首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
DEAD‐box RNA helicases are involved in many aspects of RNA metabolism and in diverse biological processes in plants. Arabidopsis thaliana mutants of two DEAD‐box RNA helicases, STRESS RESPONSE SUPPRESSOR1 (STRS1) and STRS2 were previously shown to exhibit tolerance to abiotic stresses and up‐regulated stress‐responsive gene expression. Here, we show that Arabidopsis STRS‐overexpressing lines displayed a less tolerant phenotype and reduced expression of stress‐induced genes confirming the STRSs as attenuators of Arabidopsis stress responses. GFP–STRS fusion proteins exhibited localization to the nucleolus, nucleoplasm and chromocenters and exhibited relocalization in response to abscisic acid (ABA) treatment and various stresses. This relocalization was reversed when stress treatments were removed. The STRS proteins displayed mis‐localization in specific gene‐silencing mutants and exhibited RNA‐dependent ATPase and RNA‐unwinding activities. In particular, STRS2 showed mis‐localization in three out of four mutants of the RNA‐directed DNA methylation (RdDM) pathway while STRS1 was mis‐localized in the hd2c mutant that is defective in histone deacetylase activity. Furthermore, heterochromatic RdDM target loci displayed reduced DNA methylation and increased expression in the strs mutants. Taken together, our findings suggest that the STRS proteins are involved in epigenetic silencing of gene expression to bring about suppression of the Arabidopsis stress response.  相似文献   

2.
3.
4.
5.
AtPP2CG1 (Arabidopsis thaliana protein phosphatase 2C G Group 1) was predicted as an abiotic stress candidate gene by bioinformatic analysis in our previous study. The gene encodes a putative protein phosphatase 2C that belongs to Group G of PP2C. There is no report of Group G genes involved in abiotic stress so far. Real-time RT-PCR analysis showed that AtPP2CG1 expression was induced by salt, drought, and abscisic acid (ABA) treatment. The expression levels of AtPP2CG1 in the ABA synthesis-deficient mutant abi2-3 were much lower than that in WT plants under salt stress suggesting that the expression of AtPP2CG1 acts in an ABA-dependent manner. Over-expression of AtPP2CG1 led to enhanced salt tolerance, whereas its loss of function caused decreased salt tolerance. These results indicate that AtPP2CG1 positively regulates salt stress in an ABA-dependent manner. Under salt treatment, AtPP2CG1 up-regulated the expression levels of stress-responsive genes, including RD29A, RD29B, DREB2A and KIN1. GUS activity was detected in roots, leaves, stems, flower, and trichomes of AtPP2CG1 promoter-GUS transgenic plants. AtPP2CG1 protein was localized in nucleus and cytoplasm via AtPP2CG1:eGFP and YFP:AtPP2CG1 fusion approaches.  相似文献   

6.
7.
8.
9.
10.
11.
To uncover new pathways involved in low-temperature signal transduction, we screened for mutants altered in cold-induced expression of RCI2A, an Arabidopsis gene that is not a member of the CBF/DREB1 regulon and is induced not only by low temperature but also by abscisic acid (ABA), dehydration (DH) and NaCl. This was accomplished by generating a line of Arabidopsis carrying a transgene consisting of the RCI2A promoter fused to the firefly luciferase coding sequence. A number of mutants showing low or high RCI2A expression in response to low temperature were identified. These mutants also displayed deregulated RCI2A expression in response to ABA, DH or NaCl. Interestingly, however, they were not altered in stress-induced expression of RD29A, a CBF/DREB1-target gene, suggesting that the mutations affect signaling intermediates of CBF/DREB1-independent regulatory pathways. Several mutants showed alterations in their tolerance to freezing, DH or salt stress, as well as in their ABA sensitivity, which indicates that the signaling intermediates defined by the corresponding mutations play an important role in Arabidopsis tolerance to abiotic stresses. Based on the mutants identified, we discuss the involvement of CBF/DREB1-independent pathways in modulating stress signaling.  相似文献   

12.
Xiong L  Ishitani M  Lee H  Zhu JK 《The Plant cell》2001,13(9):2063-2083
To understand low temperature and osmotic stress signaling in plants, we isolated and characterized two allelic Arabidopsis mutants, los5-1 and los5-2, which are impaired in gene induction by cold and osmotic stresses. Expression of RD29A-LUC (the firefly luciferase reporter gene under the control of the stress-responsive RD29A promoter) in response to cold and salt/drought is reduced in the los5 mutants, but the response to abscisic acid (ABA) remains unaltered. RNA gel blot analysis indicates that the los5 mutation reduces the induction of several stress-responsive genes by cold and severely diminishes or even completely blocks the induction of RD29A, COR15, COR47, RD22, and P5CS by osmotic stresses. los5 mutant plants are compromised in their tolerance to freezing, salt, or drought stress. los5 plants are ABA deficient, as indicated by increased transpirational water loss and reduced accumulation of ABA under drought stress in the mutant. A comparison with another ABA-deficient mutant, aba1, reveals that the impaired low-temperature gene regulation is specific to the los5 mutation. Genetic tests suggest that los5 is allelic to aba3. Map-based cloning reveals that LOS5/ABA3 encodes a molybdenum cofactor (MoCo) sulfurase. MoCo sulfurase catalyzes the generation of the sulfurylated form of MoCo, a cofactor required by aldehyde oxidase that functions in the last step of ABA biosynthesis in plants. The LOS5/ABA3 gene is expressed ubiquitously in different plant parts, and the expression level increases in response to drought, salt, or ABA treatment. Our results show that LOS5/ABA3 is a key regulator of ABA biosynthesis, stress-responsive gene expression, and stress tolerance.  相似文献   

13.
Wang Y  Liu C  Li K  Sun F  Hu H  Li X  Zhao Y  Han C  Zhang W  Duan Y  Liu M  Li X 《Plant molecular biology》2007,64(6):633-644
The nuclear protein ETHYLENE INSENSITIVE2 (EIN2) is a central component of the ethylene signal transduction pathway in plants, and plays an important role in mediating cross-links between several hormone response pathways, including abscisic acid (ABA). ABA mediates stress responses in plants, but there is no report on the role of EIN2 on plant response to salt and osmotic stresses. Here, we show that EIN2 gene regulates plant response to osmotic and salt stress through an ABA-dependent pathway in Arabidopsis. The expression of the EIN2 gene is down-regulated by salt and osmotic stress. An Arabidopsis EIN2 null mutant was supersensitive to both salt and osmotic stress conditions. Disruption of EIN2 specifically altered the expression pattern of stress marker gene RD29B in response to the stresses, but not the stress- or ABA-responsive genes RD29A and RD22, suggesting EIN2 modulates plant stress responses through the RD29B branch of the ABA response. Furthermore, disruption of EIN2 caused substantial increase in ABA. Lastly, our data showed that mutations of other key genes in ethylene pathway also had altered sensitivity to abiotic stresses, indicating that the intact ethylene may involve in the stress response. Taken together, the results identified EIN2 as a cross-link node in ethylene, ABA and stress signaling pathways, and EIN2 is necessary to induce developmental arrest during seed germination, and seedling establishment, as well as subsequent vegetative growth, thereby allowing the survival and growth of plants under the adverse environmental conditions. Youning Wang and Chuang Liu contributed equally to this work.  相似文献   

14.
植物对非生物胁迫应答的转录因子及调控机制   总被引:10,自引:2,他引:8  
植物对非生物胁迫的应答反应涉及到许多基因和生化分子机制,胁迫相关基因、蛋白质及代谢物构成了一个复杂的调控网络,其中转录控制具有举足轻重的作用。本文主要对近年来发现的几种在转录控制中起关键作用的转录因子CBF/DREB、bZIP、MYB/MYC和HSF及其调控机制进行介绍。这几种转录因子可以分别和胁迫应答顺式作用元件CRT/DRE、ABRE、MYB/MYC识别位点及HSE结合,在非生物胁迫条件下调控下游靶基因的表达,进而使一些胁迫保护物质如脯氨酸、可溶性糖类、自由基的清除剂、热休克蛋白和分子伴侣等的表达水平升高,最终增强植物对非生物胁迫的耐受能力。  相似文献   

15.
16.
17.
Osmotic stress activates the expression of many plant genes through ABA-dependent as well as ABA-independent signaling pathways. We report here the characterization of a novel mutant of Arabidopsis thaliana, hos5-1, which exhibits increased expression of the osmotic stress responsive RD29A gene. The expression of several other stress genes are also enhanced by the hos5-1 mutation. The enhanced expression is specific to ABA and osmotic stress because low temperature regulation of these genes is not altered in the mutant. Genetic analysis indicated that hos5-1 is a recessive mutation in a single nuclear gene on chromosome III. Double mutant analysis of hos5-1 and the ABA-deficient aba1-1 as well as the ABA-insensitive abi1-1 mutant indicated that the osmotic stress hypersensitivity of hos5-1 is not affected by ABA deficiency or insensitivity. Furthermore, combined treatments of hos5-1 with ABA and osmotic stress had an additive effect on RD29A-LUC expression. These results suggest that the osmotic stress hypersensitivity in hos5-1 may be ABA-independent. The germination of hos5-1 seeds was more resistant to ABA. However, the hos5-1 mutation did not influence stomatal control and only slightly affected the regulation of growth and proline accumulation by ABA. The hos5-1 mutation reveals a negative regulator of osmotic stress-responsive gene expression shared by ABA-dependent and ABA-independent osmotic stress signaling pathways.  相似文献   

18.
19.
Caleosins or related sequences have been found in a wide range of higher plants. In Arabidopsis, seed-specific caleosins are viewed as oil-body (OB)-associated proteins that possess Ca(2+)-dependent peroxygenase activity and are involved in processes of lipid degradation. Recent experimental evidence suggests that one of the Arabidopsis non-seed caleosins, AtCLO3, is involved in controlling stomatal aperture during the drought response; the roles of the other caleosin-like proteins in Arabidopsis remain largely uncharacterized. We have demonstrated that a novel stress-responsive and OB-associated Ca(2+)-binding caleosin-like protein, AtCLO4, is expressed in non-seed tissues of Arabidopsis, including guard cells, and down-regulated following exposure to exogenous ABA and salt stress. At the seed germination stage, a loss-of-function mutant (atclo4) was hypersensitive to ABA, salt and mannitol stresses, whereas AtCLO4-overexpressing (Ox) lines were more hyposensitive to those stresses than the wild type. In adult stage, atclo4 mutant and AtCLO4-Ox plants showed enhanced and decreased drought tolerance, respectively. Following exposure to exogenous ABA, the expression of key ABA-dependent regulatory genes, such as ABF3 and ABF4, was up-regulated in the atclo4 mutant, while it was down-regulated in AtCLO4-Ox lines. Based on these results, we propose that the OB-associated Ca(2+)-binding AtCLO4 protein acts as a negative regulator of ABA responses in Arabidopsis.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号