首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 953 毫秒
1.
2.
Free proline increased in leaves of orange (Citrus sinensis [L.] Osb. cv. Valencia) and grapefruit (Citrus paradisi Macfad. cv. Star Ruby) trees on a wide range of citrus rootstocks during cold hardening. Increases in sugars accompanied proline accumulation. During cold hardening, the rate of proline accumulation was greater in old than in young leaves. In leaves of grapefruit trees kept in the dark during cold hardening, neither proline nor sugars increased and the degree of cold hardiness was less than in trees exposed to light. Like sugar accumulations, proline accumulation does not reflect specific degrees of cold hardiness in citrus cultivars.  相似文献   

3.
Protein synthesis was studied in leaves, crown, and roots during cold hardening of freezing tolerant winter wheat (Triticum aestivum L. cv Fredrick and cv Norstar) and freezing sensitive spring wheat (T. aestivum L. cv Glenlea). The steady state and newly synthesized proteins, labeled with [35S]methionine, were resolved by one- and two-dimensional polyacrylamide gels. The results showed that cold hardening induced important changes in the soluble protein patterns depending upon the tissue and cultivar freezing tolerance. At least eight new proteins were induced in hardened tissues. A 200 kilodalton (kD) (isoelectric point [pl] 6.85) protein was induced concomitantly in the leaves, crown, and roots. Two proteins were specifically induced in the leaves (both 36 kD, pl 5.55 and 5.70); three in the crown with Mr 150 (pl 5.30), 45 (pl 5.75), and 44 kD (pl > 6.80); and two others in the roots with Mr 64 (pl 6.20) and 52 kD (pl 5.55). In addition, 19 other proteins were synthesized at a modified rate (increased or decreased) in the leaves, 18 in the crown and 23 in the roots. Among the proteins induced or increased in hardened tissues, some were expressed at a higher level in the freezing tolerant cultivars than in the sensitive one, indicating a correlation between the synthesis and accumulation of these proteins and the degree of freezing tolerance. These proteins, suggested to be freezing tolerance proteins, may have an important role in the cellular adaptation to freezing.  相似文献   

4.
The objective of this study was to identify plasma membraneproteins that are specifically induced by cold acclimation inwheat (Triticum aestivum L.). Two cultivars with a marked differencein the genetic ability to cold-acclimate, namely, spring wheat(cv. Chinese Spring) and winter wheat (cv. Norstar), were usedas the experimental material. After four weeks of growth ina cold chamber, the freezing tolerance in the shoots of winterwheat increased to –18°C, whereas it increased onlyto –8°C in the shoots of spring wheat. In the caseof roots from both cultivars, freezing tolerance increased onlyslightly after the growth in the cold environment. Cold acclimationinduced remarkable changes in the electrophoretic patterns ofplasma membrane proteins which depended on both the cultivarand the tissue examined. Levels of polypeptides with molecularmasses from 22 to 31 kDa decreased in both the root and shootplasma membranes from both cultivars. Among these polypeptides,levels of those of 28 and 26 kDa decreased abruptly after oneweek of cold acclimation. By contrast, levels of polypeptidesof 89, 83, 52, 23, 18 and 17 kDa increased specifically in theshoots of winter wheat. The increases in the levels of the 23-,18- and 17-kDa polypeptides were proportional to the developmentof freezing tolerance. Freeze-fracture electron microscopy ofplasma membranes from shoot cells revealed that the number ofintramembrane particles on the fracture faces decreased markedlyin winter wheat after cold acclimation, but to a lesser extentin spring wheat. These results suggest that the plasma membranesmight undergo molecular reorganization during cold acclimation. 1Contribution no. 3709 from the Institute of Low TemperatureScience, Hokkaido University.  相似文献   

5.
In this research, 3-day-old etiolated wheat seedlings of Triticum aestivum L. cv. Ceyhan-99 (salt-sensitive) and T. durum Desf. cv. Firat-93 (salt-tolerant) were grown in control and salt (150 mmol/L NaCl) treatments at a 15/25℃ temperature regime in the light for 12 days. Soluble proteins extracted from the first leaf tissues of two cultivars were analyzed by twodimensional (2-D) electrophoresis in order to detect NaCl-induced changes. The soluble leaf protein profiles of cultivars were observed to be similar. However, quantitative differences in 74 proteins were detected in the salt treatment group, compared to the control. Among the 74 protein spots, 14 were common for two cultivars. As a result of NaCl treatment, two low-molecular-weight (LMW) proteins (28.9 and 30.0 kDa) and one intermediate-molecular-weight (IMW) protein (44.3 kDa) in cv. Ceyhan-99 and six LMW proteins (18.6, 19.4, 25.7, 25.9, 26 and 27.6 kDa) in cv. Firat-93 were newly synthesized. The newly synthesized proteins were specific to each cultivar. In the Firat-93 cultivar, four proteins with LMW (24.8-27.9 kDa) were completely lost in NaCl treatment. Moreover, these four protein spots were not observed in both protein profiles of cv. Ceyhan-99. Most of these proteins were in acidic character (pl 〈6.0-6.9) and low molecular weight (〈31.6 kDa). It is suggested that the newly synthesized or completely lost LMW proteins may be important for cultivars differing in sensitivity towards NaCl.  相似文献   

6.
Mohapatra, S. S., Poole, R. J. and Dhindsa, R. S. 1987. Coldacclimation, freezing resistance and protein synthesis in alfalfa(Medicago sativa L. cv. Saranac).—J. exp. Bot. 38: 1697–1703. Changes in freezing resistance (percent survival at —10°C), pattern of protein synthesis and translatable mRNApopulation during cold acclimation of alfalfa (Medicago sativaL. cv. Saranac) have been examined. Two days of cold acclimationat 4 °C increased freezing resistance from about 6% to 40%,protein content by 200% and total RNA content by 100%. Acclimationfor longer periods did not cause further increases in freezingresistance, protein content or RNA content. Examination of proteinchanges by sodium dodecyl sulphate-polyacrylamide gel electrophoresis(SDS-PAGE) coupled with protein staining, and by fluorographyof in vivo labelled proteins separated by SDS-PAGE, showed thatseveral proteins are increasingly or newly synthesized duringcold acclimation. Analysis of in vitro translation productsby SDS-PAGE and fluorography shows changes in the populationof translatable mRNAs. It is concluded that in this varietyof alfalfa cold acclimation for only 2 d is sufficient to confermaximum freezing resistance, and that changes in proteins duringcold acclimation are regulated most probably at the transcnptionallevel. Key words: Freezing resistance, protein synthesis, cold acclimation, SDS-PAGE, Medicago sativa L.  相似文献   

7.
Studies performed on winter rape plants(Brassica nnpus var.oleifera, cv. ‘Gór-czański’) revealed that cold treatment affected the cell membranes and led to the temporary increase in electrolytic leakage from a tissue. This was followed by the marked decrease of the electrolytic leakage in the course of hardening. Changes in membrane properties were accompanied by the promotion of soluble protein accumulation. Inhibition of protein accumulation by the cycloheximide treatment brought about wilting of plants under cold conditions. Possible role of soluble protein in protection of cells against secondary water stress caused by the coldinduced changes in membrane properties is suggested. Cold-induced changes in the electrophoretic pattern of soluble protein are described and discussed.  相似文献   

8.
Marked increases were found in the content of total soluble sugars, reducing sugars and ATP in winter wheat ( Triticum aestivum L. cv. Frederick) during cold hardening. The changes in soluble sugars and ATP of spring wheat ( T. aestivum L. cv. Glenlea) grown under similar conditions were less pronounced. The increase in ATP content during hardening of winter wheat was not associated with significant changes in the content of ADP or AMP. The adenylate energy charge did not change during hardening in either cultivar, but it was higher in the winter cultivar under both growth conditions. This difference could be related to the cold hardiness capacity of winter wheat.  相似文献   

9.
Two contrasting cultivars of Lolium perenne were exposed toa range of daily radiation integrals during hardening at 2°Cfor 15 d. The maximum induced freezing tolerance measured asLT50 (temperature for 50 % kill) differed markedly between thecultivars. The observed LT50 values were unaffected by changesin the radiation integral above 10 mol m–2 d–1,whereas accumulation of water-soluble carbohydrate showed astrong positive correlation with the radiation integral overthe entire range of the experiment. The correlation betweenLT50 and soluble carbohydrate content at the end of the hardeningperiod was poor and showed no obvious connection with genotype.Fructan polymers and sucrose were the major components of thesoluble carbohydrates in both cultivars. The depression of freezingpoint attributable to the accumulation of soluble, osmoticallyactive carbohydrate was not sufficient to account for the observedchanges in LT50 in the hardy genotype. These results are discussedin relation to the interactions between growth, photosynthesisand assimilate partitioning during hardening. Lolium perenne, hardening, freezing tolerance, irradiance, carbohydrate, fructan  相似文献   

10.
The activities of protein kinases and the phosphorylation ofsubstrate proteins were assayed in Lemna paucicostata 6746 culturedunder flower-inducing and non-inducing conditions. The activitiesof two protein kinases in the soluble fraction, one cAMP-activatedand the other cytokinin-inhibited, increased drastically underthe flower-inducing condition. However, no significant differencewas observed in the activities of another protein kinase inthe soluble fraction and a microsomal protein kinase, underflower-inducing and non-inducing conditions. The in vitro phosphorylation of cellular proteins was much greaterin the soluble fraction obtained from plants grown under theflower-inducing condition. Four polypeptides of mol wt 59,000,51,000, 16,000 and 14,000 were highly phosphorylated in thesample from flower-induced plants. No difference in cAMP levelwas observed between flower-inducing and non-inducing conditions.Cyclic AMP (Received April 27, 1987; Accepted October 19, 1987)  相似文献   

11.
To boost our understanding of a recent outbreak of freezing injury, we sought to confirm distinctive features between the shoot tissues of the peach (Prunus persica) cultivars Daewol and Kiraranokiwami by mimicking unseasonable changes of temperatures that occur in the early spring through repeated deacclimation and reacclimation treatments. Patterns of cold hardiness declined dramatically during the deacclimation and rose during the reacclimation in both cultivars. Our results indicated that ‘Daewol’ possessed higher capacity in response to repeated deacclimation and reacclimation treatments than ‘Kiraranokiwami’. ‘Daewol’ showed more sensitive changes in the carbohydrates in response to warm and low temperatures compared with ‘Kiraranokiwami’. ‘Daewol’ indicated almost similar repeated down‐ and up‐patterns in soluble sugar content in response to repeated deacclimation and reacclimation, whereas it indicated repeated up‐ and down‐patterns in starch content. However, ‘Kiraranokiwami’ showed a progressive increase in the soluble sugar content and a progressive decrease in starch content. Notably, patterns of accumulation of a 60‐kDa dehydrin protein encoded by the PpDhn1 gene were confirmed through western blotting and paralleled fluctuations of cold hardiness in both cultivars. Expression of this dehydrin was weak in both cultivars during deacclimation but its band intensity increased during reacclimation. Changes in related genes (β‐amylase, PpDhn1, PpDhn2 and PpDhn3) were positively correlated with changes in cold hardiness throughout the experiment. Our results indicate that recent repeated warm periods may cause premature deacclimation in the early spring, and that more cold‐tolerant cultivar may be more resilient to freezing injury caused by unstable temperature conditions.  相似文献   

12.
13.
We analyzed changes in populations of translatable mRNAs occurringin crowns of the cold-tolerant alfalfa (Medicago sativa L.)cv. Apica (CT) and the cold-sensitive cv. CUF-101 (CS) aftertheir acclimation at low nonfreezing temperatures and at subzerotemperatures. Both cultivars showed very similar translationprofiles under all treatments. Low temperatures induced significantchanges in the populations of translatable mRNAs. We observeda relationship between the accumulation of cold-regulated (COR)translation products and freezing tolerance within cultivars.Moreover, at least three COR translation products were specificto the CT and might be related to hardiness potential in alfalfa.Whereas extension of the cold acclimation period at 2C reducedcold tolerance, incubation at subzero temperatures increasedor maintained freezing tolerance. This increased hardiness wasassociated with enhanced translation of COR polypeptides andalso with the appearance of new translatable mRNAs. This is,to our knowledge, the first report of altered gene expressionin plants incubated at subzero temperatures. Marked changesin populations of translatable mRNAs at temperatures below freezingmight be related to previous reports that alfalfa achieves maximumhardiness under snow cover when the soil has frozen. Translationin the presence of [3H]glycine showed that a large proportionof the COR genes encode for glycine-rich proteins (GRPs) andthat some of the GRPs are specific to the CT. (Received May 29, 1992; Accepted October 13, 1992)  相似文献   

14.
Quantitative and qualitative changes in isoperoxidase patterns from stems of three cultivars of pepper ( Capsicum annuum L.). one susceptible, one intermediate and one resistant, were found upon inoculation with Phytophthora capsici using a decapitation method. The peroxidase activity was determined in the intercellular fluid as well as in the cytosolic fraction of the necrotic, healthy and intermediate zones of stems of the three cultivars, 6 days after inoculation. In the intercellular fluid, peroxidase activity of the susceptible cv. Yolo Wonder increased somewhat from 4.7 (healthy zone) to 12.9 (intermediate zone) μmol mg−1 protein min−1, whereas in the intermediate cv. Americano, the peroxidase activity decreased from 123 (healthy zone) to 78 (intermediate zone) μmol mg−1 protein min−1. The most dramatic increase (5.7 to 662 μmol mg−1 protein min−1) in intercellular peroxidase activity was found in the resistant cv. Smith-5. This, in conjunction with the appearance of an additional acidic isoperoxidase (pI 4.4) specific for the cv. Smith-5, could be the reason for the resistance of this cultivar against the fungus attack. The release of peroxidase into the intercellular space as a defense reaction was confirmed by histochemical analysis, showing that peroxidase activity occurred in the intercellular spaces of those stems of the resistant cultivar that had not yet been invaded by the fungus, but was detected neither in the other cultivars nor in the intercellular spaces of such stems of the intermediate and susceptible cultivars that contained growing mycelium of P. capsici. The lack of staining in the intercellular spaces of the susceptible cultivars could be attributed to their low content in peroxidase.  相似文献   

15.
Breakage of seed dormancy in Pyrus serotina Rhed cv. Niauliis achieved by cold treatment. The chilling time necessary forgermination of Pyrus serotina Rhed cv. Niauli seeds was determined,and synthesis of polypeptides during stratification and thidiazuron(TDZ) treatments was investigated. The chilling time requiredwas about 21 d. The longer the chilling time, the higher thegermination percentage. The effect of 200 µM TDZ on seedgermination was equivalent to 14-21 d of chilling, and TDZ couldbe used as a substitute for cold treatment. Use of in vivo 35S-methionine label and two-dimensional gel electrophoretic analysisof polypeptides revealed that the patterns of untreated (dormant)and chilled embryonic axes differed significantly in their polypeptideprofiles. The difference became conspicuous after prolongedchilling exposure. During 28 d of stratification followed by5 d of incubation at 25 °C, changes were noted in 35 solublepolypeptides (ESPs) and 38 pellet polypeptides (EPPs) from theembryonic axis. The changes included increase, decrease or newlyinduced synthesis. Common patterns of changes in soluble andpellet polypeptides of embryonic axes, can be broken down intofour categories. The possible functions and roles of these fourcategories of polypeptides in breaking seed dormancy and germinationare discussed. Although the magnitude of polypeptide changesare not as extensive in seeds receiving TDZ treatment as afterstratification, similar polypeptide changes were co-inducedby the two treatments.Copyright 1994, 1999 Academic Press Stratification, protein synthesis, pear, Pyrus serotina, Thidiazuron, TDZ  相似文献   

16.
The degrees of freezing tolerance acquired by winter wheat (Triticum aestivium L.) and rye (Secale cereale L. cv Puma) were similar following a 4-week cold conditioning and a 24-hour desiccation stress. Soluble proteins were extracted from shoots of cold-conditioned or desiccation-stressed seedlings and electrophoresed on sodium dodecyl sulfate-polyacrylamide gels. Quantitative changes in the electrophoretic patterns of the soluble proteins of the different cultivars grown in different environments were detected, but the changes were not equivalent following cold conditioning and desiccation stress. The abundance of two polypeptide bands showed a significant increase correlated to the degree of freezing tolerance and, hence, the polypeptides in these bands may play a role in the development of freezing tolerance.  相似文献   

17.
The role of ABA in freezing tolerance and cold acclimation in barley   总被引:4,自引:0,他引:4  
The role of ABA in freezing resistance in nonacclimated and cold‐acclimated barley ( Hordeum vulgare L.) was studied. Eleven nonacclimated cultivars differed in their LT50, ranging from −10.8 to −4.8°C. Sugars, free proline, soluble proteins and ABA were analyzed in nonacclimated cultivars and during cold acclimation of one cultivar. There was an inverse correlation between LT50 and both ABA and sucrose contents. Exogenous ABA caused a decrease in the freezing point of leaf tissue in the cultivar with the lowest level of endogenous ABA, but not in the cultivar with the highest level, suggesting that ABA in the latter may be near the optimum endogenous level to induce freezing tolerance. Plants of cv. Aramir treated with ABA or allowed to acclimate to cold temperature increased their soluble sugar content to a similar level. The LT50 of leaves of cold‐acclimated cv. Aramir decreased from −5.8 to −11.4°C, with biphasic kinetics, accumulating proline and soluble sugars with similar kinetics. The biphasic profile observed during cold acclimation could be a direct consequence of cryoprotectant accumulation kinetics. ABA and soluble protein accumulation showed a single step profile, associated mainly with the second phase of the LT50 decrease. Thus, a significant increase in endogenous ABA is part of the response of barley to low temperature and may be required as a signal for the second phase of cold acclimation. Endogenous ABA contents in the nonacclimated state may determine constitutive freezing tolerance.  相似文献   

18.
Membrane proteins labeled in vivo from cold-acclimated and ABA-treatedalfalfa seedlings of two cultivars differing in cold-tolerancehave been compared by SDS polyacrylamide gel electrophoresisand fluorography. Results thus obtained indicate that severalqualitative changes occur in the membrane protein-profile specificallyin response to cold acclimation or ABA treatment. While somepolypeptides disappear from the non-acclimated protein patterns,others specifically appear in response to acclimation. Separationby two-dimensional gel electrophoresis and fluorography hasconfirmed the above and has enabled us to detect two proteinsof Mr 42 kDa and 120 kDa that are induced by both acclimationand ABA treatment in the freezing tolerant cultivar. (Received November 30, 1987; Accepted February 22, 1988)  相似文献   

19.
Changes in ethylene production and in the contents of 1-aminocydopropane-1-carboxylic acid (ACC), 1-(malonylamin6)-cyclopropane-1-carboxylic acid (MACC), abscisic acid (ABA) and L-proline were determined after 40 days of cold hardening at 4°C in three wheat cultivars differing in frost resistance. Proline and especially ABA accumulated with hardening in all varieties in parallel with the degree of frost resistance, e.g. proline and ABA increases in the non-resistant cv. Slávia were 2x and 5x, whilst in the resistant cv. Mironovská 808 increases were 4X and 20X. Ethylene production and MACC level showed no significant changes with hardening in any of the cultivars after 40 d, but ACC levels did increase with hardening. The production of ethylene, ACC and MACC was studied during hardening. Ethylene production decreased sharply at low temperature and rose rapidly (within 1 day) on return to normal temperature, while ACC production reacted in the opposite direction. MACC levels rose rapidly during the first 4 days of cold, then more slowly for about 2 weeks, thereafter decreasing again steadily. The only varietal differences occurring at maximum levels were correlated with the degree of frost resistance.  相似文献   

20.
Plants of berseem clover (Trifolium alexandrinum L.) cv. Taborwere raised under conditions inhibiting the acquisition of coldhardiness (non-hardened) or inducing cold hardiness (hardened).All non-hardened plants developed an elongated shoot and exhibitedconsiderable frost sensitivity, as measured by the extent ofthe reduction in yield of variable chlorophyll fluorescenceafter exposure to sub-zero temperature. Hardened plants developeda shorter shoot, with fewer leaves and a greater percentageof dry matter in the root system. These parameters were associatedwith a marked increase in frost resistance. Exogenous applicationof ABA to plants effected similar morphological modificationsin both hardening and non-hardening temperature regimes; plantsdeveloped a shorter primary shoot axis and leaves exhibiteda marked increase in frost hardiness. In berseem clover ABAcan thus substitute, at least partially, for the low temperaturetreatment required to induce cold hardiness. Spraying plantsraised under hardening conditions with gibberellic acid reversedthe effects of the hardening treatment, since they developedan elongated shoot and exhibited frost sensitivity comparableto non-treated plants grown under non-hardening conditions.It is concluded that these endogenous hormones are directlyinvolved in triggering changes in morphogenesis which accompanyphysiological and metabolic events associated with the inductionof plant cold hardiness. Key words: Frost resistance, morphogenesis, abscisic acid, giberellic acid, Trifolium alexandrinum  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号