首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 18 毫秒
1.
When nitrate was added to anaerobic resting cultures of Escherichia coli, two different profiles of NAD(P)H fluorescence were observed. E. coli is known to reduce nitrate to ammonia via nitrite as an anaerobic respiration mechanism. The profile showing single-stage response corresponded to situations where the nitrite formed from nitrate reduction was immediately converted to ammonia. The other profile showing two-stage response resulted from a much slower reduction of nitrite than nitrate. Nitrite thus accumulated during the first stage and was gradually reduced to ammonia when nitrate was depleted, i.e. in the second stage. An undamped oscillation of NAD(P)H fluorescence was also observed in the cultures showing the two-stage response. The oscillation was always detected during the second stage and seldom during either the first stage or the recovered anaerobic stage (after complete nitrite reduction). It never occurred in the cultures showing the single-stage response. The period of oscillation ranged from 1 to 5min. The possibility of the common glycolytic oscillation being responsible is low, as judged from the current knowledge of the nitrate/nitrite reductases of E. coli and the observations in this study. This is the first report on the occurrence of oscillatory NAD(P)H fluorescence in E. coli.  相似文献   

2.
Defined as the transition conditions in which the organism(s) performs simultaneous aerobic and anaerobic respiration or fermentation, microaerobic conditions are commonly present in the nature. Microaerobic metabolism of microorganisms is however poorly characterized. Being extremely sensitive to the change in cellular electron-accepting mechanisms, NAD(P)H fluorescence provides a useful ways for online monitoring of microaerobic metabolism. Its application to studies of microbial nitrate respiration and particularly, denitrification of Pseudomonas aeruginosa is reviewed here, centering on four topics: (1) online monitoring of anaerobic nitrate respiration by NAD(P)H fluorescence, (2) effects of denitrification on P. aeruginosa phenotypes, (3) microaerobic denitrification of P. aeruginosa in continuous culture, and (4) correlation between NAD(P)H fluorescence and denitrification-to-respiration ratio. Online NAD(P)H fluorescence is shown to sensitively detect the changes of cellular metabolism. For example, it revealed the intermediate nitrite accumulation in C-limited Escherichia coli performing anaerobic nitrate respiration via dissimilative ammonification, by exhibiting two-stage profiles with intriguing fluorescence oscillation. When applied to continuous culture studies of P. aeruginosa (ATCC 9027), the online fluorescence helped to identify that the bacterium conducted denitrification even at DO > 1 mg/l. In addition, the fluorescence profile showed a unique correlation with the fraction of electrons accepted by denitrification (out of all the electrons accepted by aerobic and anaerobic respiration). The applicability of online NAD(P)H fluorescence in monitoring and quantitatively describing the sensitive microaerobic state of microorganisms is clearly demonstrated.  相似文献   

3.

Defined as the transition conditions in which the organism(s) performs simultaneous aerobic and anaerobic respiration or fermentation, microaerobic conditions are commonly present in the nature. Microaerobic metabolism of microorganisms is however poorly characterized. Being extremely sensitive to the change in cellular electron-accepting mechanisms, NAD(P)H fluorescence provides a useful ways for online monitoring of microaerobic metabolism. Its application to studies of microbial nitrate respiration and particularly, denitrification of Pseudomonas aeruginosa is reviewed here, centering on four topics: (1) online monitoring of anaerobic nitrate respiration by NAD(P)H fluorescence, (2) effects of denitrification on P. aeruginosa phenotypes, (3) microaerobic denitrification of P. aeruginosa in continuous culture, and (4) correlation between NAD(P)H fluorescence and denitrification-to-respiration ratio. Online NAD(P)H fluorescence is shown to sensitively detect the changes of cellular metabolism. For example, it revealed the intermediate nitrite accumulation in C-limited Escherichia coli performing anaerobic nitrate respiration via dissimilative ammonification, by exhibiting two-stage profiles with intriguing fluorescence oscillation. When applied to continuous culture studies of P. aeruginosa (ATCC 9027), the online fluorescence helped to identify that the bacterium conducted denitrification even at DO > 1 mg/l. In addition, the fluorescence profile showed a unique correlation with the fraction of electrons accepted by denitrification (out of all the electrons accepted by aerobic and anaerobic respiration). The applicability of online NAD(P)H fluorescence in monitoring and quantitatively describing the sensitive microaerobic state of microorganisms is clearly demonstrated.

  相似文献   

4.
Proton translocation coupled to the reduction of nitrite was studied in anaerobically grown Escherichia coli. Extrusion of protons occurred by adding nitrite to an anaerobic suspension of wild-type cells. This extrusion was sensitive to a proton conductor, 3,5-di-tert-butyl-4-hydroxybenzylidenemalononitrile (SF6847) or carbonylcyanide-p-trifluoromethoxyphenylhydrazone. Dicyclohexylcarbodiimide, an inhibitor of H+-ATPase, prevented the proton extrusion linked to nitrite reduction, whereas this reagent had no effect on respiratory nitrate reduction to nitrite. Proton extrusion was undetectable when nitrite was added to a suspension of mutant cells defective in H+-ATPase. These results indicate that the proton extrusion associated with nitrite reduction to ammonia is not by redox pumps but by H+-ATPase. From the results obtained by the measurement of proton extrusion in nitrite reductase-deficient mutants, NADH-nitrite reductase system is suggested to involve the proton extrusion in whole cells of E. coli.  相似文献   

5.
Abstract Five different c -type cytochromes have been detected during anaerobic growth of various Escherichia coli strains in different media. None of these cytochromes was detectable in aerobically-grown cultures. Only a single, 43 kDa cytochrome was synthesized in response to the presence of trimethylamine-N-oxide: synthesis of this cytochrome was unaffected by the presence of nitrate or nitrite, was repressed by oxygen, but was dependent upon a funtional tor operon located at minute 22 (coordinate 1070 kb) on the E. coli chromosome. The other four cytochromes, masses 16, 18, 24 and 50 kDa, were induced by nitrite coordinately with formate-dependent nitrite reductase activity, but repressed by oxygen and nitrate. As only the 18 kDa and 50 kDa cytochromes are encoded by the nrf operon located at minute 92 (coordinate 4366 kb), there must be other loci, possibly essential for formate-dependent nitrite reduction, encoding the 16 kDa and 24 kDa cytochromes. No other c -type cytochrome was detected under any growth condition tested.  相似文献   

6.
narK mutants of Escherichia coli produce wild-type levels of nitrate reductase but, unlike the wild-type strain, do not accumulate nitrite when grown anaerobically on a glucose-nitrate medium. Comparison of the rates of nitrate and nitrite metabolism in cultures growing anaerobically on glucose-nitrate medium revealed that a narK mutant reduced nitrate at a rate only slightly slower than that in the NarK+ parental strain. Although the specific activities of nitrate reductase and nitrite reductase were similar in the two strains, the parental strain accumulated nitrite in the medium in almost stoichiometric amounts before it was further reduced, while the narK mutant did not accumulate nitrite in the medium but apparently reduced it as rapidly as it was formed. Under conditions in which nitrite reductase was not produced, the narK mutant excreted the nitrite formed from nitrate into the medium; however, the rate of reduction of nitrate to nitrite was significantly slower than that of the parental strain or that which occurred when nitrite reductase was present. These results demonstrate that E. coli is capable of taking up nitrate and excreting nitrite in the absence of a functional NarK protein; however, in growing cells, a functional NarK promotes a more rapid rate of anaerobic nitrate reduction and the continuous excretion of the nitrite formed. Based on the kinetics of nitrate reduction and of nitrite reduction and excretion in growing cultures and in washed cell suspensions, it is proposed that the narK gene encodes a nitrate/nitrite antiporter which facilitates anaerobic nitrate respiration by coupling the excretion of nitrite to nitrate uptake. The failure of nitrate to suppress the reduction of trimethylamine N-oxide in narK mutants was not due to a change in the level of trimethylamine N-oxide reductase but apparently resulted from a relative decrease in the rate of anaerobic nitrate reduction caused by the loss of the antiporter system.  相似文献   

7.
Abstract: A total of 28 nitrate-reducing bacteria were isolated from marine sediment (Mediterranean coast of France) in which dissimilatory reduction of nitrate to ammonium (DRNA) was estimated as 80% of the overall nitrate consumption. Thirteen isolates were considered as denitrifiers and ten as dissimilatory ammonium producers. 15N ammonium production from 15N nitrate by an Enterobacter sp. and a Vibrio sp., the predominant bacteria involved in nitrate ammonification in marine sediment, was characterized in pure culture studies. For both strains studied, nitrate-limited culture (1 mM) produced ammonium as the main product of nitrate reduction (> 90%) while in the presence of 10 mM nitrate, nitrite was accumulated in the spent media and ammonia production was less efficient. Concomitantly with the dissimilation of nitrate to nitrite and ammonium the molar yield of growth on glucose increased. Metabolic products of glucose were investigated under different growth conditions. Under anaerobic conditions without nitrate, ethanol was formed as the main product; in the presence of nitrate, ethanol disappeared and acetate increased concomitantly with an increased amount of ammonium. These results indicate that nitrite reduction to ammonium allows NAD regeneration and ATP synthesis through acetate formation, instead of ethanol formation which was favoured in the absence of nitrate.  相似文献   

8.
The biological nitrogen cycle involves step-wise reduction of nitrogen oxides to ammonium salts and oxidation of ammonia back to nitrites and nitrates by plants and bacteria. Neither process has been thought to have relevance to mammalian physiology; however in recent years the salivary bacterial reduction of nitrate to nitrite has been recognized as an important metabolic conversion in humans. Several enteric bacteria have also shown the ability of catalytic reduction of nitrate to ammonia via nitrite during dissimilatory respiration; however, the importance of this pathway in bacterial species colonizing the human intestine has been little studied. We measured nitrite, nitric oxide (NO) and ammonia formation in cultures of Escherichia coli, Lactobacillus and Bifidobacterium species grown at different sodium nitrate concentrations and oxygen levels. We found that the presence of 5 mM nitrate provided a growth benefit and induced both nitrite and ammonia generation in E.coli and L.plantarum bacteria grown at oxygen concentrations compatible with the content in the gastrointestinal tract. Nitrite and ammonia accumulated in the growth medium when at least 2.5 mM nitrate was present. Time-course curves suggest that nitrate is first converted to nitrite and subsequently to ammonia. Strains of L.rhamnosus, L.acidophilus and B.longum infantis grown with nitrate produced minor changes in nitrite or ammonia levels in the cultures. However, when supplied with exogenous nitrite, NO gas was readily produced independently of added nitrate. Bacterial production of lactic acid causes medium acidification that in turn generates NO by non-enzymatic nitrite reduction. In contrast, nitrite was converted to NO by E.coli cultures even at neutral pH. We suggest that the bacterial nitrate reduction to ammonia, as well as the related NO formation in the gut, could be an important aspect of the overall mammalian nitrate/nitrite/NO metabolism and is yet another way in which the microbiome links diet and health.  相似文献   

9.
10.
At dissolved oxygen tensions of 15 mmHg (2 kPa) and below, nitrate-limited continuous cultures of Klebsiella K312 synthesized nitrate reductase (NR) and nitrite reductase (NiR) and excreted ammonia. Under anaerobic conditions over 60% of the nitrate-nitrogen utilized was excreted as ammonia. In contrast, carbon-limited cultures excreted nitrite at dissolved oxygen tensions of 15 mmHg or below and synthesized NR but not NiR. Ammonia repressed neither NR nor NiR synthesis. These observations indicate that below a critical oxygen tension of 15 mmHg Klebsiella K312 utilizes oxygen and nitrate as electron acceptors. This oxygen tension correlates well with the critical oxygen tension observed for a change from oxidative to fermentative metabolism in cultures of Klebsiella aerogenes. The product of dissimilatory nitrate reduction is ammonia in nitrate-limited cultures but principally nitrite in carbon-limited (nitrate excess) cultures.  相似文献   

11.
On-line NAD(P)H fluorescence and culture redox potential (CRP) measurements were utilized to investigate the role of Vitreoscilla hemoglobin (VHb) in perturbing oxygen metabolism of microaerobic Escherichia coli Batch cultures of a VHb-synthesizing E. coli strain and the iso-genic control under fully aerated conditions were subject to several high/low oxygen transitions, and the NAD(P)H fluorescence and CRP were monitored during these passages. The presence of VHb decreased the rate of net NAD(P)H generation by 2.4-fold under diminishing oxygen tension. In the absence of aeration, the strain producing VHb maintained a steady NAD(P)H level 1.8-fold less than that of the control, indicating that the presence of VHb keeps E. coli in a more oxidized state under oxygen-limited conditions. Estimated from CRP, the oxygen uptake rates near anoxia were 25% higher for cells with VHb than those without. These results suggest that VHb-expressing cells have a higher microaerobic electron transport chain turnover rate. To examine how NAD(P)H utilization of VHb-expressing cells responds to rapidly changing oxygen tension, which is common in large-scale fermentations, we pulsed air intermittently into a cell suspension and recorded the fluorescence response to the imposed dissolved oxygen (DO) fluctuation. Relative to the control, cells containing VHb had a sluggish fluorescence response to sudden changes of oxygen tension, suggesting that VHb buffers intracellular redox perturbations caused by extracellular DO fluctuations.(c) John Wiley & Sons, Inc.  相似文献   

12.
Periplasmic nitrate reductase (NapABC enzyme) has been characterized from a variety of proteobacteria, especially Paracoccus pantotrophus. Whole-genome sequencing of Escherichia coli revealed the structural genes napFDAGHBC, which encode NapABC enzyme and associated electron transfer components. E. coli also expresses two membrane-bound proton-translocating nitrate reductases, encoded by the narGHJI and narZYWV operons. We measured reduced viologen-dependent nitrate reductase activity in a series of strains with combinations of nar and nap null alleles. The napF operon-encoded nitrate reductase activity was not sensitive to azide, as shown previously for the P. pantotrophus NapA enzyme. A strain carrying null alleles of narG and narZ grew exponentially on glycerol with nitrate as the respiratory oxidant (anaerobic respiration), whereas a strain also carrying a null allele of napA did not. By contrast, the presence of napA+ had no influence on the more rapid growth of narG+ strains. These results indicate that periplasmic nitrate reductase, like fumarate reductase, can function in anaerobic respiration but does not constitute a site for generating proton motive force. The time course of phi(napF-lacZ) expression during growth in batch culture displayed a complex pattern in response to the dynamic nitrate/nitrite ratio. Our results are consistent with the observation that phi(napF-lacZ) is expressed preferentially at relatively low nitrate concentrations in continuous cultures (H. Wang, C.-P. Tseng, and R. P. Gunsalus, J. Bacteriol. 181:5303-5308, 1999). This finding and other considerations support the hypothesis that NapABC enzyme may function in E. coli when low nitrate concentrations limit the bioenergetic efficiency of nitrate respiration via NarGHI enzyme.  相似文献   

13.
We isolated Mu dI1734 insertion mutants of Klebsiella pneumoniae that were unable to assimilate nitrate or nitrite as the sole nitrogen source during aerobic growth (Nas- phenotype). The mutants were not altered in respiratory (anaerobic) nitrate and nitrite reduction or in general nitrogen control. The mutations were linked and thus defined a single locus (nas) containing genes required for nitrate assimilation. beta-Galactosidase synthesis in nas+/phi(nas-lacZ) merodiploid strains was induced by nitrate or nitrite and was inhibited by exogenous ammonia or by anaerobiosis. beta-Galactosidase synthesis in phi(nas-lacZ) haploid (Nas-) strains was nearly constitutive during nitrogen-limited aerobic growth and uninducible during anaerobic growth. A general nitrogen control regulatory mutation (ntrB4) allowed nitrate induction of phi(nas-lacZ) expression during anaerobic growth. This and other results suggest that the apparent anaerobic inhibition of phi(nas-lacZ) expression was due to general nitrogen control, exerted in response to ammonia generated by anaerobic (respiratory) nitrate reduction.  相似文献   

14.
A fiber-optic probe was interfaced to an analytical spectrofluorophotometeru and used to measure NAD(P)H fluorescence of hybridoma cells in a bioreactor. NAD(P)H fluorescence was found to qualitatively represent metabolic state during various induced metabolic transitions. NAD(P)H fluorescence increased immediately following aerobic-anaerobic transitions, and decreased immediately upon transition back to aerobic metabolism. Pulsing of glucose to glucose-depleted cultures caused NAD(P)H fluorescence to first increase immediately after the pulse, and then decrease gradually before reaching a constant level. Pulsing of glutamine to glutamine-depleted cultures resulted in a gradual increase in NAD(P)H fluorescence which lagged a simultaneous increase in oxygen uptake. ATP production and oxygen uptake also varied with metabolic state. The decrease in oxidative phosphorylation following transition from aerobic to anaerobic metabolism was found to be only partially compensated by the concomitant increase in substrate-level phosphorylation, as shown by decreases of 35-52% in calculated total specific ATP production rates. The specific oxygen uptake rate decreased by 6-38% following glucose pulses of between 0.2 and 0.5 g/L, respectively, and by 50% following glutamine depletion. Subsequent pulsing of glutamine after depletion caused oxygen uptake to increase by 50%.  相似文献   

15.
Two polytopic membrane proteins, NarK and NarU, are assumed to transport nitrite out of the Escherichia coli cytoplasm, but how nitrate enters enteric bacteria is unknown. We report the construction and use of four isogenic strains that lack nitrate reductase Z and the periplasmic nitrate reductase, but express all combinations of narK and narU. The active site of the only functional nitrate reductase, nitrate reductase A, is located in the cytoplasm, so nitrate reduction by these four strains is totally dependent upon a mechanism for importing nitrate. These strains were exploited to determine the roles of NarK and NarU in both nitrate and nitrite transport. Single mutants that lack either NarK or NarU were competent for nitrate-dependent anaerobic growth on a non-fermentable carbon source, glycerol. They transported and reduced nitrate almost as rapidly as the parental strain. In contrast, the narK-narU double mutant was defective in nitrate-dependent growth unless nitrate transport was facilitated by the nitrate ionophore, reduced benzyl viologen (BV). It was also unable to catalyse nitrate reduction in the presence of physiological electron donors. Synthesis of active nitrate reductase A and the cytoplasmic, NADH-dependent nitrite reductase were unaffected by the narK and narU mutations. The rate of nitrite reduction catalysed by the cytoplasmic, NADH-dependent nitrite reductase by the double mutant was almost as rapid as that of the NarK+-NarU+ strain, indicating that there is a mechanism for nitrite uptake by E. coli that is in-dependent of either NarK or NarU. The nir operon encodes a soluble, cytoplasmic nitrite reductase that catalyses NADH-dependent reduction of nitrite to ammonia. One additional component that contributes to nitrite uptake was shown to be NirC, the hydrophobic product of the third gene of the nir operon, which is predicted to be a polytopic membrane protein with six membrane-spanning helices. Deletion of both NarK and NirC decreased nitrite uptake and reduction to a basal rate that was fully restored by a single chromosomal copy of either narK or nirC. A multicopy plasmid encoding NarU complemented a narK mutation for nitrite excretion, but not for nitrite uptake. We conclude that, in contrast to NirC, which transports only nitrite, NarK and NarU provide alternative mechanisms for both nitrate and nitrite transport. However, NarU might selectively promote nitrite ex-cretion, not nitrite uptake.  相似文献   

16.
真菌异化硝酸盐还原机理的研究进展   总被引:1,自引:0,他引:1  
真菌异化硝酸盐还原途径的发现打破了反硝化仅存在于原核细胞这一传统观念。真菌异化硝酸盐还原途径是在环境中氧供给受限的情况下发生的, 包括反硝化和氨的发酵。硝酸盐能诱导产生反硝化作用的酶, 其中, 硝酸盐还原酶与亚硝酸还原酶位于线粒体中, 它们所催化的酶促反应能偶联呼吸链ATP合成酶合成ATP, 同时产生NO。与参与反硝化作用前两个酶不同, 真菌NO还原酶能以NADH为直接电子供体将NO还原为N2O, 在NAD+的再生和自由基NO的脱毒中起着重要作用。氨发酵则将硝酸盐还原成NH4+, 同时偶联乙酸的生成和底物水平磷酸化。此文从参与该过程的关键酶、关键酶的表达调节、真菌与细菌异化硝酸盐还原的比较等角度综述了真菌异化硝酸盐还原的最新研究进展。  相似文献   

17.
Proton translocation coupled to dimethyl sulfoxide (DMSO) reduction was examined in Escherichia coli HB101 grown anaerobically on glycerol and DMSO. Rapid acidification of the medium was observed when an anaerobic suspension of cells, preincubated with glycerol, was pulsed with DMSO, methionine sulfoxide, nitrate, or trimethylamine N-oxide. The DMSO-induced acidification was sensitive to the uncoupler carbonyl cyanide p-trifluoromethoxyphenylhydrazone (60 microM) and was inhibited by the quinone analog 2-n-heptyl-4-hydroxy-quinoline-N-oxide (5.6 microM). Neither sodium azide nor potassium cyanide inhibited the DMSO response. An apparent----H+/2e- ratio of 2.9 was obtained for DMSO reduction with glycerol as the reductant. Formate and H2(g), but not lactate, could serve as alternate electron donors for DMSO reduction. Cells grown anaerobically on glycerol and fumarate displayed a similar response to pulses of DMSO, methionine sulfoxide, nitrate, and trimethylamine N-oxide with either glycerol or H2(g) as the electron donor. However, fumarate pulses did not result in acidification of the suspension medium. Proton translocation coupled to DMSO reduction was also demonstrated in membrane vesicles by fluorescence quenching. The addition of DMSO to hydrogen-saturated everted membrane vesicles resulted in a carbonyl cyanide p-trifluoromethoxyphenyl-hydrazone-sensitive fluorescence quenching of quinacrine dihydrochloride. The data indicate that reduction of DMSO by E. coli is catalyzed by an anaerobic electron transport chain, resulting in the formation of a proton motive force.  相似文献   

18.
Abstract Nitrate reduction to ammonia by marine Vibrio species was studied in batch and continuous culture. In pH-controlled batch cultures (pH 7.4; 50 mM glucose, 20 mM KNO3), the nitrate consumed accumulated to more than 90% as nitrite. Under these conditions, the nitrite reductase (NO2→ NH3) was severely repressed. In pH-controlled continuous cultures of V. alginolyticus with glucose or glycerol as substrates ( D = 0.045 h−1) and limiting N-source (nitrate or nitrite), nitrite reductase was significantly derepressed with cellular activities in the range of 0.7–1.2 μmol min−1 (mg protein)−1. The enzyme was purified close to electrophoretic homogeneity with catalytic activity concentrations of about 1800 nkat/mg protein. It catalyzed the reduction of nitrite to ammonia with dithionite-reduced viologen dyes or flavins as electron donors, had an M r of about 50 000 (determined by gel filtration) and contained c-type heme groups (probably 4–6 per molecule).  相似文献   

19.
The E. coli cell method for nitrate measurement consists of two-steps: nitrate reduction by the E. coli cell usually under anaerobic conditions and subsequently nitrite measurement with the Griess reaction. It was found that the E. coli DSM 498k wildtype cell can reduce nitrate to nitrite under aerobic conditions. Therefore, the E. coli method for nitrate measurement was adapted to be performed under aerobic conditions in a microtiter plate. The adapted method is simpler than the original E. coli method and other nitrate methods such as those with inorganic reductants and with purified enzymes. Furthermore, it was found that for the Griess reaction the pH values of samples after addition of the Griess reagent A should be lower than 1.8 for a stable absorbance at 540 nm to be reached. It is important to add the two Griess reagents separately and to read the absorbance twice consecutively in a microtiter plate. The adapted E. coli method was successfully applied to measure the traces of nitrate in MRS and other medium components by measuring the standard curve of a dilution of each individual medium component. It was found that many organic medium components contain traces of nitrate, while none of them contain detectable nitrite. Among these, the extract of meat and yeast extract contain relatively high amounts of nitrate: 217 mg N/kg and 99 mg N/kg respectively. MRS broth contains nitrate from 0.3 to 0.6 mg N/l depending on the batch numbers of the product. The adapted E. coli can also be used for nitrate measurement in other matrices.  相似文献   

20.
Escherichia coli grown anaerobically on nitrate exhibited the same transport barrier to reduction of chlorate, relative to nitrate, as that exhibited by Paracoccus denitrificans. This establishes that the nitrate binding site of nitrate reductase (EC 1.7.99.4) in E. coli must also lie on the cell side of the nitrate transporter which is associated with the plasma membrane. Because nitrate reductase is membrane bound, the nitrate binding site is thus located on the inner aspect of the membrane. Nitrate pulse studies on E. coli in the absence of valinomycin showed a small transient alkalinization (leads to H+/NO3- congruent to --0.07) which did not occur with oxygen pulses. By analogy with P. denitrificans, the alkaline transient is interpreted to arise from proton-linked nitrate uptake which is closely followed by nitrite efflux. The result is consistent with internal reduction of nitrate, whereas external reduction would be expected to give leads to H+/NO3-ratios approaching --2.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号