首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We found recently that beta-lactamase folds in the yeast cytosol to a native-like, catalytically active, and trypsin-resistant conformation, and is thereafter translocated into the ER and secreted to the medium. Previously, it was thought that pre-folded proteins cannot be translocated. Here we have studied in living yeast cells whether beta-lactamase, a tight globule in authentic form, must be unfolded for ER translocation. A beta-lactamase mutant (E166A) binds irreversibly benzylpenicillin via Ser(70) in the active site. We fused E166A to the C terminus of a yeast-derived polypeptide having a post-translational signal peptide. In the presence of benzylpenicillin, the E166A fusion protein was not translocated into the endoplasmic reticulum, whereas translocation of the unmutated variant was not affected. The benzylpenicillin-bound protein adhered to the endoplasmic reticulum membrane, where it prevented translocation of BiP, carboxypeptidase Y, and secretory proteins. Although the 321-amino acid-long N-terminal fusion partner adopts no regular secondary structure and should have no constraints for pore penetration, the benzylpenicillin-bound protein remained fully exposed to the cytosol, maintaining its signal peptide. Our data suggest that the beta-lactamase portion must unfold for translocation, that the unfolding machinery is cytosolic, and that unfolding of the remote C-terminal beta-lactamase is required for initiation of pore penetration.  相似文献   

2.
We have investigated the role of the somatostatin propeptide in mediating intracellular transport and sorting to the regulated secretory pathway. Using a retroviral expression vector, two fusion proteins were expressed in rat pituitary (GH3) cells: a control protein consisting of the beta-lactamase signal peptide fused to chimpanzee alpha-globin (142 amino acids); and a chimera of the somatostatin signal peptide and proregion (82 amino acids) fused to alpha-globin. Control globin was translocated into the endoplasmic reticulum as determined by accurate cleavage of its signal peptide; however, alpha-globin was not secreted but was rapidly and quantitatively degraded intracellularly with a t 1/2 of 4-5 min. Globin degradation was insensitive to chloroquine, a drug which inhibits lysosomal proteases, but was inhibited at 16 degrees C suggesting proteolysis occurred during transport to the cis-Golgi apparatus. In contrast to the control globin, approximately 30% of the somatostatin propeptide-globin fusion protein was transported to the distal elements of the Golgi apparatus where it was endoproteolytically processed. Processing of the chimera occurred in an acidic intracellular compartment since cleavage was inhibited by 25 microM chloroquine. 60% of the transported chimera was cleaved at the Arg-Lys processing site in native prosomatostatin yielding "mature" alpha-globin. Most significantly, approximately 50% of processed alpha-globin was sorted to the regulated pathway and secreted in response to 8-Br-cAMP. We conclude that the somatostatin propeptide mediated transport of alpha-globin from the endoplasmic reticulum to the trans-Golgi network by protecting molecules from degradation and in addition, facilitated packaging of alpha-globin into vesicles whose secretion was stimulated by cAMP.  相似文献   

3.
A temperature-sensitive mutant (ts3) of Newcastle disease virus was physiologically characterized. All major viral structural proteins were synthesized at the permissive (37 degrees C) and nonpermissive (42 degrees C) temperatures, but the fusion (F) glycoprotein was not cleaved at 42 degrees C. In immunocytochemical electron microscopy, the F protein was abundant in the rough endoplasmic reticulum but not in cytoplasmic membrane at 42 degrees C. Noninfectious hemagglutinating virus particles containing all major structural proteins except the F protein were released at 42 degrees C from infected cells. We concluded that the defect in ts3 resides in the intracellular processing of the F protein.  相似文献   

4.
Severe heat stress causes protein denaturation in various cellular compartments. If Saccharomyces cerevisiae cells grown at 24 degrees C are preconditioned at 37 degrees C, proteins denatured by subsequent exposure to 48-50 degrees C can be renatured when the cells are allowed to recover at 24 degrees C. Conformational repair of vital proteins is essential for survival, because gene expression is transiently blocked after the thermal insult. Refolding of cytoplasmic proteins requires the Hsp104 chaperone, and refolding of lumenal endoplasmic reticulum (ER) proteins requires the Hsp70 homologue Lhs1p. We show here that conformational repair of heat-damaged glycoproteins in the ER of living yeast cells required functional Hsp104. A heterologous enzyme and a number of natural yeast proteins, previously translocated and folded in the ER and thereafter denatured by severe heat stress, failed to be refolded to active and secretion-competent structures in the absence of Hsp104 or when an ATP-binding site of Hsp104 was mutated. During recovery at 24 degrees C, the misfolded proteins persisted in the ER, although the secretory apparatus was fully functional. Hsp104 appears to control conformational repair of heat-damaged proteins even beyond the ER membrane.  相似文献   

5.
In many systems transfer between the endoplasmic reticulum and the Golgi apparatus is blocked at temperatures below 16 degrees C. In virus-infected cells in culture, a special membrane compartment is seen to accumulate. Our studies with rat liver show a similar response to temperature both in situ with slices and in vitro with isolated transitional endoplasmic reticulum fractions. With isolated transitional endoplasmic reticulum fractions, when incubated in the presence of nucleoside triphosphate and a cytosol fraction, temperature dependent formation of vesicles occurred with a Q10 of approximately 2 but was apparent only at temperatures greater than 12 degrees C. A similar response was seen in situ at 12 degrees C and 16 degrees C where fusion of transition vesicles with cis Golgi apparatus, but not their formation, was blocked and transition vesicles accumulated in large numbers. At 18 degrees C and below and especially at 8 degrees C and 12 degrees C, the cells responded by accumulating smooth tubular transitional membranes near the cis Golgi apparatus face. With cells and tissue slices at 20 degrees C neither transition vesicles nor the smooth tubular elements accumulated. Those transition vesicles which formed at 37 degrees C were of a greater diameter than those formed at 4 degrees C both in situ and in vitro. The findings show parallel responses between the temperature dependency of transition vesicle formation in vitro and in situ and suggest that a subpopulation of the transitional endoplasmic reticulum may be morphologically and functionally homologous to the 16 degrees C compartment observed in virally-infected cell lines grown at low temperatures.  相似文献   

6.
Saccharomyces cerevisiae cells grown at physiological temperature 24 degrees C require preconditioning at 37 degrees C to acquire tolerance towards brief exposure to 48-50 degrees C. During preconditioning, the cytosolic trehalose content increases remarkably and in the absence of trehalose synthesis yeast cannot acquire thermotolerance. It has been speculated that trehalose protects proteins and membranes under environmental stress conditions, but recently it was shown to assist the Hsp104 chaperone in refolding of heat-damaged proteins in the yeast cytosol. We have demonstrated that heat-denatured proteins residing in the endoplasmic reticulum (ER) also can be refolded once the cells are returned to physiological temperature. Unexpectedly, not only ER chaperones but also the cytosolic Hsp104 chaperone is required for conformational repair events in the ER lumen. Here we show that trehalose facilitates refolding of glycoproteins in the ER after severe heat stress. In the absence of Tps1p, a subunit of trehalose synthase, refolding of heat-damaged glycoproteins to bioactive and secretion-competent forms failed or was retarded. In contrast, membrane traffic operated many hours after severe heat stress even in the absence of the TPS1 gene, demonstrating that trehalose had no role in thermoprotection of membranes engaged in vesicular traffic. However, cytosolic proteins were aggregated and protein synthesis abolished, resulting finally in cell death.  相似文献   

7.
Intoxication by the plasmid-encoded toxin (Pet) of enteroaggregative Escherichia coli requires toxin translocation from the endoplasmic reticulum (ER) to the cytosol. This event involves the quality control system of ER-associated degradation (ERAD), but the molecular details of the process are poorly characterized. For many structurally distinct AB-type toxins, ERAD-mediated translocation is triggered by the spontaneous unfolding of a thermally unstable A chain. Here we show that Pet, a non-AB toxin, engages ERAD by a different mechanism that does not involve thermal unfolding. Circular dichroism and fluorescence spectroscopy measurements demonstrated that Pet maintains most of its secondary and tertiary structural features at 37 degrees C, with significant thermal unfolding only occurring at temperatures >or=50 degrees C. Fluorescence quenching experiments detected the partial solvent exposure of Pet aromatic amino acid residues at 37 degrees C, and a cell-based assay suggested that these changes could activate an ERAD-related event known as the unfolded protein response. We also found that HEp-2 cells were resistant to Pet intoxication when incubated with glycerol, a protein stabilizer. Altogether, our data are consistent with a model in which ERAD activity is triggered by a subtle structural destabilization of Pet and the exposure of Pet hydrophobic residues at physiological temperature. This was further supported by computer modeling analysis, which identified a surface-exposed hydrophobic loop among other accessible nonpolar residues in Pet. From our data it appears that Pet can promote its ERAD-mediated translocation into the cytosol by a distinct mechanism involving partial exposure of hydrophobic residues rather than the substantial unfolding observed for certain AB toxins.  相似文献   

8.
Sorting of soluble ER proteins in yeast.   总被引:64,自引:14,他引:50       下载免费PDF全文
In animal cells, luminal endoplasmic reticulum (ER) proteins are prevented from being secreted by a sorting system that recognizes the C-terminal sequence KDEL. We show that yeast has a similar sorting system, but it recognizes HDEL, rather than KDEL: derivatives of the enzyme invertase that bear the HDEL signal fail to be secreted. An invertase fusion protein that is retained in the cells is partially modified by outer-chain mannosyl transferases, which reside in the Golgi element. This supports the view, based on studies in animal cells, that ER targeting is achieved by continuous retrieval of proteins from the Golgi. We have used an invertase fusion gene to screen for mutants that are defective in this sorting system. Over 60 mutants were obtained; eight of these are alleles of a single gene, erd1. The mutant strains grow normally at 30 degrees C, but instead of retaining the fusion protein in the cells, they secrete it.  相似文献   

9.
Ricin is a heterodimeric plant protein that is potently toxic to mammalian cells. Toxicity results from the catalytic depurination of eukaryotic ribosomes by ricin toxin A chain (RTA) that follows toxin endocytosis to, and translocation across, the endoplasmic reticulum membrane. To ultimately identify proteins required for these later steps in the entry process, it will be useful to express the catalytic subunit within the endoplasmic reticulum of yeast cells in a manner that initially permits cell growth. A subsequent switch in conditions to provoke innate toxin action would permit only those strains containing defects in genes normally essential for toxin retro-translocation, refolding or degradation to survive. As a route to such a screen, several RTA mutants with reduced catalytic activity have previously been isolated. Here we report the use of Saccharomyces cerevisiae to isolate temperature-dependent mutants of endoplasmic reticulum-targeted RTA. Two such toxin mutants with opposing phenotypes were isolated. One mutant RTA (RTAF108L/L151P) allowed the yeast cells that express it to grow at 37 degrees C, whereas the same cells did not grow at 23 degrees C. Both mutations were required for temperature-dependent growth. The second toxin mutant (RTAE177D) allowed cells to grow at 23 degrees C but not at 37 degrees C. Interestingly, RTAE177D has been previously reported to have reduced catalytic activity, but this is the first demonstration of a temperature-sensitive phenotype. To provide a more detailed characterization of these mutants we have investigated their N-glycosylation, stability, catalytic activity and, where appropriate, a three-dimensional structure. The potential utility of these mutants is discussed.  相似文献   

10.
The two transmembrane spike protein subunits of Semliki Forest virus (SFV) form a heterodimeric complex in the rough endoplasmic reticulum. This complex is then transported to the plasma membrane, where spike-nucleocapsid binding and virus budding take place. By using an infectious SFV clone, we have characterized the effects of mutations within the putative fusion peptide of the E1 spike subunit on spike protein dimerization and virus assembly. These mutations were previously demonstrated to block spike protein membrane fusion activity (G91D) or cause an acid shift in the pH threshold of fusion (G91A). During infection of BHK cells at 37 degrees C, virus spike proteins containing either mutation were efficiently produced and transported to the plasma membrane, where they associated with the nucleocapsid. However, the assembly of mutant spike proteins into mature virions was severely impaired and a cleaved soluble fragment of E1 was released into the medium. In contrast, incubation of mutant-infected cells at reduced temperature (28 degrees C) dramatically decreased E1 cleavage and permitted assembly of morphologically normal virus particles. Pulse-labeling studies showed that the critical period for 28 degrees C incubation was during virus assembly, not spike protein synthesis. Thus, mutations in the putative fusion peptide of SFV confer a strong and thermoreversible budding defect. The dimerization of the E1 spike protein subunit with E2 was analyzed by using either cells infected with virus mutants or mutant virus particles assembled at 28 degrees C. The altered-assembly phenotype of the G91D and G91A mutants correlated with decreased stability of the E1-E2 dimer.  相似文献   

11.
In the physiological state, protein synthesis is controlled by calcium homeostasis in the endoplasmic reticulum (ER). Recently, evidence has been presented that dividing cells can adapt to an irreversible inhibition of the ER calcium pump (SERCA), although the mechanisms underlying this adaption have not yet been elucidated. Exposing primary neuronal cells to thapsigargin (Tg, a specific irreversible inhibition of SERCA) resulted in a complete suppression of protein synthesis and disaggregation of polyribosomes indicating inhibition of the initiation step of protein synthesis. Protein synthesis and ribosomal aggregation recovered to 50-70% of control when cells were cultured in medium supplemented with serum for 24 h, but recovery was significantly suppressed in a serum-free medium. Culturing cells in serum-free medium for 24 h already caused an almost 50% suppression of SERCA activity and protein synthesis. SERCA activity did not recover after Tg treatment, and a second exposure of cells to Tg, 24 h after the first, had no effect on protein synthesis. Acute exposure of neurons to Tg induced a depletion of ER calcium stores as indicated by an increase in cytoplasmic calcium activity, but this response was not elicited by the same treatment 24 h later. However, treatments known to deplete ER calcium stores (exposure to the ryanodine receptor agonists caffeine or 2-hydroxycarbazole, or incubating cells in calcium-free medium supplemented with EGTA) caused a second suppression of protein synthesis when applied 24 h after Tg treatment. The results suggest that after Tg exposure, restoration of protein synthesis was induced by recovery of the regulatory link between ER calcium homeostasis and protein synthesis, and not by renewed synthesis of SERCA protein or development of a new regulatory system for the control of protein synthesis. The effect of serum withdrawal on SERCA activity and protein synthesis points to a role of growth factors in maintaining ER calcium homeostasis, and suggests that the ER acts as a mediator of cell damage after interruption of growth factor supplies.  相似文献   

12.
Signal sequence mutants of beta-lactamase   总被引:4,自引:0,他引:4  
The function of the NH2-terminal signal peptide in the translocation of beta-lactamase across the inner membrane of Escherichia coli has been studied by characterization of 15 signal sequence mutants. Three amino acid substitutions (Pro 20 to Ser, Pro 20 to Phe, and Cys 18 to Tyr) in the 23-amino acid signal sequence each cause, to varying degrees, a defect in the proteolytic processing of pre-beta-lactamase, abnormal growth of the host strain, and a severe reduction in the expression of beta-lactamase in vivo but not in vitro. The results are consistent with a model for protein secretion in E. coli that parallels the pathway proposed for translocation across the endoplasmic reticulum in eucaryotic cells.  相似文献   

13.
SEC53, a gene that is required for completion of assembly of proteins in the endoplasmic reticulum in yeast, has been cloned, sequenced, and the product localized by cell fractionation. Complementation of a sec53 mutation is achieved with unique plasmids from genomic or cDNA expression banks. These inserts contain the authentic gene, a cloned copy of which integrates at the sec53 locus. An open reading frame in the insert predicts a 29-kD protein with no significant hydrophobic character. This prediction is confirmed by detection of a 28-kD protein overproduced in cells that carry SEC53 on a multicopy plasmid. To follow Sec53p more directly, a LacZ-SEC53 gene fusion has been constructed which allows the isolation of a hybrid protein for use in production of antibody. With such an antibody, quantitative immune decoration has shown that the sec53-6 mutation decreases the level of Sec53p at 37 degrees C, while levels comparable to wild-type are seen at 24 degrees C. An eightfold overproduction of Sec53p accompanies transformation of cells with a multicopy plasmid containing SEC53. Cell fractionation, performed with conditions that preserve the lumenal content of the endoplasmic reticulum (ER), shows Sec53p highly enriched in the cytosol fraction. We suggest that Sec53p acts indirectly to facilitate assembly in the ER, possibly by interacting with a stable ER component, or by providing a small molecule, other than an oligosaccharide precursor, necessary for the assembly event.  相似文献   

14.
An immunoelectron microscopic study was undertaken to survey the intracellular pathway taken by the integral membrane protein (G-protein) of vesicular stomatitis virus from its site of synthesis in the rough endoplasmic reticulum to the plasma membrane of virus-infected Chinese hamster ovary cells. Intracellular transport of the G-protein was synchronized by using a temperature-sensitive mutant of the virus (0-45). At the nonpermissive temperature (39.8 degrees C), the G-protein is synthesized in the cell infected with 0-45, but does not leave the rough endoplasmic reticulum. Upon shifting the temperature to 32 degrees C, the G-protein moves by stages to the plasma membrane. Ultrathin frozen sections of 0-45-infected cells were prepared and indirectly immunolabeled for the G-protein at different times after the temperature shift. By 3 min, the G-protein was seen at high density in saccules at one face of the Golgi apparatus. No large accumulation of G-protein-containing vesicles were observed near this entry face, but a few 50-70-mm electron-dense vesicular structures labeled for G-protein were observed that might be transfer vesicles between the rough endoplasmic reticulum and the Golgi complex. At blebbed sites on the nuclear envelope at these early times there was a suggestion that the G-protein was concentrated, these sites perhaps serving as some of the transitional elements for subsequent transfer of the G-protein from the rough endoplasmic reticulum to the Golgi complex. By 3 min after its initial asymmetric entry into the Golgi complex, the G-protein was uniformly distributed throughout all the saccules of the complex. At later times, after the G-protein left the Golgi complex and was on its way to the plasma membrane, a new class of G-protein-containing vesicles of approximately 200-nm diameter was observed that are probably involved in this stage of the transport process. These data are discussed, and the further prospects of this experimental approach are assessed.  相似文献   

15.
Microsomal aldehyde dehydrogenase (msALDH) is a tail-anchored protein localized to the cytoplasmic face of the endoplasmic reticulum (ER). The carboxyl-terminal 35 amino acids of msALDH possess ER-targeting sequences in addition to a hydrophobic membrane-spanning domain. To study the mechanism for ER targeting of this protein in vivo, we took advantage of a green fluorescent protein-msALDH fusion protein containing the last 35 amino acids of msALDH [GFPALDH(35)]. When expressed from cDNA in COS-7 cells, the fusion protein was localized to the ER. We then prepared a recombinant fusion protein and injected it into the cytoplasm of COS-7 cells. The injected protein was correctly localized to the ER after a 30-min incubation at 37 degrees C. However, a recombinant fusion protein that contained only the transmembrane domain of msALDH failed to be targeted to the ER. When the assay was carried out at 4 degrees C, the recombinant GFPALDH(35) remained in the cytoplasm. Moreover, incubation of COS-7 cells under conditions of ATP depletion resulted in the cytoplasmic distribution of the injected protein. These results indicate that GFPALDH(35) is targeted to the ER post-translationally via an ATP-dependent pathway. This microinjection system worked effectively in different mammalian cell types, suggesting a common mechanism for ER targeting of the tail-anchored protein.  相似文献   

16.
We have established a versatile method for studying the interaction of the oleosin gene product with oil bodies during oil body biogenesis in plants. Our approach has been to transiently express a green fluorescent protein (GFP)-tagged Arabidopsis oleosin gene fusion in tobacco leaf cells containing bona fide oil bodies and then to monitor oleosin-GFP expression using real-time confocal laser scanning microscopy. We show that normally non-oil-storing tobacco leaf cells are able to synthesize and then transport oleosin-GFP fusion protein to leaf oil bodies. Synthesis and transport of oleosin-GFP fusion protein to oil bodies occurred within the first 6 h posttransformation. Oleosin-GFP fusion protein exclusively associated with the endoplasmic reticulum and was trafficked in a Golgi-independent manner at speeds approaching 0.5 microm sec(-1) along highly dynamic endoplasmic reticulum positioned over essentially static polygonal cortical endoplasmic reticulum. Our data indicate that oil body biogenesis can occur outside of the embryo and that oleosin-GFP can be used to monitor early events in oil body biogenesis in real-time.  相似文献   

17.
We report the reconstitution of the transfer of a membrane glycoprotein (vesicular stomatitis virus glycoprotein, VSV-G protein) from endoplasmic reticulum to Golgi apparatus and its subsequent Man8-9GlcNAc2 to Man5GlcNAc2 processing in a completely cell-free system. The acceptor was Golgi apparatus from rat liver immobilized on nitrocellulose. The endoplasmic reticulum donor was from homogenates of VSV-G-infected BHK cells. Nucleoside triphosphate plus cytosol-dependent transfer and processing of radiolabeled VSV-G protein was observed with donor from BHK cells infected at 37 degrees C with wild-type VSV or at the permissive temperature of 34 degrees C with the ts045 mutant. With Golgi apparatus as acceptor, specific transfer at 37 degrees C in the presence of nucleoside triphosphate was eightfold that at 4 degrees C or in the absence of ATP. About 40% of the VSV-G protein transferred was processed to the Man5GlcNAc2 form. Processing was specific for cis Golgi apparatus fractions purified by preparative free-flow electrophoresis. Fractions derived from the trans Golgi apparatus were inactive in processing. With the ts045 temperature-sensitive mutant, transfer and processing were much reduced even in the complete system when microsomes were from cells infected with mutant virus and incubated at the restrictive temperature of 39.5 degrees C but were able to proceed at the permissive temperature of 34 degrees C. Thus, Man8-9GlcNAc2 to Man5GlcNAc2 processing of VSV-G protein occurs following transfer in a completely cell-free system using immobilized intact Golgi apparatus or cis Golgi apparatus cisternae as the acceptor and shows temperature sensitivity, donor specificity, requirement for ATP, and response to inhibitors similar to those exhibited by transfer and processing of VSV-G protein in vivo.  相似文献   

18.
Suzuki A  Endo T 《Gene》2002,284(1-2):31-40
We have cloned a cDNA encoding a novel protein referred to as ermelin from mouse C2 skeletal muscle cells. This protein contained six hydrophobic amino acid stretches corresponding to transmembrane domains, two histidine-rich sequences, and a sequence homologous to the fusion peptides of certain fusion proteins. Ermelin also contained a novel modular sequence, designated as HELP domain, which was highly conserved among eukaryotes, from yeast to higher plants and animals. All these HELP domain-containing proteins, including mouse KE4, Drosophila Catsup, and Arabidopsis IAR1, possessed multipass transmembrane domains and histidine-rich sequences. Ermelin was predominantly expressed in brain and testis, and induced during neuronal differentiation of N1E-115 neuroblastoma cells but downregulated during myogenic differentiation of C2 cells. The mRNA was accumulated in hippocampus and cerebellum of brain and central areas of seminiferous tubules in testis. Epitope-tagging experiments located ermelin and KE4 to a network structure throughout the cytoplasm. Staining with the fluorescent dye DiOC(6)(3) identified this structure as the endoplasmic reticulum. These results suggest that at least some, if not all, of the HELP domain-containing proteins are multipass endoplasmic reticulum membrane proteins with functions conserved among eukaryotes.  相似文献   

19.
Regulation of organelle membrane fusion by Pkc1p   总被引:3,自引:1,他引:2  
Membrane fusion relies on complex protein machineries, which act in sequence to catalyze the fusion of bilayers. The fusion of endoplasmic reticulum membranes requires the t-SNARE Ufe1p, and the AAA ATPase p97/Cdc48p. While the mechanisms of membrane fusion events have begun to emerge, little is known about how this fusion process is regulated. We provide first evidence that endoplasmic reticulum membrane fusion in yeast is regulated by the action of protein kinase C. Specifically, Pkc1p kinase activity is needed to protect the fusion machinery from ubiquitin-mediated degradation .  相似文献   

20.
Permissive and restrictive phenotypes of two secretory mutants of Saccharomyces cerevisiae, sec 1 and sec 18, were studied by freeze-fracture technique. The sec 1 mutant, in addition to accumulating secretory vesicles, was characterized by a disappearance of the plasma membrane invaginations and by an aggregation of intra-membrane particles in vacuolar membranes. A prolonged incubation of the cells at 37 degrees C led to pathological fusion of some vesicles with the plasma membrane. After the cells were transferred back to the permissive temperature the invaginations reappeared rapidly while the accumulated vesicles disappeared only after budding had been resumed. The sec 18 mutant, apart from having distended endoplasmic reticulum membranes, also lost the plasma membrane invaginations at 37 degrees C and regained them at 24 degrees C. The described ultrastructural changes are typical for the restrictive phenotypes and represent further manifestations of the pleiotropic effect of the respective sec mutations.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号