首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
PKNbeta is a novel isoform of PKNalpha, which is one of the target protein kinases for the small GTPase Rho. By yeast two-hybrid screening of a human embryonic kidney 293 cell cDNA library with the PKNbeta linker region containing proline-rich motifs as a bait, clones encoding Graf (GAP for Rho Associated with Focal adhesion kinase) and a novel Graf-related protein, termed Graf2, were isolated. The full length of Graf2 contains a putative PH domain, a RhoGAP domain, and an SH3 domain as well as Graf. Northern and Western blot analyses demonstrated that Graf2 is expressed in several tissues, with the highest expression in skeletal muscle. Recombinant Graf2 exhibited GTPase-activating activity toward the small GTPase RhoA and Cdc42Hs, but not toward Rac1, in vitro. The SH3 domains of Graf and Graf2 purified from Escherichia coli bound directly to PKNbeta. Graf or Graf2 was co-immunoprecipitated with PKNbeta in COS-7 cells transiently transfected with Graf or Graf2 and PKNbeta expression constructs. The catalytically active form of PKNbeta phosphorylated Graf and Graf2 in vitro. The interplay of PKNbeta and the GTPase-activating proteins, Graf and Graf2, may offer a novel mechanism regulating the Rho-mediated signaling.  相似文献   

2.
p190RhoGAP is a GTPase-activating protein (GAP) known to regulate actin cytoskeleton dynamics by decreasing RhoGTP levels through activation of the intrinsic GTPase activity of Rho. Although the GAP domain of p190RhoGAP stimulates the intrinsic' GTPase activity of several Rho family members (Rho, Rac, Cdc42) under in vitro conditions, p190RhoGAP is generally regarded as a GAP for RhoA in the cell. The cellular RacGAP activity of the protein has not been proven directly. We have previously shown that the in vitro RacGAP and RhoGAP activity of p190RhoGAP was inversely regulated through a polybasic region of the protein. Here we provide evidence that p190RhoGAP shows remarkable GAP activity toward Rac also in the cell. The cellular RacGAP activity of p190RhoGAP requires an intact polybasic region adjacent to the GAP domain whereas the RhoGAP activity is inhibited by the same domain. Our data indicate that through its alternating RacGAP and RhoGAP activity, p190RhoGAP plays a more complex role in the Rac–Rho antagonism than it was realized earlier.  相似文献   

3.
RhoA, Cdc42, and Rac1 are small GTPases that regulate cytoskeletal reorganization leading to changes in cell morphology and cell motility. Their signaling pathways are activated by guanine nucleotide exchange factors and inactivated by GTPase-activating proteins (GAPs). We have identified a novel RhoGAP, BPGAP1 (for BNIP-2 and Cdc42GAP Homology (BCH) domain-containing, Proline-rich and Cdc42GAP-like protein subtype-1), that is ubiquitously expressed and shares 54% sequence identity to Cdc42GAP/p50RhoGAP. BP-GAP1 selectively enhanced RhoA GTPase activity in vivo although it also interacted strongly with Cdc42 and Rac1. "Pull-down" and co-immunoprecipitation studies indicated that it formed homophilic or heterophilic complexes with other BCH domain-containing proteins. Fluorescence studies of epitope-tagged BPGAP1 revealed that it induced pseudopodia and increased migration of MCF7 cells. Formation of pseudopodia required its BCH and GAP domains but not the proline-rich region, and was differentially inhibited by coexpression of the constitutively active mutant of RhoA, or dominant negative mutants of Cdc42 and Rac1. However, the mutant without the proline-rich region failed to confer any increase in cell migration despite the induction of pseudopodia. Our findings provide evidence that cell morphology changes and migration are coordinated via multiple domains in BPGAP1 and present a novel mode of regulation for cell dynamics by a RhoGAP protein.  相似文献   

4.
Cell division is finely controlled by various molecules including small G proteins and kinases/phosphatases. Among these, Aurora B, RhoA, and the GAP MgcRacGAP have been implicated in cytokinesis, but their underlying mechanisms of action have remained unclear. Here, we show that MgcRacGAP colocalizes with Aurora B and RhoA, but not Rac1/Cdc42, at the midbody. We also report that Aurora B phosphorylates MgcRacGAP on serine residues and that this modification induces latent GAP activity toward RhoA in vitro. Expression of a kinase-defective mutant of Aurora B disrupts cytokinesis and inhibits phosphorylation of MgcRacGAP at Ser387, but not its localization to the midbody. Overexpression of a phosphorylation-deficient MgcRacGAP-S387A mutant, but not phosphorylation-mimic MgcRacGAP-S387D mutant, arrests cytokinesis at a late stage and induces polyploidy. Together, these findings indicate that during cytokinesis, MgcRacGAP, previously known as a GAP for Rac/Cdc42, is functionally converted to a RhoGAP through phosphorylation by Aurora B.  相似文献   

5.
The Rho GTPases RhoA, Rac1, and Cdc42 play a major role in regulating the reorganization of the actin cytoskeleton. We recently identified CdGAP, a novel GTPase-activating protein with activity toward Rac1 and Cdc42. CdGAP consists of a N-terminal GAP domain, a central domain, and a C-terminal proline-rich domain. Here we show that through a subset of its Src homology 3 domains, the endocytic protein intersectin interacts with CdGAP. In platelet-derived growth factor-stimulated Swiss 3T3 cells, intersectin co-localizes with CdGAP and inhibits its GAP activity toward Rac1. Intersectin-Src homology 3 also inhibits CdGAP activity in GAP assays in vitro. Although the C-terminal proline-rich domain of CdGAP is required for the regulation of its GAP activity by intersectin both in vivo and in vitro, it is not necessary for CdGAP-intersectin interaction. Our data suggest that the central domain of CdGAP is required for CdGAP-intersectin interaction. Thus, we propose a model in which intersectin binding results in a change of CdGAP conformation involving the proline-rich domain that leads to the inhibition of its GAP activity. These observations provide the first demonstration of a direct regulation of RhoGAP activity through a protein-protein interaction and suggest a function for intersectin in Rac1 regulation and actin dynamics.  相似文献   

6.
Gab1 and Gab2 are scaffolding proteins acting downstream of cell surface receptors and interact with a variety of cytoplasmic signaling proteins such as Grb2, Shp-2, phosphatidylinositol 3-kinase, Shc, and Crk. To identify new binding partners for GAB proteins and better understand their functions, we performed a yeast two-hybrid screening with hGab2-(120-587) as bait. This work led to identification of a novel GTPase-activating protein (GAP) for Rho family GTPases. The GAP domain shows high similarity to the recently cloned CdGAP and displays activity toward RhoA, Rac1, and Cdc42 in vitro. The protein was named GC-GAP for its ability to interact with GAB proteins and its activity toward Rac and Cdc42. GC-GAP is predominantly expressed in the brain with low levels detected in other tissues. Antibodies directed against GC-GAP recognized a protein of approximately 200 kDa. Expression of GC-GAP in 293T cells led to a reduction in active Rac1 and Cdc42 levels but not RhoA. Suppression of GC-GAP expression by siRNA inhibited proliferation of C6 astroglioma cells. In addition, GC-GAP contains several classic proline-rich motifs, and it interacts with the first SH3 domain of Crk and full-length Nck in vitro. We propose that Gab1 and Gab2 in cooperation with other adapter molecules might regulate the cellular localization of GC-GAP under specific stimuli, acting to regulate precisely Rac and Cdc42 activities. Given that GC-GAP is specifically expressed in the nervous system and that it is localized to the dendritic processes of cultured neurons, GC-GAP may play a role in dendritic morphogenesis and also possibly in neural/glial cell proliferation.  相似文献   

7.
Wu G  Li H  Yang Z 《Plant physiology》2000,124(4):1625-1636
The plant-specific Rop subfamily of Rho GTPases, most closely related to the mammalian Cdc42 and Rac GTPases, plays an important role in the regulation of calcium-dependent pollen tube growth, H(2)O(2)-mediated cell death, and many other processes in plants. In a search for Rop interactors using the two-hybrid method, we identified a family of Rho GTPase-activating proteins (GAP) from Arabidopsis, termed RopGAPs. In addition to a GAP catalytic domain, RopGAPs contain a Cdc42/Rac-interactive binding (CRIB) motif known to allow Cdc42/Rac effector proteins to bind activated Cdc42/Rac. This novel combination of a GAP domain with a CRIB motif is widespread in higher plants and is unique to the regulation of the Rop GTPase. A critical role for CRIB in the regulation of in vitro RopGAP activity was demonstrated using point and deletion mutations. Both types of mutants have drastically reduced capacities to stimulate the intrinsic Rop GTPase activity and to bind Rop. Furthermore, RopGAPs preferentially stimulate the GTPase activity of Rop, but not Cdc42 in a CRIB-dependent manner. In vitro binding assays show that the RopGAP CRIB domain interacts with GTP- and GDP-bound forms of Rop, as well as the transitional state of Rop mimicked by aluminum fluoride. The CRIB domain also promotes the association of the GAP domain with the GDP-bound Rop, as does aluminum fluoride. These results reveal a novel CRIB-dependent mechanism for the regulation of the plant-specific family of Rho GAPs. We propose that the CRIB domain facilitates the formation of or enhanced GAP-mediated stabilization of the transitional state of the Rop GTPase.  相似文献   

8.
The Cdc42 small GTPase regulates cytoskeletal reorganization and cell morphological changes that result in cellular extensions, migration, or cytokinesis. We previously showed that BNIP-2 interacted with Cdc42 and its cognate inactivator, p50RhoGAP/Cdc42GAP via its BNIP-2 and Cdc42GAP homology (BCH) domain, but its cellular and physiological roles still remain unclear. We report here that following transient expression of BNIP-2 in various cells, the expressed protein was located in irregular spots throughout the cytoplasm and concentrated at the leading edge of cellular extensions. The induced cell elongation and membrane protrusions required an intact BCH domain and were variously inhibited by coexpression of dominant negative mutants of Cdc42 (completely inhibited), Rac1 (partially inhibited), and RhoA (least inhibited). Presence of the Cdc42/Rac1 interactive binding (CRIB) motif alone as the dominant negative mutant of p21-activated kinase also inhibited the BNIP-2 effect. Bioinformatic analyses together with progressive deletional mutagenesis and binding studies revealed that a distal part of the BNIP-2 BCH domain contained a sequence with low homology to CRIB motif. However, in contrary to most effectors, BNIP-2 binding to Cdc42 was mediated exclusively via the unique sequence motif 285VPMEYVGI292. Cells expressing the BNIP-2 mutants devoid of this motif or/and the 34-amino acids immediately upstream to this sequence failed to elicit cell elongation and membrane protrusions despite that the protein still remained in the cytoplasm and interacted with Cdc42GAP. Evidence is presented where BNIP-2 in vivo induces cell dynamics by recruiting Cdc42 via its BCH domain, thus providing a novel mechanism for regulating Cdc42 signaling pathway.  相似文献   

9.
The BNIP-2 and Cdc42GAP homology (BCH) domain is a novel regulator for Rho GTPases, but its impact on p50-Rho GTPase-activating protein (p50RhoGAP or Cdc42GAP) in cells remains elusive. Here we show that deletion of the BCH domain from p50RhoGAP enhanced its GAP activity and caused drastic cell rounding. Introducing constitutively active RhoA or inactivating GAP domain blocked such effect, whereas replacing the BCH domain with endosome-targeting SNX3 excluded requirement of endosomal localization in regulating the GAP activity. Substitution with homologous BCH domain from Schizosaccharomyces pombe, which does not bind mammalian RhoA, also led to complete loss of suppression. Interestingly, the p50RhoGAP BCH domain only targeted RhoA, but not Cdc42 or Rac1, and it was unable to distinguish between GDP and the GTP-bound form of RhoA. Further mutagenesis revealed a RhoA-binding motif (residues 85-120), which when deleted, significantly reduced BCH inhibition on GAP-mediated cell rounding, whereas its full suppression also required an intramolecular interaction motif (residues 169-197). Therefore, BCH domain serves as a local modulator in cis to sequester RhoA from inactivation by the adjacent GAP domain, adding to a new paradigm for regulating p50RhoGAP signaling.  相似文献   

10.
AGAPs are a subtype of Arf GTPase-activating proteins (GAPs) with 11 members in humans. In addition to the Arf GAP domain, the proteins contain a G-protein-like domain (GLD) with homology to Ras superfamily proteins and a PH domain. AGAPs bind to clathrin adaptors, function in post Golgi membrane traffic, and have been implicated in glioblastoma. The regulation of AGAPs is largely unexplored. Other enzymes containing GTP binding domains are regulated by nucleotide binding. However, nucleotide binding to AGAPs has not been detected. Here, we found that neither nucleotides nor deleting the GLD of AGAP1 affected catalysis, which led us to hypothesize that the GLD is a protein binding site that regulates GAP activity. Two-hybrid screens identified RhoA, Rac1, and Cdc42 as potential binding partners. Coimmunoprecipitation confirmed that AGAP1 and AGAP2 can bind to RhoA. Binding was mediated by the C terminus of RhoA and was independent of nucleotide. RhoA and the C-terminal peptide from RhoA increased GAP activity specifically for the substrate Arf1. In contrast, a C-terminal peptide from Cdc42 neither bound nor activated AGAP1. Based on these results, we propose that AGAPs are allosterically regulated through protein binding to the GLD domain.  相似文献   

11.
Cytoskeletal reorganization of activated platelets plays a crucial role in hemostasis and thrombosis and implies activation of Rho GTPases. Rho GTPases are important regulators of cytoskeletal dynamics and function as molecular switches that cycle between an inactive and an active state. They are regulated by GTPase activating proteins (GAPs) that stimulate GTP hydrolysis to terminate Rho signaling. The regulation of Rho GTPases in platelets is not explored. A detailed characterization of Rho regulation is necessary to understand activation and inactivation of Rho GTPases critical for platelet activation and aggregation. Nadrin is a RhoGAP regulating cytoplasmic protein explored in the central nervous system. Five Nadrin isoforms are known that share a unique GAP domain, a serine/threonine/proline-rich domain, a SH3-binding motif and an N-terminal BAR domain but differ in their C-terminus. Here we identified Nadrin in platelets where it co-localizes to actin-rich regions and Rho GTPases. Different Nadrin isoforms selectively regulate Rho GTPases (RhoA, Cdc42 and Rac1) and cytoskeletal reorganization suggesting that – beside the GAP domain – the C-terminus of Nadrin determines Rho specificity and influences cell physiology. Furthermore, Nadrin controls RhoA-mediated stress fibre and focal adhesion formation. Spreading experiments on fibrinogen revealed strongly reduced cell adhesion upon Nadrin overexpression. Unexpectedly, the Nadrin BAR domain controls Nadrin-GAP activity and acts as a guidance domain to direct this GAP to its substrate at the plasma membrane. Our results suggest a critical role for Nadrin in the regulation of RhoA, Cdc42 and Rac1 in platelets and thus for platelet adhesion and aggregation.  相似文献   

12.
《Cellular signalling》2014,26(9):1975-1984
Cytoskeletal reorganization is crucial for platelet adhesion and thrombus formation to avoid excessive bleeding. Major regulators of cytoskeletal dynamics are small GTPases of the Rho family. Rho GTPases become activated by G-protein coupled receptor activation, downstream of immunoreceptor tyrosine-based activation motif (ITAM)-coupled receptors and by outside-in signaling of integrins. They act as molecular switches and cycle between active and inactive states. GTPase activating proteins (GAPs) stimulate the hydrolysis of GTP to GDP to terminate Rho signaling. Nadrin is a RhoGAP that was recently identified in platelets. Five Nadrin isoforms are known consisting of a unique GAP and an N-terminal BAR domain responsible for the selective regulation of RhoA, Cdc42 and Rac1. Besides BAR domain mediated regulation of Nadrin GAP activity nothing is known about the regulation of Nadrin and the impact on cytoskeletal reorganization. Here we show that Nadrin becomes tyrosine phosphorylated upon platelet activation. We found Src family proteins (Src, Lyn, Fyn) to be responsible to control Nadrin GAP activity by phosphorylation. Interestingly, phosphorylation of Nadrin leads to tightly regulated Rho activation that was found to be Nadrin isoform- and (Rho) target-specific. Src-phosphorylation of Nadrin5 mediated inactivation of Cdc42 while RhoA and Rac1 became activated upon Src-mediated phosphorylation of Nadrin2. Our results suggest a critical role for spatial and temporal regulation of Nadrin and thus for the control of Rho GTPases in platelets.  相似文献   

13.
The cytotoxic necrotizing factors (CNF)1 and CNF2 from pathogenic Escherichia coli strains activate RhoA, Rac1, and Cdc42 by deamidation of Gln63 (RhoA) or Gln61 (Rac and Cdc42). Recently, a novel cytotoxic necrotizing factor termed CNFY was identified in Yersinia pseudotuberculosis strains (Lockman, H. A., Gillespie, R. A., Baker, B. D., and Shakhnovich, E. (2002) Infect. Immun. 70, 2708-2714). We amplified the cnfy gene from genomic DNA of Y. pseudotuberculosis, cloned and expressed the recombinant protein, and studied its activity. Recombinant GST-CNFY induced morphological changes in HeLa cells and caused an upward shift of RhoA in SDS-PAGE, as is known for GST-CNF1 and GST-CNF2. Mass spectrometric analysis of GST-CNFY-treated RhoA confirmed deamidation at Glu63. Treatment of RhoA, Rac1, and Cdc42 with GST-CNFY decreased their GTPase activities, indicating that all of these Rho proteins could serve as substrates for GST-CNFY in vitro. In contrast, RhoA, but not Rac or Cdc42, was the substrate of GST-CNFY in culture cells. GST-CNFY caused marked stress fiber formation in HeLa cells after 2 h. In contrast to GST-CNF1, formation of filopodia or lamellipodia was not induced with GST-CNFY. Accordingly, effector pull-down experiments with lysates of toxin-treated cells revealed strong activation of RhoA but no activation of Rac1 or Cdc42 after 6 h of GST-CNFY-treatment. Moreover, in rat hippocampal neurons, GST-CNFY results in the retraction of neurites, indicating RhoA activation. In contrast, no activation of Rac or Cdc42 was found. Altogether, our data suggest that CNFY from Y. pseudotuberculosis is a strong, selective activator of RhoA, which can be used as a powerful tool for constitutive RhoA activation without concomitant activation of Rac1 or Cdc42.  相似文献   

14.
During cytokinesis of animal cells, the mitotic spindle plays at least two roles. Initially, the spindle positions the contractile ring. Subsequently, the central spindle, which is composed of microtubule bundles that form during anaphase, promotes a late step in cytokinesis. How the central spindle assembles and functions in cytokinesis is poorly understood. The cyk-4 gene has been identified by genetic analysis in Caenorhabditis elegans. Embryos from cyk-4(t1689ts) mutant hermaphrodites initiate, but fail to complete, cytokinesis. These embryos also fail to assemble the central spindle. We show that the cyk-4 gene encodes a GTPase activating protein (GAP) for Rho family GTPases. CYK-4 activates GTP hydrolysis by RhoA, Rac1, and Cdc42 in vitro. RNA-mediated interference of RhoA, Rac1, and Cdc42 indicates that only RhoA is essential for cytokinesis and, thus, RhoA is the likely target of CYK-4 GAP activity for cytokinesis. CYK-4 and a CYK-4:GFP fusion protein localize to the central spindle and persist at cell division remnants. CYK-4 localization is dependent on the kinesin-like protein ZEN-4/CeMKLP1 and vice versa. These data suggest that CYK-4 and ZEN-4/CeMKLP1 cooperate in central spindle assembly. Central spindle localization of CYK-4 could accelerate GTP hydrolysis by RhoA, thereby allowing contractile ring disassembly and completion of cytokinesis.  相似文献   

15.
Asef is a member of the Dbl-family of guanine nucleotide exchange factors (GEFs) with a proposed specificity for the small GTPase Rac1. Here we investigated the specificity and regulation of Asef by measuring its GEF activity in vitro and observed hardly any activity towards Rac1, Rac2 and Rac3, or RhoA and TC10. In contrast, various purified Asef protein fragments catalyzed the nucleotide exchange reaction of Cdc42. The Cdc42GEF activity of the Dbl homology (DH) domain of Asef was significantly higher in the presence of the pleckstrin homology (PH) domain. Our data strongly suggest that Asef is a canonical Cdc42GEF, which employs its PH domain to efficiently stabilize its autoinhibited state, but also to facilitate nucleotide exchange activity of the DH domain after its activation by upstream signals.  相似文献   

16.
17.
Epithelial intercellular junctions regulate cell-cell contact and mucosal barrier function. Both tight junctions (TJs) and adherens junctions (AJs) are regulated in part by their affiliation with the F-actin cytoskeleton. The cytoskeleton in turn is influenced by Rho family small GTPases such as RhoA, Rac1, and Cdc42, all of which constitute eukaryotic targets for several pathogenic organisms. With a tetracycline-repressible system to achieve regulated expression in Madin-Darby canine kidney (MDCK) epithelial cells, we used dominant-negative (DN) and constitutively active (CA) forms of RhoA, Rac1, and Cdc42 as tools to evaluate the precise contribution of each GTPase to epithelial structure and barrier function. All mutant GTPases induced time-dependent disruptions in epithelial gate function and distinct morphological alterations in apical and basal F-actin pools. TJ proteins occludin, ZO-1, claudin-1, claudin-2, and junctional adhesion molecule (JAM)-1 were dramatically redistributed in the presence of CA RhoA or CA Cdc42, whereas only claudins-1 and -2 were redistributed in response to CA Rac1. DN Rac1 expression also induced selective redistribution of claudins-1 and -2 in addition to JAM-1, whereas DN Cdc42 influenced only claudin-2 and DN RhoA had no effect. AJ protein localization was unaffected by any mutant GTPase, but DN Rac1 induced a reduction in E-cadherin detergent solubility. All CA GTPases increased the detergent solubility of claudins-1 and -2, but CA RhoA alone reduced claudin-2 and ZO-1 partitioning to detergent-insoluble membrane rafts. We conclude that Rho family GTPases regulate epithelial intercellular junctions via distinct morphological and biochemical mechanisms and that perturbations in barrier function reflect any imbalance in active/resting GTPase levels rather than simply loss or gain of GTPase activity. epithelium; tight junctions; paracellular permeability; Madin-Darby canine kidney cells  相似文献   

18.
The integrin family of cell surface receptors mediates cell adhesion to components of the extracellular matrix (ECM). Integrin engagement with the ECM initiates signaling cascades that regulate the organization of the actin-cytoskeleton and changes in gene expression. The Rho subfamily of Ras-related low-molecular-weight GTP-binding proteins and several protein tyrosine kinases have been implicated in mediating various aspects of integrin-dependent alterations in cell homeostasis. Focal adhesion kinase (FAK or pp125FAK) is one of the tyrosine kinases predicted to be a critical component of integrin signaling. To elucidate the mechanisms by which FAK participates in integrin-mediated signaling, we have used expression cloning to identify cDNAs that encode potential FAK-binding proteins. We report here the identification of a cDNA that encodes a new member of the GTPase-activating protein (GAP) family of GTPase regulators. This GAP, termed Graf (for GTPase regulator associated with FAK), binds to the C-terminal domain of FAK in an SH3 domain-dependent manner and preferentially stimulates the GTPase activity of the GTP-binding proteins RhoA and Cdc42. Subcellular localization studies using Graf-transfected chicken embryo cells indicates that Graf colocalizes with actin stress fibers, cortical actin structures, and focal adhesions. Graf mRNA is expressed in a variety of avian tissues and is particularly abundant in embryonic brain and liver. Graf represents the first example of a regulator of the Rho family of small GTP-binding proteins that exhibits binding to a protein tyrosine kinase. We suggest that Graf may function to mediate cross talk between the tyrosine kinases such as FAK and the Rho family GTPase that control steps in integrin-initiated signaling events.  相似文献   

19.
YopE of Yersinia pseudotuberculosis inactivates three members of the small RhoGTPase family (RhoA, Rac1 and Cdc42) in vitro and mutation of a critical arginine abolishes both in vitro GTPase-activating protein (GAP) activity and cytotoxicity towards HeLa cells, and renders the pathogen avirulent in a mouse model. To understand the functional role of YopE, in vivo studies of the GAP activity in infected eukaryotic cells were conducted. Wild-type YopE inactivated Rac1 as early as 5 min after infection whereas RhoA was down regulated about 30 min after infection. No effect of YopE was found on the activation state of Cdc42 in Yersinia-infected cells. Single-amino-acid substitution mutants of YopE revealed two different phenotypes: (i) mutants with significantly lowered in vivo GAP activity towards RhoA and Rac1 displaying full virulence in mice, and (ii) avirulent mutants with wild-type in vivo GAP activity towards RhoA and Rac1. Our results show that Cdc42 is not an in vivo target for YopE and that YopE interacts preferentially with Rac1, and to a lesser extent with RhoA, during in vivo conditions. Surprisingly, we present results suggesting that these interactions are not a prerequisite to establish infection in mice. Finally, we show that avirulent yopE mutants translocate YopE in about sixfold higher amount compared with wild type. This raises the question whether YopE's primary function is to sense the level of translocation rather than being directly involved in downregulation of the host defence.  相似文献   

20.
It has been proposed that the cortical actin filament networks act as a cortical barrier that must be reorganized to enable docking and fusion of the synaptic vesicles with the plasma membranes. We identified a novel neuron-associated developmentally regulated protein, designated as Nadrin. Expression of Nadrin is restricted to neurons and correlates well with the differentiation of neurons. Nadrin has a unique structure; it contains a GTPase-activating protein (GAP) domain for Rho family GTPases, a potential coiled-coil domain, and a succession of 29 glutamines. In vitro the GAP domain activates RhoA, Rac1, and Cdc42 GTPases. Expression of Nadrin in NIH3T3 cells markedly reduced the number of the actin stress fibers and the formation of the ruffled membranes, suggesting that Nadrin regulates actin filament reorganization. In PC12 cells, Nadrin colocalized with synaptotagmin in the neurite termini and also with cortical actin filaments in the subplasmalemmal regions. Expression of Nadrin or its mutant composed of the coiled-coil and GAP domain enhanced Ca(2+)-dependent exocytosis of PC12 cells, but a mutant lacking the GAP domain inhibited exocytosis. These results suggest that Nadrin plays a role in regulating Ca(2+)-dependent exocytosis, most likely by catalyzing GTPase activity of Rho family proteins and by inducing the reorganization of the cortical actin filaments.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号