首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Athletes are on an endless quest to enhance performance and are frequently barraged by products that purport to contribute to various components of athletic activity. The purpose of this study was to determine if MagPro? influenced muscle flexibility or muscle endurance. This was a double-blind, randomized, controlled study using a repeated-measures design. The Institutional Review Board approved consent was obtained. The participants were healthy, physically active adults (n = 38 for phase 1; n = 18 for phase 2). Two creams were used: MagPro? (Mg cream) and a placebo. In phase 1, each cream was applied to the gastroc-soleus muscles. A stretching protocol was completed, and ankle dorsiflexion was compared. In phase 2, 1 cream was applied to both quadriceps muscles. An endurance protocol using a Life Fitness bicycle was completed. The procedure was repeated with the other cream on the quadriceps muscle 1 week later. For the flexibility phase, an analysis of variance with repeated measures revealed no difference between the 2 creams (p = 0.50), but there was a change in the flexibility over time (p = 0.00). For the endurance phase, paired t-tests revealed that there was no significant difference between the first (p = 0.26) or second (p = 0.35) cycling bouts of either cream. Likewise, there were no differences between the first and second cycling bouts of both the creams (MagPro? p = 0.46; Placebo p = 0.08). Despite previous studies demonstrating improved performance with Mg supplements, MagPro? did not enhance the outcome measures of this study. Examination of alternative application techniques and other outcome measures would be appropriate.  相似文献   

2.
Abstract

Purpose:?Localized mechanical vibration, applied directly to a muscle, is known to have powerful, duration-dependent effects on the muscle spindle’s reflex arc. Here, the conditioning of the function of the spindle reflex arc via vibration was examined with considerations for use as a non-invasive, sensorimotor research tool.

Methods:?Muscle spindle function was examined with patellar tendon taps prior to and following exposure to muscle vibration applied to the quadriceps femoris for acute (<5?s) and prolonged (20?min) durations. Surface electromyography (sEMG), torque, and accelerometry signals were obtained during the taps to quantify various measures of reflex magnitude and latency.

Results:?Our findings suggest that acute vibration had no effect on normalized reflex torque or sEMG amplitude (p?>?0.05), but increased total reflex latency (p?=?0.022). Alternatively, prolonged vibration reduced normalized reflex torque and sEMG amplitude (p?<?0.001), and increased reflex latency (p?<?0.001).

Conclusions:?Our findings support the use of prolonged vibration as a practical means to decrease the function of the muscle spindle’s reflex arc. Overall, this suppressive effect was evident in the majority of subjects, but the extent was variable. This approach could potentially be used to help delineate the muscle spindle’s role in various sensory or motor tasks in which more direct measures are not feasible. Acute vibration, however, did not potentiate muscle spindle function as hypothesized. Rather, our results suggest that acute vibration increased total reflex latency. Accordingly, potential mechanical and neurophysiological mechanisms are discussed.  相似文献   

3.
During locomotion, major muscle groups are often activated cyclically. This alternate stretch-shorten pattern of activity could enable muscle to function as a spring, storing and recovering elastic recoil potential energy. Because the ability to store and recover elastic recoil energy could profoundly affect the energetics of locomotion, one might expect this to be an adaptable feature of skeletal muscle. This study tests the hypothesis that chronic eccentric (Ecc) training results in a change in the spring properties of skeletal muscle. Nine female Sprague-Dawley rats underwent chronic Ecc training for 8 wk on a motorized treadmill. The spring properties of muscle were characterized by both active and passive lengthening force productions. A single "spring constant (Deltaforce/Deltalength) from the passive length-tension curves was calculated for each muscle. Results from measurements on long heads of triceps brachii muscle indicate that the trained group produced significantly more passive lengthening force (P = 0.0001) as well as more active lengthening force (P = 0.0001) at all lengths of muscle stretch. In addition, the spring constants were significantly different between the Ecc (1.71 N/mm) and the control (1.31 N/mm) groups. A stiffer spring is capable of storing more energy per unit length stretched, which is of functional importance during locomotion.  相似文献   

4.
Conventional bipolar EMG provides imprecise muscle activation estimates due to possibly heterogeneous activity within muscles and due to improper alignment of the electrodes with the muscle fibers. Principal component analysis (PCA), applied on multi-channel monopolar EMG yielded substantial improvements in muscle activation estimates in pennate muscles. We investigated the degree of heterogeneity in muscle activity and the contribution of PCA to muscle activation estimates in biceps brachii (BB), which has a relatively simply parallel-fibered architecture. EMG-based muscle activation estimates were assessed by comparison to elbow flexion forces in isometric, two-state isotonic contractions in eleven healthy male subjects. Monopolar EMG was collected over the entire surface of the BB with about 63 electrodes. Estimation quality of different combinations of EMG channels showed that heterogeneous activation was found mainly in medio-lateral direction, whereas adding channels in the longitudinal direction added largely redundant information. Multi-channel bipolar EMG amplitude improved muscle activation estimates by 5–14% as compared to a single bipolar. PCA-processed monopolar EMG amplitude yielded a further improvement of (12–22%). Thus multi-channel EMG, processed with PCA, substantially improves the quality of muscle activation estimates compared conventional bipolar EMG in BB.  相似文献   

5.
Bone marrow-derived stem cells have the ability to migrate to sites of tissue damage and participate in tissue regeneration. The number of circulating stem cells has been shown to be a key parameter in this process. Therefore, stimulating the mobilization of bone marrow stem cells may accelerate tissue regeneration in various animal models of injury. In this study we investigated the effect of the bone marrow stem cells mobilizer StemEnhance (SE), a water-soluble extract of the cyanophyta Aphanizomenon flos-aquae (AFA), on hematopoietic recovery after myeloablation as well as recovery from cardiotoxin-induced injury of the anterior tibialis muscle in mice. Control and SE-treated female mice were irradiated, and then transplanted with GFP+ bone marrow stem cells and allowed to recover. Immediately after transplant, animals were gavaged daily with 300 mg/kg of SE in PBS or a PBS control. After hematopoietic recovery (23 days), mice were injected with cardiotoxin in the anterior tibialis muscle. Five weeks later, the anterior tibialis muscles were analyzed for incorporation of GFP+ bone marrow-derived cells using fluorescence imaging. SE significantly enhanced recovery from cardiotoxin-injury. However, StemEnhance did not affect the growth of the animal and did not affect hematopoietic recovery after myeloablation, when compared to control. This study suggests that inducing mobilization of stem cells from the bone marrow is a strategy for muscle regeneration.  相似文献   

6.
7.
The prevalence of asthma has taken on pandemic proportions. Since this disease predisposes patients to severe acute airway constriction, novel mechanisms capable of promoting airway smooth muscle relaxation would be clinically valuable. We have recently demonstrated that activation of endogenous airway smooth muscle GABA(A) receptors potentiates β-adrenoceptor-mediated relaxation, and molecular analysis of airway smooth muscle reveals that the α-subunit component of these GABA(A) receptors is limited to the α(4)- and α(5)-subunits. We questioned whether ligands with selective affinity for these GABA(A) receptors could promote relaxation of airway smooth muscle. RT-PCR analysis of GABA(A) receptor subunits was performed on RNA isolated by laser capture microdissection from human and guinea pig airway smooth muscle. Membrane potential and chloride-mediated current were measured in response to GABA(A) subunit-selective agonists in cultured human airway smooth muscle cells. Functional relaxation of precontracted guinea pig tracheal rings was assessed in the absence and presence of the α(4)-subunit-selective GABA(A) receptor agonists: gaboxadol, taurine, and a novel 8-methoxy imidazobenzodiazepine (CM-D-45). Only messenger RNA encoding the α(4)- and α(5)-GABA(A) receptor subunits was identified in RNA isolated by laser capture dissection from guinea pig and human airway smooth muscle tissues. Activation of airway smooth muscle GABA(A) receptors with agonists selective for these subunits resulted in appropriate membrane potential changes and chloride currents and promoted relaxation of airway smooth muscle. In conclusion, selective subunit targeting of endogenous airway smooth muscle-specific GABA(A) receptors may represent a novel therapeutic option for patients in severe bronchospasm.  相似文献   

8.
9.
Does titin regulate the length of muscle thick filaments?   总被引:17,自引:0,他引:17  
The protein titin has been localized by electron microscopy of myofibrils labelled with monoclonal antibodies. The data are consistent with individual titin molecules extending from near the M-line to beyond the ends of thick filaments, a distance of approximately 1 micron. In the A-band, titin appears to be bound to thick filaments, probably to the outside of the filament shaft. Molecules of titin in this configuration provided an obvious mechanism by which the length of thick filaments could be regulated accurately.  相似文献   

10.
The purpose of this review was to provide an understanding of the role of PGC-1α in the regulation of skeletal muscle metabolism and to describe the results of studies on the association of the polymorphism gene PPARGC1A with human muscle performance.  相似文献   

11.
Reliable and quantitative assays to measure in vivo autophagy are essential. Currently, there are varied methods for monitoring autophagy; however, it is a challenge to measure “autophagic flux” in an in vivo model system. Conversion and subsequent degradation of the microtubule-associated protein 1 light chain 3 (MAP1-LC3/LC3) to the autophagosome associated LC3-II isoform can be evaluated by immunoblot. However, static levels of endogenous LC3-II protein may render possible misinterpretations since LC3-II levels can increase, decrease or remain unchanged in the setting of autophagic induction. Therefore, it is necessary to measure LC3-II protein levels in the presence and absence of lysomotropic agents that block the degradation of LC3-II, a technique aptly named the “autophagometer.” In order to measure autophagic flux in mouse skeletal muscle, we treated animals with the microtubule depolarizing agent colchicine. Two days of 0.4 mg/kg/day intraperitoneal colchicine blocked autophagosome maturation to autolysosomes and increased LC3-II protein levels in mouse skeletal muscle by >100%. the addition of an autophagic stimulus such as dietary restriction or rapamycin led to an additional increase in LC3-II above that seen with colchicine alone. Moreover, this increase was not apparent in the absence of a “colchicine block.” Using this assay, we evaluated the autophagic response in skeletal muscle upon denervation induced atrophy. Our studies highlight the feasibility of performing an “in vivo autophagometer” study using colchicine in skeletal muscle.Key words: autophagy, rapamycin, skeletal muscle  相似文献   

12.
Activation of chloride currents and release of internally sequestered Ca(2+) in airway smooth muscle have long been associated with excitation and contraction. Surprisingly, however, two recent publications (Deshpande DA, Wang WC, McIlmoyle EL, Robinett KS, Schillinger RM, An SS, Sham JS, Liggett SB. Nat Med 16: 1299-1304, 2010; Gallos G, Yim P, Chang S, Zhang Y, Xu D, Cook JM, Gerthoffer WT, Emala CW Sr. Am J Physiol Lung Cell Mol Physiol 302: L248-L256, 2012) have linked both events to relaxation. This begs a closer look at our understanding of airway smooth muscle electrophysiology and its contribution to excitation-contraction coupling. This Editorial Focus highlights those two aforementioned studies and several other equally paradoxical findings and proposes some possible reinterpretations of the data and/or new directions of research in which the answers might be found.  相似文献   

13.
A large number of tropomyosin (Tm) isoforms function as gatekeepers of the actin filament, controlling the spatiotemporal access of actin-binding proteins to specialized actin networks. Residues ∼40–80 vary significantly among Tm isoforms, but the impact of sequence variation on Tm structure and interactions with actin is poorly understood, because structural studies have focused on skeletal muscle Tmα. We describe structures of N-terminal fragments of smooth muscle Tmα and Tmβ (sm-Tmα and sm-Tmβ). The 2.0-Å structure of sm-Tmα81 (81-aa) resembles that of skeletal Tmα, displaying a similar super-helical twist matching the contours of the actin filament. The 1.8-Å structure of sm-Tmα98 (98-aa) unexpectedly reveals an antiparallel coiled coil, with the two chains staggered by only 4 amino acids and displaying hydrophobic core interactions similar to those of the parallel dimer. In contrast, the 2.5-Å structure of sm-Tmβ98, containing Gly-Ala-Ser at the N terminus to mimic acetylation, reveals a parallel coiled coil. None of the structures contains coiled-coil stabilizing elements, favoring the formation of head-to-tail overlap complexes in four of five crystallographically independent parallel dimers. These complexes show similarly arranged 4-helix bundles stabilized by hydrophobic interactions, but the extent of the overlap varies between sm-Tmβ98 and sm-Tmα81 from 2 to 3 helical turns. The formation of overlap complexes thus appears to be an intrinsic property of the Tm coiled coil, with the specific nature of hydrophobic contacts determining the extent of the overlap. Overall, the results suggest that sequence variation among Tm isoforms has a limited effect on actin binding but could determine its gatekeeper function.  相似文献   

14.
15.
A previously proposed method for the interpretation of the signals in sensory nerve fibres is extended to incorporate activation of muscle spindles. Simulations, based on previous experimental observations, of muscle spondles subjected to ramp and hold stretches are used as input to an interpreter, where the simulated trains of action potentials are reconverted to a length change interpretation. The interpreted signals are compared with the original length change inputs to observe the effects of -stimulation and stochastic variability.  相似文献   

16.
Neurophysiological experiments in walking cats have shown that a number of neural control mechanisms are involved in regulating the movements of the hind legs during locomotion. It is experimentally hard to isolate individual mechanisms without disrupting the natural walking pattern and we therefore introduce a different approach where we use a model to identify what control is necessary to maintain stability in the musculo-skeletal system. We developed a computer simulation model of the cat hind legs in which the movements of each leg are produced by eight limb muscles whose activations follow a centrally generated pattern with no proprioceptive feedback. All linear transfer functions, from each muscle activation to each joint angle, were identified using the response of the joint angle to an impulse in the muscle activation at 65 postures of the leg covering the entire step cycle. We analyzed the sensitivity and stability of each muscle action on the joint angles by studying the gain and pole plots of these transfer functions. We found that the actions of most of the hindlimb muscles display inherent stability during stepping, even without the involvement of any proprioceptive feedback mechanisms, and that those musculo-skeletal systems are acting in a critically damped manner, enabling them to react quickly without unnecessary oscillations. We also found that during the late swing, the activity of the posterior biceps/semitendinosus (PB/ST) muscles causes the joints to be unstable. In addition, vastus lateralis (VL), tibialis anterior (TA) and sartorius (SAT) muscle-joint systems were found to be unstable during the late stance phase, and we conclude that those muscles require neuronal feedback to maintain stable stepping, especially during late swing and late stance phases. Moreover, we could see a clear distinction in the pole distribution (along the step cycle) for the systems related to the ankle joint from that of the other two joints, hip or knee. A similar pattern, i.e., a pattern in which the poles were scattered over the s-plane with no clear clustering according to the phase of the leg position, could be seen in the systems related to soleus (SOL) and TA muscles which would indicate that these muscles depend on neural control mechanisms, which may involve supraspinal structures, over the whole step cycle.  相似文献   

17.
1. A sucrose gap technique was used to study the effects of brief periods of superfusion with solutions in which the potassium content of artificial sea water was reduced or omitted.2. Stepwise reduction in bath potassium had a complex effect, culminating in the response to potassium-free solution. This was composed of a rapid initial hyperpolarizing phase, overtaken by a slower depolarizing phase, which was accompanied by force.3. Readmission of bath potassium induced a transient after-hyperpolarization.4. There was a high degree of individual variability in RPM preparations from different animals. This was particularly evident in cases in which either the hyperpolarizing phase or the depolarizing phase predominated, in the response to zero-potassium, but the muscles from any one animal showed reproducible responses.5. The RPM behaved as predicted on Nernst equation grounds, to the extent that initial hyperpolarization showed stepwise increases with stepwise reduction in [K+]0, but as the steps approached zero-potassium there was a stepwise increase in the slower depolarizing response, suggesting reduction in electrogenic Na-K exchange.6. In Na-free solution the depolarizing phase of the response to zero-K was abolished, leaving only an enhanced hyperpolarizing phase.7. Abrupt chilling had a depolarizing effect.8. There was only a slight increase in resistance during the action of zero K.  相似文献   

18.
Calpains are Ca2+-dependent proteases able to cleave a large number of proteins involved in many biological functions. Particularly, in skeletal muscle they are involved in meat tenderizing during post mortem storage. In this report we analyzed the presence and expression of µ- and m-calpains in two skeletal muscles of the Marchigiana cattle soon after slaughter, using immunocytochemical and immunohistochemical techniques, Western blotting analysis and Casein Zymography. Therefore, the presence and the activity of these proteases was investigated until 15th day post mortem during normal process of meat tenderizing. The results showed m- and µ-calpain immunosignals in the cytoplasm both along the Z disk/I band regions and in the form of intracellular stores. Moreover, the expression level of µ-calpain but not m-calpain decreased after 10 days of storage. Such a decrease in µ-calpain was accompanied by a gradual reduction of activity. On the contrary, m-calpain activity persisted up to 15 days of post mortem storage. Such data indicate that expression and activity of both µ-calpain and m-calpain analyzed in the Marchigiana cattle persist longer than reported in literature for other bovines and may be related to both the type of muscle and breed examined.Key words: m-calpain, µ-calpain, skeletal muscle, Marchigiana cattle, immunohistochemistry, Electron Microscopy.  相似文献   

19.
Following injury, skeletal muscle achieves repair by a highly coordinated, dynamic process resulting from interplay among numerous inflammatory, growth factors and myogenic regulators. To identify genes involved in muscle regeneration, we used a microarray analysis; there was a significant increase in the expression of a group of integrin genes. To verify these results, we used RT-PCR and Western blotting and found that 12 integrins were up-regulated from 3 h to 15 days following injury. Following muscle injury, integrin-β3 was initially expressed, mainly in macrophages. In integrin-β3 global KO mice, the expression of myogenic genes was decreased and muscle regeneration was impaired, whereas fibrosis was enhanced versus events in wild type (WT) mice. The mechanism for these responses in integrin-β3 KO mice included an infiltration of macrophages that were polarized into the M2 phenotype. These macrophages produced more TGF-β1 and increased TGF-β1/Smad signaling. In vitro, we confirmed that M2 macrophages lacking integrin-β3 produced more TGF-β1. Furthermore, transplantation of bone marrow cells from integrin-β3 KO mice into WT mice led to suppression of the infiltration and accumulation of macrophages into injured muscles. There was also impaired muscle regeneration with an increase in muscle fibrosis. Our results demonstrate that integrin-β3 plays a fundamental role in muscle regeneration through a regulation of macrophage infiltration and polarization leading to suppressed TGF-β1 production. This promotes efficient muscle regeneration. Thus, an improvement in integrin-β3 function could stimulate muscle regeneration.  相似文献   

20.
Quasispecies is a remarkable characteristic of hepatitis C virus (HCV) and has profound roles in HCV biology and clinical practice. The understanding of HCV quasispecies behavior, in particular in acute HCV infection, is valuable for vaccine development and therapeutic interference. However, acute HCV infection is seldom encountered in clinic practice due to its silent onset. In the present study, we reported a unique case of de novo HCV infection associated with the transplantation of bone marrow from a HCV-positive donor. HCV quasispecies diversity was determined in both the donor and the recipient over a 4-year follow-up, accompanied with simultaneous measurement of HCV neutralizing antibody. Detailed genetic and phylogenetic analyses revealed a divergent quasispecies evolution, which was not related to dynamic changes of HCV neutralizing antibody. Instead, our data suggested an essential role of the fitness adaptation of founder viral population in driving such an evolutionary pattern.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号