首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 50 毫秒
1.
The rates of loss of adenylate kinase and creatine kinase from the circulation after intravenous injection of homogenous chicken skeletal muscle enzymes were examined to determine the role of plasma clearance rates in determining the plasma levels of these enzymes in normal and dystrophic chickens. The rapid clearance of adenylate kinase activity (average half-life of 5 min) and the slower biphasic clearance of creatine kinase activity (average half-lives of 0.95 and 11 hr) are consistent with the elevation of creatine kinase but not adenylate kinase in the blood plasma of dystrophic chickens compared to normal chickens. The rates of clearance of these enzymes were similar in normal chickens compared to dystrophic chickens. Radioiodinated enzymes were cleared at similar, but slightly more rapid rates than the loss of enzyme activity. The loss of adenylate kinase activity from the circulation may be due in part to inactivation since adenylate kinase activity is rapidly inactivated in serum in vitro, and because no increase in adenylate kinase activity is observed in the most specific sites of clearance of the radioiodinated enzyme, the liver and spleen. The comparison of enzyme activities in press juices to the activities in high-ionic-strength homogenates of muscle tissue from normal and dystrophic muscle, indicates that adenylate kinase activity is not associated with intracellular structures to the extent that would prohibit release from dystrophic muscle tissue. These results, and those presented previously with regard to plasma levels and clearance rates of AMP aminohydrolase and pyruvate kinase in normal and dystrophic chickens (11) support our hypothesis that the rates of loss of muscle enzyme activities from the circulation are important in determining the circulating levels of muscle enzymes in dystrophic chickens. Furthermore, from the measurement of plasma levels and clearance rates of creatine kinase, it was estimated that the efflux rate of creatine kinase from dystrophic muscle tissue is 2.0% of the total breast muscle creatine kinase per day.  相似文献   

2.
Pyruvate kinase and creatine phosphokinase activities in breast muscle extracts and in serum, and protein content of the muscle extracts were determined during the first eight weeks of development of control and dystrophic chickens. In the dystrophic chicken serum enzyme levels were significantly greater than, and muscle protein content and enzyme activities on a gram wet weight basis were significantly less than control values, by the second week after hatching and thereafter. For both muscle and serum the relative differences between control and dystrophic groups was greater for pyruvate kinase than crearine phosphokinase. On a specific activity basis only pyruvate kinase levels in dystrophic muscle were significantly less than control values in 2–8-week-old chickens.  相似文献   

3.
Under effects of myocardial ischemia (30 min), the activities of the intermembrane enzymes of rabbit heart mitochondria, i.e., adenylate kinase and creatine kinase, are inhibited by 20% and 23%, respectively. Consequently, the creatine- and AMP-activated respiration of mitochondria diminishes by 52% and 39%, respectively. An inhibitory analysis of ADP-, AMP- and creatine-activated mitochondrial respiration performed in the presence of atractyloside has demonstrated that ischemia (30 min), adriblastin (0.688 mM) and succinate (10 mM) cause alterations in the functional coupling of adenylate kinase and creatine kinase with the adenine nucleotide translocator. These alterations lead to the diminution of the rate and efficiency of energy transfer from mitochondria to hexokinase, as an arbitrary site of energy consumption. An addition of cytochrome c to ischemic heart mitochondria results in an increase in the rate of ATP synthesis; however, the efficiency of this process is lowered. The toxic effect of the anticancer drug--adriblastin on heart mitochondria respiration is enhanced in the presence of creatine in the bathing solution.  相似文献   

4.
Defining how extramitochondrial high-energy phosphate acceptors influence the rates of heart oxidative phosphorylation is essential for understanding the control of myocardial respiration. When the production of phosphocreatine is coupled to electron transport via mitochondrial creatine kinase, the net reaction can be expressed by the balanced equation: creatine + Pi----phosphocreatine + H2O. This suggests that rates of oxygen consumption could be regulated by changes in [creatine], [Pi], or [phosphocreatine], alone or in combination. The effects of altering these metabolites upon mitochondrial rates of respiration were examined in vitro. Rat heart mitochondria were incubated in succinate-containing oxygraph medium (pH 7.2, 37 degrees C) supplemented with five combinations of creatine (1.0-20 mM), phosphocreatine (0-25 mM), and Pi (0.25-5.0 mM). In all cases, the mitochondrial creatine kinase reaction was initiated by additions of 0.5 mM ATP. To emphasize the duality of control, the results are presented as three-dimensional stereoscopic projections. Under physiological conditions, with 5.0 mM creatine, increases in Pi or decreases in phosphocreatine had little influence upon mitochondrial respiration. When phosphocreatine was held constant (15 mM), changes in [creatine] modestly stimulated respiratory rates, whereas Pi again showed little effect. With 1.0 mM Pi, respiration clearly became dependent upon changes in [creatine] and [phosphocreatine]. Initially, respiratory rates increased as a function of [creatine]. However, at [phosphocreatine] values below 10 mM, product "deinhibition" was observed, and respiratory rates rapidly increased to 80% State 3. With 2.0 mM Pi or higher, respiration could be regulated from State 4 to 100% State 3. Overall, the data show how increasing [creatine] and decreasing [phosphocreatine] influence the rates of oxidative phosphorylation when mediated by mitochondrial creatine kinase. Thus, these changes may become secondary cytoplasmic signals regulating heart oxygen consumption.  相似文献   

5.
We recently observed that, around the time of hatching, chick skeletal muscles synthesize and secrete apolipoprotein A1 (apo-A1) at high rates and that reinitiation of synthesis of this serum protein to high levels occurs in mature chicken breast muscle following surgical denervation (Shackelford, J. E., and Lebherz, H. G. (1983) J. Biol. Chem. 258, 7175-7180; 14829-14833). In the present work we investigate the effect of avian muscular dystrophy on the synthesis of apo-A1 in chicken muscles. The relative rate of synthesis of apo-A1 and levels of apo-A1 RNA in mature dystrophic breast (fast-twitch) muscle were about 6-fold higher than normal, while synthesis of apo-A1 in breast muscles derived from 2-day-old dystrophic chicks was close to normal. These observations suggest that the elevated apo-A1 synthetic rate in mature dystrophic breast muscle results from a failure of the diseased tissue to "shut down" apo-A1 synthesis to the normal level during postembryonic maturation. Apo-A1 synthesis in the "slow-twitch" lateral adductor muscle of dystrophic chickens was found to be normal. Our work is discussed in terms of the apparent similarities between the effects of surgical denervation and muscular dystrophy on the protein synthetic programs expressed by chicken skeletal muscles.  相似文献   

6.
Ultrastructural studies have previously suggested potential association of intermediate filaments (IFs) with mitochondria. Thus, we have investigated mitochondrial distribution and function in muscle lacking the IF protein desmin. Immunostaining of skeletal muscle tissue sections, as well as histochemical staining for the mitochondrial marker enzymes cytochrome C oxidase and succinate dehydrogenase, demonstrate abnormal accumulation of subsarcolemmal clumps of mitochondria in predominantly slow twitch skeletal muscle of desmin-null mice. Ultrastructural observation of desmin-null cardiac muscle demonstrates in addition to clumping, extensive mitochondrial proliferation in a significant fraction of the myocytes, particularly after work overload. These alterations are frequently associated with swelling and degeneration of the mitochondrial matrix. Mitochondrial abnormalities can be detected very early, before other structural defects become obvious. To investigate related changes in mitochondrial function, we have analyzed ADP-stimulated respiration of isolated muscle mitochondria, and ADP-stimulated mitochondrial respiration in situ using saponin skinned muscle fibers. The in vitro maximal rates of respiration in isolated cardiac mitochondria from desmin-null and wild-type mice were similar. However, mitochondrial respiration in situ is significantly altered in desmin-null muscle. Both the maximal rate of ADP-stimulated oxygen consumption and the dissociation constant (K(m)) for ADP are significantly reduced in desmin-null cardiac and soleus muscle compared with controls. Respiratory parameters for desmin-null fast twitch gastrocnemius muscle were unaffected. Additionally, respiratory measurements in the presence of creatine indicate that coupling of creatine kinase and the adenine translocator is lost in desmin-null soleus muscle. This coupling is unaffected in cardiac muscle from desmin-null animals. All of these studies indicate that desmin IFs play a significant role in mitochondrial positioning and respiratory function in cardiac and skeletal muscle.  相似文献   

7.
The major (14)C-labelled peptides from creatine kinase from normal and dystrophic chicken muscle obtained by carboxymethylating the reactive thiol groups with iodo[2-(14)C]acetic acid and digestion with trypsin were purified by ion-exchange chromatography on Dowex-50 (X2) and by paper electrophoresis. The chromatographic characteristics of the (14)C-labelled peptides, their electrophoretic mobilities at pH6.5, and their amino acid compositions were identical for the two enzymes. The sequence of amino acids around the essential thiol groups of creatine kinase from normal and dystrophic chicken muscle was shown to be Ile-Leu-Thr-CmCys-Pro-Ser-Asn-Leu-Gly-Thr-Gly-Leu-Arg (CmCys, carboxymethylcysteine). This sequence is almost identical with that for the creatine kinases in human and ox muscle and bovine brain and is very similar to that of arginine kinase from lobster muscle. Antibodies to the enzymes were raised in rabbits and their reaction with the creatine kinase from normal and dystrophic muscles in interfacial, immunodiffusion and immunoelectrophoretic experiments was studied. The cross-reaction between normal muscle creatine kinase and antisera against the dystrophic muscle enzyme (or vice versa) observed by immunodiffusion and by immunoelectrophoretic experiments further suggests that the enzymes from normal and dystrophic chicken muscle are similar in structure. The results of the present study, the identical amino acid sequence of the peptides containing the reactive thiol group from both the normal and dystrophic chicken muscle enzymes and the immunological similarities of the two enzymes are in accord with the similarity of the two enzymes observed by Roy et al. (1970).  相似文献   

8.
Mitochondria were isolated from the pectoralis and gastrocnemius muscles of chickens with a hereditary muscular dystrophy, and age-matched controls. In the pectoralis, for dystrophic birds aged 0.12, 0.25, 0.55, and 1.55 yr, the creatine phosphokinase activity of the intact mitochondria, expressed in terms of pellet protein, was 69%, 45%, 24%, and 13% as great, respectively, as that of the controls. The corresponding figures for the gastrocnemius were 79%, 46%, 51%, and 28%. The mitochondria from dystrophic muscles exhibited satisfactory respiratory control ratios, P:0 ratios, and state 3 respiratory rates. To check whether their apparent loss of creatine phosphokinase activity was due to the presence of increasing amounts of non-mitochondrial pellet protein, the state 3 respiratory rate was used as a mitochondrial marker; the rates per mg protein were similar in mitochondria from normal and dystrophic muscles of each age group.  相似文献   

9.
The importance of the creatine kinase system in the cardiac muscle of ectothermic vertebrates is unclear. Mammalian cardiac muscle seems to be structurally organized in a manner that compartmentalizes the intracellular environment as evidenced by the substantially higher mitochondrial apparent Km for ADP in skinned fibres compared to isolated mitochondria. A mitochondrial fraction of creatine kinase is functionally coupled to the mitochondrial respiration, and the transport of phosphocreatine and creatine as energy equivalents of ATP and ADP, respectively, increases the mitochondrial apparent ADP affinity, i.e. lowers the Km. This function of creatine kinase seems to be absent in hearts of frog species. To find out whether this applies to hearts of ectothermic vertebrate species in general, we investigated the effect of creatine on the mitochondrial respiration of saponin-skinned fibres from the ventricle of rainbow trout, Atlantic cod and freshwater turtle. For all three species, the apparent Km for ADP appeared to be substantially higher than for isolated mitochondria. Creatine lowered this Km in trout and turtle, thus indicating a functional coupling between mitochondrial creatine kinase and respiration. However, creatine had no effect on Km in cod ventricle. In conclusion, the creatine kinase-system in trout and turtle hearts seems to fulfil the same functions as in the mammalian heart, i.e. facilitating energy transport and communication between cellular compartments. In cod heart, however, this does not seem to be the case.Abbreviations ACR acceptor control ratio - CK creatine kinase - PCr creatine phosphate - VADP ADP-stimulated respiration rate - Vmax maximal respiration rate - V0 respiration rate in the absence of ADPCommunicated by: G. Heidmaier  相似文献   

10.
Mitochondria from skeletal muscle, heart and liver of strain 129/ReJ-dy dystrophic mice and their littermate controls were characterized with respect to their respiratory and phosphorylating activities. Skeletal muscle mitochondria from dystrophic mice showed significantly lower state 3 respiratory rates than controls with both pyruvate + malate and succinate as substrates (P < 0.01). ADP/O and Ca2+/O ratios were found to be normal. A decreased rate of NADH oxidation (0.01 <P < 0.05) by sonicated mitochondrial suspensions from dystrophic mice was also seen. High respiratory rates with ascorbate + phenazine methosulfate as substrates indicated that cytochrome oxidase was not rate limiting in the oxidation of either pyruvate + malate or succinate. Skeletal muscle mitochondria from dystrophic mice showed no deficiency in any of the cytochromes or coenzyme Q. Mg2+-stimulated ATPase activity was higher in dystrophic muscle mitochondria than in controls, but basal and oligomycin-insensitive activities were virtually identical to those of controls. A significant reduction in the intramitochondrial NAD+ content (0.01 <P < 0.02) was seen in dystrophic skeletal muscle as compared to controls. Heart mitochondria from dystrophic mice showed similar, though less extensive abnormalities while liver mitochondria were essentially normal. We concluded from these results that skeletal muscle mitochondria from strain 129 dystrophic mice possess impairments in substrate utilization which may result from (1) an abnormality in the transfer of electrons on the substrate side of coenzyme Q in the case of succinate oxidation; (2) a defect on the path of electron flow from NADH to cytochrome c, and (3) a deficiency of NAD+ in the case of NAD+-linked substrates.  相似文献   

11.
The influence of mitochondrial creatine kinase on subcellular high energy systems has been investigated using isolated rat heart mitochondria, mitoplasts and intact heart and skeletal muscle tissue.In isolated mitochondria, the creatine kinase is functionally coupled to oxidative phosphorylation at active respiratory chain, so that it catalyses the formation of creatine phosphate against its thermodynamic equilibrium. Therefore the mass action ratio is shifted from the equilibrium ratio to lower values. At inhibited respiration, it is close to the equilibrium value, irrespective of the mechanism of the inhibition. The same results were obtained for mitoplasts under conditions where the mitochondrial creatine kinase is still associated with the inner membrane.In intact tissue increasing amounts of creatine phosphate are found in the mitochondrial compartment when respiration and/or muscle work are increased. It is suggested that at high rates of oxidative phosphorylation creatine phosphate is accumulated in the intermembrane space due to the high activity of mitochondrial creatine kinase and the restricted permeability of reactants into the extramitochondrial space. A certain amount of this creatine phosphate leaks into the mitochondrial matrix.This leak is confirmed in isolated rat heart mitochondria where creatine phosphate is taken up when it is generated by the mitochondrial creatine kinase reaction. At inhibited creatine kinase, external creatine phosphate is not taken up. Likewise, mitoplasts only take up creatine phosphate when creatine kinase is still associated with the inner membrane. Both findings indicate that uptake is dependent on the functional active creatine kinase coupled to oxidative phosphorylation.Creatine phosphate uptake into mitochondria is inhibited with carboxyatractyloside. This suggests a possible role of the mitochondrial adenine nucleotide translocase in creatine phosphate uptake.Taken together, our findings are in agreement with the proposal that creatine kinase operates in the intermembrane space as a functional unit with the adenine nucleotide translocase in the inner membrane for optimal transfer of energy from the electron transport chain to extramitochondrial ATP-consuming reactions.  相似文献   

12.
High-resolution magic angle spinning (MAS) (1)H nuclear magnetic resonance (NMR) spectroscopy is increasingly being used to monitor metabolic abnormalities within cells and intact tissues. Many toxicological insults and metabolic diseases affect subcellular organelles, particularly mitochondria. In this study high-resolution (1)H NMR spectroscopy was used to examine metabolic compartmentation between the cytosol and mitochondria in the rat heart to investigate whether biomarkers of mitochondrial dysfunction could be identified and further define the mitochondrial environment. High-resolution MAS spectra of mitochondria revealed NMR signals from lactate, alanine, taurine, choline, phosphocholine, creatine, glycine and lipids. However, spectra from mitochondrial extracts contained additional well-resolved resonances from valine, methionine, glutamine, acetoacetate, succinate, and aspartate, suggesting that a number of metabolites bound within the mitochondrial membranes occur in 'NMR invisible' environments. This effect was further investigated using diffusion-weighted measurements of water and NMR spectroscopy during state 2 and state 3 respiration. State 3 respiration caused a decrease in the resonance intensity of endogenous succinate compared with state 2 respiration, suggesting that coupled respiration may also modulate the NMR detection of metabolites within mitochondria.  相似文献   

13.
Skeletal muscle exhibits considerable variation in mitochondrial content among fiber types, but it is less clear whether mitochondria from different fiber types also present specific functional and regulatory properties. The present experiment was undertaken on ten 170-day-old pigs to compare functional properties and control of respiration by adenine nucleotides in mitochondria isolated from predominantly slow-twitch (Rhomboideus (RM)) and fast-twitch (Longissimus (LM)) muscles. Mitochondrial ATP synthesis, respiratory control ratio (RCR) and ADP-stimulated respiration with either complex I or II substrates were significantly higher (25-30%, P<0.05) in RM than in LM mitochondria, whereas no difference was observed for basal respiration. Based on mitochondrial enzyme activities (cytochrome c oxidase [COX], F0F1-ATPase, mitochondrial creatine kinase [mi-CK]), the higher ADP-stimulated respiration rate of RM mitochondria appeared mainly related to a higher maximal oxidative capacity, without any difference in the maximal phosphorylation potential. Mitochondrial K(m) for ADP was similar in RM (4.4+/-0.9 microM) and LM (5.9+/-1.2 microM) muscles (P>0.05) but the inhibitory effect of ATP was more marked in LM (P<0.01). These findings demonstrate that the regulation of mitochondrial respiration by ATP differs according to muscle contractile type and that absolute muscle oxidative capacity not only relies on mitochondrial density but also on mitochondrial functioning per se.  相似文献   

14.
1. The purification of creatine kinase from normal and genetically dystrophic chicken breast muscle is described. Enzyme recovery was significantly lower from dystrophic muscle. 2. Both enzymes had the same number of reactive and total thiol groups and had similar specific activities and similar amino acid compositions. 3. No significant differences were observed in sedimentation, electrophoretic or kinetic properties. 4. Peptide ;maps' showed no significant differences, and electrophoresis of partial acid hydrolysates of the labelled enzymes suggested that corresponding amino acid sequences around all the thiol groups were very similar. 5. The enzymes showed identical temperature stabilities. 6. No significant differences between the enzymes from normal and dystrophic muscle were observed.  相似文献   

15.
Immunochemical and biochemical methods were used to assess quantitatively the changes in the heart creatine kinase system in the myopathic Syrian hamsters, line CHF I46. Cardiomyopathy in I75-200 day old animals was characterized by decreased content of mitochondria and lower total creatine kinase activity. In isolated mitochondria only the creatine kinase activity was decreased while cytochromes aa3 content and respiration rate were unchanged. The share of mitochondrial creatine kinase in the total tissue enzyme activity was decreased from 33% to I8% and that of BB form was elevated from 5% in control to 20%, at unchanged relative level of MM. Immunoassay showed decreased amount of the mitochondrial creatine kinase in the tissue and its decreased ratio to cytochromes aa3. The results show altered expression of creatine kinase isoenzymes in cardiomyopathy.  相似文献   

16.
Phosphate extraction of heart mitochondria results in the release of creatine kinase. Under appropriate conditions phosphate-extracted mitochondria are able to rebind the creatine kinase, either from crude extracts or as the purified enzyme. Heart mitochondria are able to bind up to sevenfold more creatine kinase than they originally contained. The association is specific since the cytoplasmic isozyme from heart (MM) does not bind, and does not interfere with the binding of the mitochondrial isozyme even when MM is present in large excess. It is interesting that although liver mitochondria do not contain the mitochondrial isozyme of creatine kinase they are able to bind approximately the same amount of the enzyme as the heart mitochondria.  相似文献   

17.
When adding alpha-ketoglutarate and glutamate the intensity of respiration by the myocardium mitochondria increases gradually from the 15th day of embryonic development till the chicken hatching out. In the presence of succinate respiration of mitochondria of 15- and 20-day embryos and 5-day chickens is almost the same and decreases noticeably in adult chickens. When the above-mentioned substrates are added the value of P/O gradually decreases during the chicken development.  相似文献   

18.
The association of an altered cytoplasmic microtubule complex in cells of the dystrophic chicken was investigated. Dystrophic chickens of lines 304 and 413 were compared with their genetically matched control, 412 (obtained from UC, Davis). Explants and trypsin-dissociated tissues were prepared from breast and heart muscles of chickens at 1, 3, 7, 14, 20, 40, 80 and 120 days ex ovo. The cells were cultured for 7 days and then processed for antitubulin immunofluorescence. Over 90% of the cells displayed an extensive cytoplasmic microtubule complex, although there was significant elevation of creatine phosphokinase in the dystrophic chickens after 20 days ex ovo. In both dystrophic and control preparations, one to two distinct functionally intact microtubule-organizing centers per cell were observed. Dystrophic and control chicken brain extracts demonstrated essentially the same extent of microtubule assembly as assayed by turbidity increase and protein in sedimentable polymer. SDS-PAGE revealed no significant differences in the microtubule proteins polymerized from the dystrophic and control brains. These results suggest that no significant alteration occurs in the structure, assembly or distribution of cytoplasmic microtubules in the cells of the dystrophic chicken.  相似文献   

19.
In rat liver mitochondria all nucleoside diphosphate kinase of the outer compartment is associated with the outer surface of the outer membrane (Lipskaya, T. Yu., and Plakida, K. N. (2003) Biochemistry (Moscow), 68, 1136-1144). In the present study, three systems operating as ADP donors for oxidative phosphorylation have been investigated. The outer membrane bound nucleoside diphosphate kinase was the first system tested. Two others employed yeast hexokinase and yeast nucleoside diphosphate kinase. The two enzymes exhibited the same activity but could not bind to mitochondrial membranes. In all three systems, muscle creatine phosphokinase was the external agent competing with the oxidative phosphorylation system for ADP. Determination of mitochondrial respiration rate in the presence of increasing quantities of creatine phosphokinase revealed that at large excess of creatine phosphokinase activity over other kinase activities (of the three systems tested) and oxidative phosphorylation the creatine phosphokinase reaction reached a quasi-equilibrium state. Under these conditions equilibrium concentrations of all creatine phosphokinase substrates were determined and K(eq)app of this reaction was calculated for the system with yeast hexokinase. In samples containing active mitochondrial nucleoside diphosphate kinase the concentrations of ATP, creatine, and phosphocreatine were determined and the quasi-equilibrium concentration of ADP was calculated using the K(eq)app value. At balance of quasi-equilibrium concentrations of ADP and ATP/ADP ratio the mitochondrial respiration rate in the system containing nucleoside diphosphate kinase was 21% of the respiration rate assayed in the absence of creatine phosphokinase; in the system containing yeast hexokinase this parameter was only 7% of the respiration rate assayed in the absence of creatine phosphokinase. Substitution of mitochondrial nucleoside diphosphate kinase with yeast nucleoside diphosphate kinase abolished this difference. It is concluded that oxidative phosphorylation is accompanied by appearance of functional coupling between mitochondrial nucleoside diphosphate kinase and the oxidative phosphorylation system. Possible mechanisms of this coupling are discussed.  相似文献   

20.
L.De Jong  M. Holtrop  A.M. Kroon 《BBA》1978,501(3):405-414
Treatment of rats with thiamphenicol in a dose of 125 mg/kg per day for 60–64 h causes specific inhibition of mitochondrial protein synthesis, leading to a drastic decrease of the cytochrome c oxidase activity in intestinal epithelium. At the same time the mitochondrial ATPase activity becomes resistant to inhibition by oligomycin. Experiments with isolated intestinal mitochondria revealed that respiration in state 3 is diminished by 55% with succinate (5 mM) and by 40% with pyruvate (10 mM) plus L-malate (2 mM) as the substrates, both as compared to intestinal mitochondria isolated from control rats. P : O ratios as well as respiratory control indices are comparable in the two groups of animals. Uncoupled respiration is inhibited by 35% with succinate as the substrate, while the succinate cytochrome c reductase activity remains unaltered. No inhibition of uncoupled respiration with pyruvate plus L-malate as the substrates was observed. The ATP-Pi exchange activity in the mitochondria from the treated animals is diminished by about 75%. It is concluded that in the mitochondria of the treated animals the inhibition of the coupled respiration (state 3) is caused by the limitation of the ATP-generating capacity and that electron transport is rate limiting only with the rapidly oxidized substrates such as succinate, if respiration is uncoupled.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号