首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
NADH-dependent 3,4-benzpyrene hydroxylase activity was detected in the purified mitochondrial outer membrane fraction from the livers of rats treated with 3-methylcholanthrene. The specific activity in the outer membrane fraction is nearly equal to that of microsomes, a level too high to be accounted for only by the microsomal contamination. On the other hand, the NADPH-dependent 3,4-benzpyrene hydroxylase activity in the outer membrane fraction is about 50% of that of microsomes. The ratio of the specific activity of NADPH- to NADH-dependent 3,4-benzpyrene hydroxylase in microsomal fraction was about 3.5, while that of the outer membrane fraction was about 1.5. Moreover, it was found that NADH-dependent 3,4-benzpyrene hydroxylase activity in mitochondrial outer membrane from control rat liver was cyanide-insensitive, while that in microsomes was cyanide-sensitive. These results suggest the presence in the mitochondrial outer membrane fraction of aryl hydrocarbon hydroxylase activity which uses as electron donor NADH nearly to the same extent as NADPH. The hydroxylase system is composed of cyanide-insensitive cytochrome P-450 and is inducible markedly by 3-methylcholanthrene treatment. The probable electron transfer pathways in the mitochondrial outer membrane cytochrome P-450 oxidase system are discussed.  相似文献   

2.
Preparations enriched with plasmalemmal, outer mitochondrial, or Golgi complex membranes from rat liver were subfractionated by isopycnic centrifugation, without or after treatment with digitonin, to establish the subcellular distribution of a variety of enzymes. The typical plasmalemmal enzymes 5'-nucleotidase, alkaline phosphodiesterase I, and alkaline phosphatase were markedly shifted by digitonin toward higher densities in all three preparations. Three glycosyltransferases, highly purified in the Golgi fraction, were moderately shifted by digitonin in both this Golgi complex preparation and the microsomal fraction. The outer mitochondrial membrane marker, monoamine oxidase, was not affected by digitonin in the outer mitochondrial membrane marker, monoamine oxidase, was not affected by digitonin in the out mitochondrial membrane preparation, in agreement wit its behavior in microsomes. With the exception of NADH cytochrome c reductase (which was concentrated in the outer mitochondrial membrane preparation), typical microsomal enzymes (glucose-6-phosphatase, esterase, and NADPH cytochrome c reductase) displayed low specific activities in the three preparations; except for part of the glucose-6-phosphatase activity in the plasma membrane preparation, their density distributions were insensitive to digitonin, as they were in microsomes. The influence of digitonin on equilibrium densities was correlated with its morphological effects. Digitonin induced pseudofenestrations in plasma membranes. In Golgi and outer mitochondrial membrane preparations, a few similarly altered membranes were detected in subfractions enriched with 5'-nucleotidase and alkaline phosphodiesterase I. The alterations of Golgi membranes were less obvious and seemingly restricted to some elements in the Golgi preparation. No morphological modification was detected in digitonin-treated outer mitochondrial membranes. These results indicate that each enzyme is associated with the same membrane entity in all membrane preparations and support the view that there is little overlap in the enzymatic equipment of the various types of cytomembranes.  相似文献   

3.
1. The localization of monoamine oxidase in the mitochondrial outer membrane was studied in preparations of human liver mitochondrial and brain-cortex non-synaptosomal and synaptosomal mitochondria. 2. Immunochemical accessibility in iso-osmotic and hypo-osmotic mitochondrial preparations was used to localize the enzyme. 3. It was shown that the immunochemically accessible tyramine-oxidizing activity was distributed approximately equally on both surfaces of the membrane in human liver and brain-cortex non-synaptosomal mitochondria. However, the immunochemically accessible beta-phenethylamine-oxidizing activity was situated predominantly on the outer surface, and the immunochemically accessible 5-hydroxytryptamine-oxidizing activity was situated predominantly on the inner surface of the mitochondrial outer membrane in liver and brain-cortex non-synaptosomal mitochondrial preparations. 4. Considerable variation in the distribution of the enzyme in preparations of synaptosomal mitochondria was seen. 5. The simplest model consistent with our observations is that, in liver and brain-cortex non-synaptosomal mitochondria, the tyramine-oxidizing activity is distributed on both sides of the mitochondrial outer membrane, the beta-phenethylamine-oxidizing activity is located on the outer surface of the outer membrane and the 5-hydroxytryptamine-oxidizing activity is located on the inner surface of the mitochondria outer membrane.  相似文献   

4.
The surface charge of intact mitochondria and submitochondrial particles was examined by the technique of preparative free flow electrophoresis. When submitochondrial preparations obtained by a swelling-contraction procedure were examined with this technique, two fractions were observed. One of these fractions exhibited the same electrophoretic properties as intact mitochondria, which indicated that it was derived from the outer limiting membrane of the mitochondrion. This fraction was found to contain the enzymes monoamine oxidase and rotenone-insensitive NADH-cytochrome c reductase which have been reported to be localized in the outer mitochondrial membrane. The other fraction exhibited an electrophoretic mobility which was different from that of intact mitochondria, and this fraction contained enzymes characteristic of the inner membrane-matrix fraction such as soluble and particulate enzymes of the Krebs cycle. Microsomes exhibited an electrophoretic mobility which was almost identical with that of the outer mitochondrial membrane. In addition to resolving the localization of enzymes in mitochondrial membranes, these data indicate that the outer limiting membrane of the mitochondrion is the sole determinant of the surface charge of mitochondria.  相似文献   

5.
A subfraction of mitochondrial membranes was prepared from osmotically lysed rat liver mitochondria by density gradient centrifugation which contained the inner boundary membrane and the contact sites between this membrane and the outer membrane. The fraction was composed of inner and outer limiting membrane components as shown by the presence of specific marker enzymes, monoamine oxidase and glycerolphosphate oxidase. Surface proteolysis analysis, studies of cytochrome c permeability, and electron microscopy revealed the localization of the inner membrane component within a right-side-out outer membrane vesicle. Moreover, the outer membrane component in this fraction exhibited a higher capacity to bind hexokinase and had a higher specific activity of glutathione transferase than the pure outer membrane. In freeze-fracture analyses the fraction showed fracture plane deflections which may be specific for hydrophobic interactions between the two membranes.  相似文献   

6.
Cytoplasmic/intracytoplasmic and outer membrane preparations of Methylococcus capsulatus (Bath) were isolated by sucrose density gradient centrifugation of a total membrane fraction prepared by disruption using a French pressure cell. The cytoplasmic and/or intracytoplasmic membrane fraction consisted of two distinct bands, Ia and Ib (buoyant densities 1.16 and 1.8 g ml-1, respectively) that together contained 57% of the protein, 68% of the phospholipid, 73% of the ubiquinone and 89% of the CN-sensitive NADH oxidase activity. The only apparent difference between these two cytoplasmic bands was a much higher phospholipid content for Ia. The outer membrane fraction (buoyant density 1.23 - 1.24 g ml-1) contained 60% of the lipopolysaccharide-associated, beta-hydroxypalmitic acid, 74% of the methylsterol, and 66% of the bacteriohopanepolyol (BHP); phospholipid to methyl sterol or BHP ratios were 6:1. Methanol dehydrogenase activity and a c-type cytochrome were also present in this outer membrane fraction. Phospholipase A activity was present in both the cytoplasmic membrane and outer membrane fractions. The unique distribution of cyclic triterpenes may reflect a specific role in conferring outer membrane stability in this methanotrophic bacterium.  相似文献   

7.
Treatment of the inner membrane matrix fraction of rat liver mitochondria with the nonionic detergent Lubrol WX solubilized about 70% of the total protein and 90% or more of the following matrix activities: malate dehydrogenase, glutamate dehydrogenase, and isocitrate dehydrogenase (NADP). The Lubrol-insoluble fraction was enriched in cytochromes, phospholipids, and a Mg++-stimulated ATPase activity. Less than 2% of the total mitochondrial activity of monoamine oxidase, an outer membrane marker, or adenylate kinase, an intracristal space marker could be detected in this inner membrane fraction. Electron micrographs of negatively stained preparations showed vesicles (≤0.4 µ diameter) literally saturated on the periphery with the 90 A ATPase particles. These inner membrane vesicles, which appeared for the most part to be inverted with respect to the normal inner membrane configuration in intact mitochondria, retained the succinicoxidase portion of the electron-transport chain, an intact phosphorylation site II with a high affinity for ADP, and the capacity to accumulate Ca++. A number of biochemical properties characteristic of intact mitochondria and the inner membrane matrix fraction, however, were either absent or markedly deficient in the inner membrane vesicles. These included stimulation of respiration by either ADP or 2,4-dinitrophenol, oligomycin-sensitive ADP-ATP exchange activity, atractyloside sensitivity of adenine nucleotide requiring reactions, and a stimulation of the Mg++-ATPase by 2,4-dinitrophenol.  相似文献   

8.
Following the intravenous injection of nanomolar amounts of [3H]dolichol into rats, the radioactivity rapidly appeared in the high-density lipoprotein fraction of the plasma and circulated with a half-life of about 9 h. A fraction of the injected activity was excreted in the feces, presumably through the bile, but evidence was obtained that little oxidative breakdown of dolichol occurred. All tissues assayed acquired radioactivity, but the liver attained the highest specific activity and the largest percentage of the total radioactive dolichol. Subcellular fractionation of the liver revealed that mitochondrial preparations contained the bulk of the labeled dolichol at all times tested up to 40 h after injection. Disruption of the mitochondrial structure by two different techniques permitted the isolation of inner and outer membrane fractions and it was found that the [3H]dolichol was concentrated in the outer membrane fraction. The significance of these findings is discussed.  相似文献   

9.
Using highly enriched membrane preparations from lactate-grown Saccharomyces cerevisiae cells, the subcellular and submitochondrial location of eight enzymes involved in the biosynthesis of phospholipids was determined. Phosphatidylserine decarboxylase and phosphatidylglycerolphosphate synthase were localized exclusively in the inner mitochondrial membrane, while phosphatidylethanolamine methyltransferase activity was confined to microsomal fractions. The other five enzymes tested in this study were common both to the outer mitochondrial membrane and to microsomes. The transmembrane orientation of the mitochondrial enzymes was investigated by protease digestion of intact mitochondria and of outside-out sealed vesicles of the outer mitochondrial membrane. Glycerolphosphate acyltransferase, phosphatidylinositol synthase, and phosphatidylserine synthase were exposed at the cytosolic surface of the outer mitochondrial membrane. Cholinephosphotransferase was apparently located at the inner aspect or within the outer mitochondrial membrane. Phosphatidate cytidylyltransferase was localized in the endoplasmic reticulum, on the cytoplasmic side of the outer mitochondrial membrane, and in the inner mitochondrial membrane. Inner membrane activity of this enzyme constituted 80% of total mitochondrial activity; inactivation by trypsin digestion was observed only after preincubation of membranes with detergent (0.1% Triton X-100). Total activity of those enzymes that are common to mitochondria and the endoplasmic reticulum was about equally distributed between the two organelles. Data concerning susceptibility to various inhibitors, heat sensitivity, and the pH optima indicate that there is a close similarity of the mitochondrial and microsomal enzymes that catalyze the same reaction.  相似文献   

10.
The subcellular and submitochondrial localization of CTP:phosphatidate cytidylyltransferase is altered in the Morris 7777 hepatoma. Mitochondria in this poorly differentiated tumor are the principal sites of CDP-diacylglycerol synthesis, in contrast to normal rat liver where the endoplasmic reticulum is most active. This enzyme activity was increased 17-fold in the outer mitochondrial membrane, and a 22% increase was noted in the inner mitochondrial membrane of the 7777 hepatoma as compared with the corresponding fractions from normal rat liver. Increased mitochondrial CTP:phosphatidate cytidylyltransferase was present in six other Morris hepatomas, but it was not found in fetal rat liver mitochondria, suggesting that rapid growth alone is not responsible for the difference. Evidence is presented which indicates that mitochondrial lipid degradation is similar in normal liver and the 7777 hepatoma, in vitro. The increased activity of CTP: phosphatidate cytidylytransferase is thought to be responsible in part for the moderately increased diphosphatidylglycerol content of 7777 hepatoma mitochondria.  相似文献   

11.
Controlled osmotic lysis (water-washing) of rat liver mitochondria results in a mixed population of small vesicles derived mainly from the outer mitochondrial membrane and of larger bodies containing a few cristae derived from the inner membrane. These elements have been separated on Ficoll and sucrose gradients. The small vesicles were rich in monoamine oxidase, and the large bodies were rich in cytochrome oxidase. Separation of the inner and outer membranes has also been accomplished by treating mitochondria with digitonin in an isotonic medium and fractionating the treated mitochondria by differential centrifugation. Treatment with low digitonin concentrations released monoamine oxidase activity from low speed mitochondrial pellets, and this release of enzymatic activity was correlated with the loss of the outer membrane as seen in the electron microscope. The low speed mitochondrial pellet contained most of the cytochrome oxidase and malate dehydrogenase activities of the intact mitochondria, while the monoamine oxidase activity could be recovered in the form of small vesicles by high speed centrifugation of the low speed supernatant. The results indicate that monoamine oxidase is found only in the outer mitochondrial membrane and that cytochrome oxidase is found only in the inner membrane. Digitonin treatment released more monoamine oxidase than cytochrome oxidase from sonic particles, thus indicating that digitonin preferentially degrades the outer mitochondrial membrane.  相似文献   

12.
Isolation and characterization of cardiac sarcolemma.   总被引:11,自引:0,他引:11  
A procedure was developed for the isolation of cardiac sarcolemmal vesicles. These vesicles are enriched about ten-fold (with respect to the tissue homogenate) in K+-stimulated p-nitrophenylphosphatase, (Na+ + K+)-ATPase, 5'-nucleotidase activities and sialic acid content, all of which are believed to be components of the sarcolemma. The sarcolemma of tissue culture cardiac cells were radioiodinated and the distribution of this radioiodine paralleled the distribution of the other membrane markers above. There was very little contamination of the sarcolemmal fraction by sarcoplasmic reticulum (as judged by Ca2+-ATPase and glucose-6-phosphatase activities) or inner mitochondrial membranes (as judged by succinate dehydrogenase activity). There may, however, be some contamination by outer mitochondrial membranes (as judged by monoamine oxidase and rotenone-insensitive NADH cytochrome c reductase activities) which have rarely been monitored in cardiac sarcolemmal preparations. The purity of this preparation is good when compared with other cardiac sarcolemmal preparations. This preparation should be very useful in studying the roles of the cardiac sarcolemma (e.g. in excitation contraction coupling and Ca2+ binding).  相似文献   

13.
Data on localization of nucleoside diphosphate kinase (NDPK) in the outer mitochondrial compartment are contradictory. We have demonstrated that repeated quintuple wash of a mitochondrial pellet (protein concentration is about 2 mg/ml) solubilized only 60% of total NDPK activity. Since no release of adenylate kinase, the marker enzyme of the intermembrane space, was observed, it was concluded that the solubilized NDPK activity was associated with the outer surface of the outer mitochondrial membrane. Treatment of mitochondria with digitonin solutions in low (sucrose, mannitol) or high (KCl) ionic strength media revealed that solubilization of remaining NDPK activity basically coincided with the solubilization curve of monoamine oxidase, the marker enzyme of the outer mitochondrial membrane, but differed from solubilization behavior of adenylate kinase and malate dehydrogenase. We concluded that the remaining NDPK activity was also associated with the outer mitochondrial membrane and electrostatic interactions were not essential for NDPK binding to mitochondrial membranes. Results of polarographic determination of remaining adenylate kinase and NDPK activities of mitochondria incubated in ice for different time intervals and subjected to subsequent centrifugation suggest that all NDPK activity of the outer compartment of rat liver mitochondria is associated with the outer surface of the outer mitochondrial membrane. We suggest the existence of at least three NDPK fractions. They represent 70, 15, and 15% of total NDPK activity of the outer compartment and differ by tightness of membrane binding.  相似文献   

14.
Studies are reported on the interrelationships in liver mitochondria of copper status, cytochrome oxidase activity, adenine nucleotide binding capacity and phospholipid synthesis. Direct exposure of mitochondria to cyanide or diethyldithiocarbamate depressed cytochrome oxidase activity; ADP-binding and phospholipid synthesis. Fractionation of mitochondria to increase the specific activity of cytochrome oxidase about 10-fold did not increase the affinity to bind ADP. Ageing of mitochondria or dialysis of mitochondria or mitochondrial membrane preparations against water or diethyldithiocarbamate at 0--2 degrees for 18 h did not decrease cytochrome oxidase activity or copper content of reisolated and resuspended mitochondria or mitochondrial membrane preparations, but considerably reduced the affinity to bind ADP. The respiratory inhibitors, fluoride and azide, at concentrations inhibitory to cytochrome oxidase did not reduce ADP-binding or phospholipid synthesis. Atractyloside did not inhibit cytochrome oxidase activity but did inhibit ADP-binding and phospholipid synthesis. Pre-incubation of mitochondrial membrane preparations with Cu++ increased the copper content and ADP-binding affinity. The results indicate that cytochrome oxidase is not the ADP-binding site of the mitochondrial membrane system and that reduced cytochrome oxidase activity per se does not depress binding affinity. Copper appears to be a component of the adenine nucleotide binding sites of mitochondrial membranes because the copper-complexing agents, cyanide and diethyldithiocarbamate, depressed ADP-binding, while increased mitochondrial membrane copper content increased ADP-binding.  相似文献   

15.
Mitochondrial hexokinase from small-intestinal mucosa and brain   总被引:1,自引:1,他引:0       下载免费PDF全文
1. The submitochondrial localization of hexokinase activity in preparations of mitochondria from the small intestine of the guinea pig was studied by conventional methods. 2. Hexokinase activity in this tissue was predominantly associated with the outer mitochondrial membrane. 3. The inactivation of mitochondrial enzymes by trypsin in iso-osmotic and hypo-osmotic conditions was also used to determine the submitochondrial localization of hexokinase activity. 4. Hexokinase activity was found to be on the outside of the outer mitochondrial membrane. 5. It was shown that both type I and type II hexokinase activities are bound to the outside of the outer mitochondrial membrane. The types are present in the same ratio as that in which they occur in the cytosol of the cell. 6. Mitochondrial hexokinase from the small intestine did not show the latency phenomenon demonstrated by mitochondrial hexokinase from brain when subjected to a variety of treatments. However, hexokinase activity was solubilized from preparations of mitochondria from the small intestine by the same treatments as for mitochondrial hexokinase from brain. 7. The submitochondrial distribution of hexokinase activity in mitochondrial preparations from rat brain was determined by the trypsin inactivation method. 8. Hexokinase activity in preparations of mitochondria from rat brain was found on the outside of the outer membrane, between the mitochondrial membranes, and within the inner mitochondrial membrane. 9. Hexokinase from rat brain showed latency properties irrespective of its submitochondrial location.  相似文献   

16.
The activity of cholinephosphotransferase was measured in the subcellular fractions of guinea-pig lung. The specific activity of the enzyme was highest in a fraction, intermediate in density between mitochondria and microsomes. Similar subcellular distribution patterns were observed for both cholinephosphotransferase and rotenone-insensitive NADH-cytochrome c reductase, an enzyme associated with the outer membrane of mitochondria and endoplasmic reticulum, suggesting that cholinephosphotransferase may be localized in both of these organelles. The distribution of cholinephosphotransferase activity in the subfractions of mitochondria and the intermediate fractions recovered by linear density gradient paralleled that of the mitochondrial outer membrane marker enzyme, monoamine oxidase. RNA content of a subfraction enriched in cholinephosphotransferase and monoamine oxidase was not typical to that of either rough or smooth endoplasmic reticulum. The results of this study suggest that in guinea-pig lung, cholinephosphotransferase is localized in both the outer membrane of mitochondria, and the endoplasmic reticulum.  相似文献   

17.
The trypsin sensitivity of the mitochondrial N-acetylglucosaminyl and mannosyltransferase activities involved in the N-glycoprotein biosynthesis through dolichol intermediates as well as the N-acetylglucosaminyl-transferase activity involved in direct N-glycosylation were examined in mitochondria and isolated outer mitochondrial membrane preparations. The trypsin action on mitochondrial membrane was checked by measuring the activities of marker enzymes (rotenone-insensitive NADH cytochrome c reductase, adenylate kinase, and monoamine oxidase). Glycosyl-transferase activities of both N-glycosylation pathways were insensitive to trypsin action and consequently were located in the outer mitochondrial membrane. Based on the activator effect of the trypsin on these enzyme activities, the results suggested two distinct orientations of their active sites. As regards the N-glycoprotein biosynthesis pathway through dolichol intermediates, the dolicholphosphoryl-mannose and dolichol-pyrophosphoryl-di-N-acetylchitobiose synthases would be oriented outside while the oligomannosyl-synthase and the oligomannosyl-transferase would be rather oriented inside in the outer membrane. The N-acetylglucosaminyl-transferase involved in the direct transfer of N-acetylglucosamine from its nucleotide donor to a proteinic acceptor would be oriented outside in the outer membrane.  相似文献   

18.
During early postnatal development there was an increase in the specific activity of a number of oxidative enzymes localized on the outer and inner mitochondrial membrane. The succinic oxidase complex of the inner mitochondrial membrane, whose activity in 1-day-old rats was 50% of the value in adult animals, attained the maximum on about the 10th day after birth. Activity of the choline and the proline oxidase complex, both of which are also localized in the inner mitochondrial membrane, was minimal in 1-day-old rats and went on rising after the 10th day. Rotenone-insensitive NADH-cytochrome c reductase activity, which is localized on the outer mitochondrial membrane, remained stable up to the 10th day, and rose between the 10th and the 90th day. Developmental changes in monoaminooxidase activity, which is likewise localized on the outer mitochondrial membrane, followed a similar course to the choline and proline oxidase complexes. The amount of cytochromes a+alpha3 and cytochrome b in isolated mitochondria did not alter during development. The protein spectrum of the mitochondrial particles, determined by polyacrylamide gel electrophoresis in sodium dodecyl sulphate, likewise displayed no marked changes during postnatal development. The above findings show that the metabolic functions of the mitochondria mature during development and that changes in the different enzymes have their own characteristic time course.  相似文献   

19.
Abstract Highly purified preparations of inner, i.e. cytoplasmic and intracytoplasmic, membranes and outer membranes were isolated from Nitrobacter hamburgensis strain X14 by sucrose density-gradient centrifugation of cell-free extracts. The two membrane fractions differed markedly in morphology, density, and protein composition as determined by polyacrylamide gel electrophoresis. The inner membrane fraction was enriched in NADH oxidase and nitrite oxidase activity. It contained four major protein bands of apparent M rs of 28 000, 32 000, 70 000, and 116000. The outer membrane fraction was characterized by the presence of 2-keto-3-deoxyoctonate and contained two major proteins of apparent M rs of 13 000 and 50 000. There was no evidence for differences between cytoplasmic and intracytoplasmic membranes.  相似文献   

20.
Biotinyl proteins were labelled by incubation of SDS-denatured preparations of subcellular fractions of rat liver with [14C]methylavidin before polyacrylamide-gel electrophoresis. Fluorographic analysis showed that mitochondria contained two forms of acetyl-CoA carboxylase [acetyl-CoA:carbon dioxide ligase (ADP-forming) EC 6.4.1.2], both of which were precipitated by antibody to the enzyme. When both forms were considered, almost three-quarters of the total liver acetyl-CoA carboxylase was found in the mitochondrial fraction of liver from fed rats while only 3.5% was associated with the microsomal fraction. The remainder was present in cytosol, either as the intact active enzyme or as a degradation product. The actual specific activity of the cytosolic enzyme was approx. 2 units/mg of acetyl-CoA carboxylase protein while that of the mitochondrial enzyme was about 20-fold lower, indicating that mitochondrial acetyl-CoA carboxylase was relatively inactive. Fractionation of mitochondria with digitonin showed that acetyl-CoA carboxylase was associated with the outer mitochondrial membrane. The available evidence suggests that mitochondrial acetyl-CoA carboxylase represents a reservoir of enzyme which can be released and activated under lipogenic conditions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号