions. Recent studies suggest that the mitochondrial signaling pathway is involved in several diseases. Although, so far, with the exception of C. elegans, most studies on apoptosis have been performed in mammalian systems, recently homologues to the Bcl-2 family members, including pro-apoptotic members, have been identified in Drosophila and zebrafish. Here the structure and function of the various pro-apoptotic Bcl-2 family members, their effects on mitochondria, and their involvement in diseases are discussed.  相似文献   

14.
The Bcl-2 family includes a growing number of proteins that play an essential role in regulating apoptosis or programmed cell death. Members of this family display diverse biological functions and can either inhibit or promote cell death signals. Abnormal gene expression of some Bcl-2 family members such as Bcl-2 that inhibits apoptosis is found in a wide variety of human cancers and contributes to the resistance of tumor cells to conventional therapies through interfering with the cell death signals triggered by chemotherapeutic agents. As such, elucidating the structure-function and mechanism of the Bcl-2 family is important for understanding some of the fundamental principles underling the death and survival of cells and of practical value for developing potential therapeutics to control apoptosis in pathological processes. Synthetic peptides derived from homologous or heterogeneous domains in Bcl-2 family proteins that might mediate different biological activities provide simplified and experimentally more tractable models as compared to their full-length counterparts to dissect and analyze the complex functional roles of these proteins. Non-peptidic molecules identified from random screening of natural products or designed by rational structure-based techniques can mimic the effect of synthetic peptides by targeting similar active sites on a Bcl-2 family member protein. In this article, we review recent progress in using these synthetic peptides and non-peptidic mimic molecules to obtain information about the structure and function of Bcl-2 family proteins and discuss their application in modulating and studying intracellular apoptotic signaling.  相似文献   

15.
The Bcl-2 family of proteins is formed by pro- and antiapoptotic members. Together they regulate the permeabilization of the mitochondrial outer membrane, a key step in apoptosis. Their complex network of interactions both in the cytosol and on mitochondria determines the fate of the cell. In the past 2 decades, the members of the family have been identified and classified according to their function. Several competing models have been proposed to explain how the Blc-2 proteins orchestrate apoptosis signaling. However, basic aspects of the action of these proteins remain elusive. This review is focused on the biophysical mechanisms that are relevant for their action in apoptosis and on the challenging gaps in our knowledge that necessitate further exploration to finally understand how the Bcl-2 family regulates apoptosis.  相似文献   

16.
《Biophysical journal》2022,121(23):4517-4525
Programmed mammalian cell death (apoptosis) is an essential mechanism in life that tightly regulates embryogenesis and removal of dysfunctional cells. In its intrinsic (mitochondrial) pathway, opposing members of the Bcl-2 (B cell lymphoma 2) protein family meet at the mitochondrial outer membrane (MOM) to control its integrity. Any imbalance can cause disorders, with upregulation of the cell-guarding antiapoptotic Bcl-2 protein itself being common in many, often incurable, cancers. Normally, the Bcl-2 protein itself is embedded in the MOM where it sequesters cell-killing apoptotic proteins such as Bax (Bcl-2-associated X protein) that would otherwise perforate the MOM and subsequently cause cell death. However, the molecular basis of Bcl-2’s ability to recognize those apoptotic proteins via their common BH3 death motifs remains elusive due to the lack of structural insight. By employing nuclear magnetic resonance on fully functional human Bcl-2 protein in membrane-mimicking micelles, we identified glycine residues across all functional domains of the Bcl-2 protein and could monitor their residue-specific individual response upon the presence of a Bax-derived 36aa long BH3 domain. The observed chemical shift perturbations allowed us to determine the response and individual affinity of each glycine residue and provide an overall picture of the individual roles by which Bcl-2’s functional domains engage in recognizing and inhibiting apoptotic proteins via their prominent BH3 motifs. This way, we provide a unique residue- and domain-specific insight into the molecular functioning of Bcl-2 at the membrane level, an insight also opening up for interfering with this cell-protecting mechanism in cancer therapy.  相似文献   

17.
Bax activation and mitochondrial insertion during apoptosis   总被引:11,自引:0,他引:11  
The mitochondrial apoptotic pathway is a highly regulated biological mechanism which determines cell fate. It is defined as a cascade of events, going from an apoptotic stimulus to the MOM permeabilization, resulting in the activation of the so-called executive phase. This pathway is very often altered in cancer cells.The mitochondrial permeabilization is under the control of the Bcl-2 family of proteins (pBcls). These proteins share one to four homology domains (designed BH1-4) with Bcl-2, and are susceptible of homo- and/or hetero-dimerization. In spite of a poor amino-acid sequence homology, these proteins exhibit very similar tertiary structures. Strikingly, while some of these proteins are anti-apoptotic, the others are pro-apoptotic. Pro-apoptotic proteins are further divided in two sub-classes: multi-domains proteins, among which Bax and Bak, which exhibit BH1-3 domains, and BH3-only proteins (or BOPs). Schematically, BOPs and anti-apoptotic proteins antagonistically regulate the activation of the multi-domain proteins Bax and Bak and their oligomerization in the MOM, the latter process being responsible for the apoptotic mitochondrial permeabilization.Considering the critical role of Bax in cancer cells apoptosis, we focus in this review on the molecular events of Bax activation through its interaction with the other proteins from the Bcl-2 family. The mechanism by which Bax triggers the MOM permeabilization once activated will be discussed in some other reviews in this special issue.  相似文献   

18.
The Bcl-2 family of proteins controls a critical step in commitment to apoptosis by regulating permeabilization of the mitochondrial outer membrane (MOM). The family is divided into three classes: multiregion proapoptotic proteins that directly permeabilize the MOM; BH3 proteins that directly or indirectly activate the pore-forming class members; and the antiapoptotic proteins that inhibit this process at several steps. Different experimental approaches have led to several models, each proposed to explain the interactions between Bcl-2 family proteins. The discovery that many of these interactions occur at or in membranes as well as in the cytoplasm, and are governed by the concentrations and relative binding affinities of the proteins, provides a new basis for rationalizing these models. Furthermore, these dynamic interactions cause conformational changes in the Bcl-2 proteins that modulate their apoptotic function, providing additional potential modes of regulation.Apoptosis was formally described and named in 1972 as a unique morphological response to many different kinds of cell stress that was distinct from necrosis. However, despite the novelty and utility of the concept, little experimental work was performed during the following 20 years because no tools existed to manipulate the process. In the early 1990s, two seminal observations changed the landscape. First, as the complete developmental sequence of the nematode Caenorhabditis elegans was painstakingly elucidated at the single-cell level, it was noted that a fixed, predictable number of “intermediate” cells were destined to die, and that this process was positively and negatively regulated by specific genes. Second, a novel gene called B-cell CLL/lymphoma 2 (Bcl-2; encoded by BCL2) that was discovered as a partner in a reciprocal chromosomal translocation in a human tumor turned out to function not as a classic oncogene by driving cell division, but rather by preventing apoptosis. When it was discovered that the mammalian BCL2 could substitute for CED-9, the C. elegans gene that inhibits cell death, the generality of the process was recognized, and the scientific literature exploded with now well over 105 publications on apoptosis. However, it is ironic to note that after a further 20 years of intensive investigation, it is clear that the mechanism of action of Bcl-2 is quite distinct from Ced-9, which sequesters the activator of the caspase protease that is the ultimate effector of apoptosis. In contrast, Bcl-2 works primarily by binding to other related proteins that regulate permeabilization of the mitochondrial outer membrane (MOM).This review examines how apoptosis is regulated by the members of the (now very large) Bcl-2 family, composed of three groups related by structure and function (illustrated in Fig. 1): (1) the BH3 proteins that sense cellular stress and activate (either directly or indirectly); (2) the executioner proteins Bax or Bak that oligomerize in and permeabilize the MOM, thereby releasing components of the intermembrane space that activate the final, effector caspases of apoptosis; and (3) the antiapoptotic members like Bcl-2 that impede the overall process by inhibiting both the BH3 and the executioner proteins. To understand the consequence of the interactions among the three subgroups, several models have been proposed (“direct activation,” “displacement,” “embedded together,” and “unified” models; illustrated in Fig. 2) that are briefly described here before a more detailed discussion of the Bcl-2 families.Open in a separate windowFigure 1.Schematic overview of the Bcl-2 family of proteins. The family is divided into two subgroups containing proteins that either inhibit apoptosis or promote apoptosis. The proapoptotic proteins are further subdivided functionally into those that oligomerize and permeabilize the MOM, such as Bax and Bak, or those that promote apoptosis through either activating Bax or Bak or inhibiting the antiapoptotic proteins, such as tBid, Bim, Bad, and Noxa. Proteins are included in the Bcl-2 family based on sequence homology to the founding member, Bcl-2, in one of the four Bcl-2 homology (BH) regions. All the antiapoptotic proteins, as well as Bax, Bak, and Bid, have multiple BH regions, are evolutionarily related, and share a three-dimensional (3D) structural fold. The BH3 proteins contain only the BH3 region, are evolutionarily distant from the multiregion proteins, and are intrinsically unstructured. Most members of the Bcl-2 family proteins contain a membrane-binding region (MBR) on their carboxyl termini in the form of a tail anchor, mitochondrial-targeting sequence, or as a hydrophobic amino acid sequence that facilitates binding and localization of these proteins to the MOM or to the endoplasmic reticulum (ER) membrane.Open in a separate windowFigure 2.Schematics of the core mechanisms proposed by various models for the regulation of MOMP by Bcl-2 proteins. (↑) Activation; (⊥) inhibition; (⊥↑) mutual recruitment/sequestration. Paired forward and reverse symbols indicate the model makes explicit reference to equilibria. (A) The direct activation model divides the different BH3 proteins by qualitative differences in function. The BH3 proteins with high affinity for binding and activating Bax and Bak are termed as “activators,” whereas those that only bind the antiapoptotic proteins are termed “sensitizers.” The activator BH3 proteins directly interact with and activate Bax and Bak to promote MOMP. The antiapoptotic proteins inhibit MOMP by specifically sequestering the BH3 activators. The BH3 sensitizer proteins can compete for binding with the antiapoptotic proteins, thus releasing the BH3 activator proteins to avidly promote MOMP through activation and oligomerization of Bax and Bak. (B) The displacement model categorizes the BH3 proteins solely based on their affinities of binding for the antiapoptotic proteins (hence, does not recognize them as activators). In this model, Bax and Bak are constitutively active and oligomerize and induce MOMP unless held in check by the antiapoptotic proteins. Therefore, for a cell to undergo apoptosis, the correct combination of BH3 proteins must compete for binding for the different antiapoptotic proteins to liberate Bax and Bak and for MOMP to ensue. (C) The embedded together model introduces an active role for the membrane and combines the major aspects of the previous models. The interactions between members of the Bcl-2 family are governed by equlibria and therefore are contingent on the relative protein concentrations as well as their binding affinities. The latter are determined by posttranslational modifications, fraction of protein bound to the membrane, and cellular physiology. At membranes, the activator BH3 proteins directly activate Bax and Bak, which then oligomerize, inducing MOMP. Both activator and sensitizer BH3 proteins can recruit and sequester antiapoptotic proteins in the membrane. The antiapoptotic proteins inhibit apoptosis by sequestering the BH3 proteins and Bax and Bak in the membrane or by preventing their binding to membranes. At different intracellular membranes, the local concentrations of specific subsets of Bcl-2 family members alter the binding of Bcl-2 proteins to the membrane and the binding equilibria between family members. As a result, Bcl-2 family proteins have distinct but overlapping functions at different cellular locations. (D) The unified model builds on the embedded together model by proposing that the antiapoptotic proteins sequester the activator BH3 proteins (mode 1) and sequester Bax and Bak (mode 2). It differs in that in the unified model, inhibition of apoptosis through mode 1 is less efficient (smaller arrow in panel D) and therefore easier to overcome by sensitizer BH3 proteins. In addition, the unified model extends the role of Bcl-2 family proteins and the regulation of MOMP to mitochondria dynamics (not shown).  相似文献   

19.
Structural biology of the Bcl-2 family of proteins   总被引:29,自引:0,他引:29  
The proteins of the Bcl-2 family are important regulators of programmed cell death. Structural studies of Bcl-2 family members have provided many important insights into their molecular mechanism of action and how members of this family interact with one another. To date, structural studies have been performed on six Bcl-2 family members encompassing both anti- (Bcl-x(L), Bcl-2, KSHV-Bcl-2, Bcl-w) and pro-apoptotic (Bax, Bid) members. They all show a remarkably similar fold despite an overall divergence in amino acid sequence and function (pro-apoptotic versus anti-apoptotic). The three-dimensional structures of Bcl-2 family members consist of two central, predominantly hydrophobic alpha-helices surrounded by six or seven amphipathic alpha-helices of varying lengths. A long, unstructured loop is present between the first two alpha-helices. The structures of the Bcl-2 proteins show a striking similarity to the overall fold of the pore-forming domains of bacterial toxins. This finding led to experiments which demonstrated that Bcl-x(L), Bcl-2, and Bax all form pores in artificial membranes. A prominent hydrophobic groove is present on the surface of the anti-apoptotic proteins. This groove is the binding site for peptides that mimic the BH3 region of various pro-apoptotic proteins such as Bak and Bad. Structures of Bcl-x(L) in complex with these BH3 peptides showed that they bind as an amphipathic alpha-helix and make extensive hydrophobic contacts with the protein. These data have not only helped to elucidate the interactions important for hetero-dimerization of Bcl-2 family members but have also been used to guide the discovery of small molecules that block Bcl-x(L) and Bcl-2 function. In the recently determined structure of the anti-apoptotic Bcl-w protein, the protein was also found to have a hydrophobic groove on its surface capable of binding BH3-containing proteins and peptides. However, in the native protein an additional carboxy-terminal alpha-helix interacts with the hydrophobic groove. This is reminiscent of how the carboxy-terminal alpha-helix of the pro-apoptotic protein Bax binds into its hydrophobic groove. This interaction may play a regulatory role and for Bax may explain why it is found predominately in the cytoplasm prior to activation. The hydrophobic groove of the pro-apoptotic protein, Bid protein, is neither as long nor as deep as that found in Bcl-x(L), Bcl-2, or Bax. In addition, Bid contains an extra alpha-helix, which is located between alpha1 and alpha2 with respect to Bcl-x(L), Bcl-2, and Bax. Although there are still many unanswered questions regarding the exact mechanism by which the Bcl-2 family of proteins modulates apoptosis, structural studies of these proteins have deepened our understanding of apoptosis on the molecular level.  相似文献   

20.
Tail-anchored membrane proteins are a class of proteins that are targeted posttranslationally to various organelles and integrated by a single segment of hydrophobic amino acids located near the C terminus. Although the localization of tail-anchored proteins in specific subcellular compartments in plant cells is essential for their biological function, the molecular targeting signals responsible for sorting these proteins are not well defined. Here, we describe the biogenesis of four closely related tung (Aleurites fordii) cytochrome b5 isoforms (Cb5-A, -B, -C, and -D), which are small tail-anchored proteins that play an essential role in many cellular processes, including lipid biosynthesis. Using a combination of in vivo and in vitro assays, we show that Cb5-A, -B, and -C are targeted exclusively to the endoplasmic reticulum (ER), whereas Cb5-D is targeted specifically to mitochondrial outer membranes. Comprehensive mutational analyses of ER and mitochondrial Cb5s revealed that their C termini, including transmembrane domains (TMD) and tail regions, contained several unique physicochemical and sequence-specific characteristics that defined organelle-specific targeting motifs. Mitochondrial targeting of Cb5 was mediated by a combination of hydrophilic amino acids along one face of the TMD, an enrichment of branched beta-carbon-containing residues in the medial portion of the TMD, and a dibasic -R-R/K/H-x motif in the C-terminal tail. By contrast, ER targeting of Cb5 depended primarily upon the overall length and hydrophobicity of the TMD, although an -R/H-x-Y/F- motif in the tail was also a targeting determinant. Collectively, the results presented provide significant insight into the early biogenetic events required for entry of tail-anchored proteins into either the ER or mitochondrial targeting pathways.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号