首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
MOTIVATION: The functioning of biological networks depends in large part on their complex underlying structure. When studying their systemic nature many modeling approaches focus on identifying simple, but prominent, structural components, as such components are easier to understand, and, once identified, can be used as building blocks to succinctly describe the network. RESULTS: In recent social network studies, exponential random graph models have been used extensively to model global social network structure as a function of their 'local features'. Starting from those studies, we describe the exponential random graph models and demonstrate their utility in modeling the architecture of biological networks as a function of the prominence of local features. We argue that the flexibility, in terms of the number of available local feature choices, and scalability, in terms of the network sizes, make this approach ideal for statistical modeling of biological networks. We illustrate the modeling on both genetic and metabolic networks and provide a novel way of classifying biological networks based on the prevalence of their local features.  相似文献   

2.
3.

Background  

In many protein-protein interaction (PPI) networks, densely connected hub proteins are more likely to be essential proteins. This is referred to as the "centrality-lethality rule", which indicates that the topological placement of a protein in PPI network is connected with its biological essentiality. Though such connections are observed in many PPI networks, the underlying topological properties for these connections are not yet clearly understood. Some suggested putative connections are the involvement of essential proteins in the maintenance of overall network connections, or that they play a role in essential protein clusters. In this work, we have attempted to examine the placement of essential proteins and the network topology from a different perspective by determining the correlation of protein essentiality and reverse nearest neighbor topology (RNN).  相似文献   

4.
Metabolic networks of many cellular organisms share global statistical features. Their connectivity distributions follow the long-tailed power law and show the small-world property. In addition, their modular structures are organized in a hierarchical manner. Although the global topological organization of metabolic networks is well understood, their local structural organization is still not clear. Investigating local properties of metabolic networks is necessary to understand the nature of metabolism in living organisms. To identify the local structural organization of metabolic networks, we analysed the subgraphs of metabolic networks of 43 organisms from three domains of life. We first identified the network motifs of metabolic networks and identified the statistically significant subgraph patterns. We then compared metabolic networks from different domains and found that they have similar local structures and that the local structure of each metabolic network has its own taxonomical meaning. Organisms closer in taxonomy showed similar local structures. In addition, the common substrates of 43 metabolic networks were not randomly distributed, but were more likely to be constituents of cohesive subgraph patterns.  相似文献   

5.
During development, biological neural networks produce more synapses and neurons than needed. Many of these synapses and neurons are later removed in a process known as neural pruning. Why networks should initially be over-populated, and the processes that determine which synapses and neurons are ultimately pruned, remains unclear. We study the mechanisms and significance of neural pruning in model neural networks. In a deep Boltzmann machine model of sensory encoding, we find that (1) synaptic pruning is necessary to learn efficient network architectures that retain computationally-relevant connections, (2) pruning by synaptic weight alone does not optimize network size and (3) pruning based on a locally-available measure of importance based on Fisher information allows the network to identify structurally important vs. unimportant connections and neurons. This locally-available measure of importance has a biological interpretation in terms of the correlations between presynaptic and postsynaptic neurons, and implies an efficient activity-driven pruning rule. Overall, we show how local activity-dependent synaptic pruning can solve the global problem of optimizing a network architecture. We relate these findings to biology as follows: (I) Synaptic over-production is necessary for activity-dependent connectivity optimization. (II) In networks that have more neurons than needed, cells compete for activity, and only the most important and selective neurons are retained. (III) Cells may also be pruned due to a loss of synapses on their axons. This occurs when the information they convey is not relevant to the target population.  相似文献   

6.
A duplication growth model of gene expression networks   总被引:8,自引:0,他引:8  
  相似文献   

7.
The form of animal social systems depends on the nature of agonistic and affiliative interactions. Social network theory provides tools for characterizing social structure that go beyond simple dyadic interactions and consider the group as a whole. We show three groups of capuchin monkeys from Barro Colorado Island, Panama, where there are strong connections between key aspects of aggression, grooming, and proximity networks, and, at least among females, those who incur risk to defend their group have particular "social personalities." Although there is no significant correlation for any of the network measures between giving and receiving aggression, suggesting that dominance relationships do not follow a simple hierarchy, strong correlations emerge for many measures between the aggression and grooming networks. At the local, but not global, scale, receiving aggression and giving grooming are strongly linked in all groups. Proximity shows no correlation with aggression at either the local or the global scale, suggesting that individuals neither seek out nor avoid aggressors. Yet, grooming has a global but not local connection to proximity. Extensive groomers who tend to direct their efforts at other extensive groomers also spend time in close proximity to many other individuals. These results indicate the important role that prosociality plays in shaping female social relationships. We also show that females who receive the least aggression, and thus pay low costs for group living, are most likely to participate in group defense. No consistent "social personality" traits characterize the males who invest in group defense.  相似文献   

8.
Lewis Carroll''s English word game Doublets is represented as a system of networks with each node being an English word and each connectivity edge confirming that its two ending words are equal in letter length, but different by exactly one letter. We show that this system, which we call the Doublets net, constitutes a complex body of linguistic knowledge concerning English word structure that has computable multiscale features. Distributed morphological, phonological and orthographic constraints and the language''s local redundancy are seen at the node level. Phonological communities are seen at the network level. And a balancing act between the language''s global efficiency and redundancy is seen at the system level. We develop a new measure of intrinsic node-to-node distance and a computational algorithm, called community geometry, which reveal the implicit multiscale structure within binary networks. Because the Doublets net is a modular complex cognitive system, the community geometry and computable multi-scale structural information may provide a foundation for understanding computational learning in many systems whose network structure has yet to be fully analyzed.  相似文献   

9.
In recent years, major advances in genomics, proteomics, macromolecular structure determination, and the computational resources capable of processing and disseminating the large volumes of data generated by each have played major roles in advancing a more systems-oriented appreciation of biological organization. One product of systems biology has been the delineation of graph models for describing genome-wide protein-protein interaction networks. The network organization and topology which emerges in such models may be used to address fundamental questions in an array of cellular processes, as well as biological features intrinsic to the constituent proteins (or "nodes") themselves. However, graph models alone constitute an abstraction which neglects the underlying biological and physical reality that the network's nodes and edges are highly heterogeneous entities. Here, we explore some of the advantages of introducing a protein structural dimension to such models, as the marriage of conventional network representations with macromolecular structural data helps to place static node and edge constructs in a biologically more meaningful context. We emphasize that 3D protein structures constitute a valuable conceptual and predictive framework by discussing examples of the insights provided, such as enabling in silico predictions of protein-protein interactions, providing rational and compelling classification schemes for network elements, as well as revealing interesting intrinsic differences between distinct node types, such as disorder and evolutionary features, which may then be rationalized in light of their respective functions within networks.  相似文献   

10.
Many physical and biological systems can be studied using complex network theory, a new statistical physics understanding of graph theory. The recent application of complex network theory to the study of functional brain networks has generated great enthusiasm as it allows addressing hitherto non-standard issues in the field, such as efficiency of brain functioning or vulnerability to damage. However, in spite of its high degree of generality, the theory was originally designed to describe systems profoundly different from the brain. We discuss some important caveats in the wholesale application of existing tools and concepts to a field they were not originally designed to describe. At the same time, we argue that complex network theory has not yet been taken full advantage of, as many of its important aspects are yet to make their appearance in the neuroscience literature. Finally, we propose that, rather than simply borrowing from an existing theory, functional neural networks can inspire a fundamental reformulation of complex network theory, to account for its exquisitely complex functioning mode.  相似文献   

11.
A number of interesting issues have been addressed on biological networks about their global and local properties. The connection between the topological properties of proteins in Protein–Protein Interaction (PPI) networks and their biological relevance has been investigated focusing on hubs, i.e. proteins with a large number of interacting partners. We will survey the literature trying to answer the following questions: Do hub proteins have special biological properties? Do they tend to be more essential than non-hub proteins? Are they more evolutionarily conserved? Do they play a central role in modular organization of the protein interaction network? Are there structural properties that characterize hub proteins?  相似文献   

12.
Encoding brain regions and their connections as a network of nodes and edges captures many of the possible paths along which information can be transmitted as humans process and perform complex behaviors. Because cognitive processes involve large, distributed networks of brain areas, principled examinations of multi-node routes within larger connection patterns can offer fundamental insights into the complexities of brain function. Here, we investigate both densely connected groups of nodes that could perform local computations as well as larger patterns of interactions that would allow for parallel processing. Finding such structures necessitates that we move from considering exclusively pairwise interactions to capturing higher order relations, concepts naturally expressed in the language of algebraic topology. These tools can be used to study mesoscale network structures that arise from the arrangement of densely connected substructures called cliques in otherwise sparsely connected brain networks. We detect cliques (all-to-all connected sets of brain regions) in the average structural connectomes of 8 healthy adults scanned in triplicate and discover the presence of more large cliques than expected in null networks constructed via wiring minimization, providing architecture through which brain network can perform rapid, local processing. We then locate topological cavities of different dimensions, around which information may flow in either diverging or converging patterns. These cavities exist consistently across subjects, differ from those observed in null model networks, and – importantly – link regions of early and late evolutionary origin in long loops, underscoring their unique role in controlling brain function. These results offer a first demonstration that techniques from algebraic topology offer a novel perspective on structural connectomics, highlighting loop-like paths as crucial features in the human brain’s structural architecture.  相似文献   

13.
The balance of global integration and functional specialization is a critical feature of efficient brain networks, but the relationship of global topology, local node dynamics and information flow across networks has yet to be identified. One critical step in elucidating this relationship is the identification of governing principles underlying the directionality of interactions between nodes. Here, we demonstrate such principles through analytical solutions based on the phase lead/lag relationships of general oscillator models in networks. We confirm analytical results with computational simulations using general model networks and anatomical brain networks, as well as high-density electroencephalography collected from humans in the conscious and anesthetized states. Analytical, computational, and empirical results demonstrate that network nodes with more connections (i.e., higher degrees) have larger amplitudes and are directional targets (phase lag) rather than sources (phase lead). The relationship of node degree and directionality therefore appears to be a fundamental property of networks, with direct applicability to brain function. These results provide a foundation for a principled understanding of information transfer across networks and also demonstrate that changes in directionality patterns across states of human consciousness are driven by alterations of brain network topology.  相似文献   

14.
Banerjee A 《Bio Systems》2012,107(3):186-196
Exploring common features and universal qualities shared by a particular class of networks in biological and other domains is one of the important aspects of evolutionary study. In an evolving system, evolutionary mechanism can cause functional changes that forces the system to adapt to new configurations of interaction pattern between the components of that system (e.g. gene duplication and mutation play a vital role for changing the connectivity structure in many biological networks. The evolutionary relation between two systems can be retraced by their structural differences). The eigenvalues of the normalized graph Laplacian not only capture the global properties of a network, but also local structures that are produced by graph evolutions (like motif duplication or joining). The spectrum of this operator carries many qualitative aspects of a graph. Given two networks of different sizes, we propose a method to quantify the topological distance between them based on the contrasting spectrum of normalized graph Laplacian. We find that network architectures are more similar within the same class compared to between classes. We also show that the evolutionary relationships can be retraced by the structural differences using our method. We analyze 43 metabolic networks from different species and mark the prominent separation of three groups: Bacteria, Archaea and Eukarya. This phenomenon is well captured in our findings that support the other cladistic results based on gene content and ribosomal RNA sequences. Our measure to quantify the structural distance between two networks is useful to elucidate evolutionary relationships.  相似文献   

15.
Graph theory is a valuable framework to study the organization of functional and anatomical connections in the brain. Its use for comparing network topologies, however, is not without difficulties. Graph measures may be influenced by the number of nodes (N) and the average degree (k) of the network. The explicit form of that influence depends on the type of network topology, which is usually unknown for experimental data. Direct comparisons of graph measures between empirical networks with different N and/or k can therefore yield spurious results. We list benefits and pitfalls of various approaches that intend to overcome these difficulties. We discuss the initial graph definition of unweighted graphs via fixed thresholds, average degrees or edge densities, and the use of weighted graphs. For instance, choosing a threshold to fix N and k does eliminate size and density effects but may lead to modifications of the network by enforcing (ignoring) non-significant (significant) connections. Opposed to fixing N and k, graph measures are often normalized via random surrogates but, in fact, this may even increase the sensitivity to differences in N and k for the commonly used clustering coefficient and small-world index. To avoid such a bias we tried to estimate the N,k-dependence for empirical networks, which can serve to correct for size effects, if successful. We also add a number of methods used in social sciences that build on statistics of local network structures including exponential random graph models and motif counting. We show that none of the here-investigated methods allows for a reliable and fully unbiased comparison, but some perform better than others.  相似文献   

16.
Inspired by the temporal correlation theory of brain functions, researchers have presented a number of neural oscillator networks to implement visual scene segmentation problems. Recently, it is shown that many biological neural networks are typical small-world networks. In this paper, we propose and investigate two small-world models derived from the well-known LEGION (locally excitatory and globally inhibitory oscillator network) model. To form a small-world network, we add a proper proportion of unidirectional shortcuts (random long-range connections) to the original LEGION model. With local connections and shortcuts, the neural oscillators can not only communicate with neighbors but also exchange phase information with remote partners. Model 1 introduces excitatory shortcuts to enhance the synchronization within an oscillator group representing the same object. Model 2 goes further to replace the global inhibitor with a sparse set of inhibitory shortcuts. Simulation results indicate that the proposed small-world models could achieve synchronization faster than the original LEGION model and are more likely to bind disconnected image regions belonging together. In addition, we argue that these two models are more biologically plausible.  相似文献   

17.
Identifying influential nodes in very large-scale directed networks is a big challenge relevant to disparate applications, such as accelerating information propagation, controlling rumors and diseases, designing search engines, and understanding hierarchical organization of social and biological networks. Known methods range from node centralities, such as degree, closeness and betweenness, to diffusion-based processes, like PageRank and LeaderRank. Some of these methods already take into account the influences of a node’s neighbors but do not directly make use of the interactions among it’s neighbors. Local clustering is known to have negative impacts on the information spreading. We further show empirically that it also plays a negative role in generating local connections. Inspired by these facts, we propose a local ranking algorithm named ClusterRank, which takes into account not only the number of neighbors and the neighbors’ influences, but also the clustering coefficient. Subject to the susceptible-infected-recovered (SIR) spreading model with constant infectivity, experimental results on two directed networks, a social network extracted from delicious.com and a large-scale short-message communication network, demonstrate that the ClusterRank outperforms some benchmark algorithms such as PageRank and LeaderRank. Furthermore, ClusterRank can also be applied to undirected networks where the superiority of ClusterRank is significant compared with degree centrality and k-core decomposition. In addition, ClusterRank, only making use of local information, is much more efficient than global methods: It takes only 191 seconds for a network with about nodes, more than 15 times faster than PageRank.  相似文献   

18.
19.
Complex networks serve as generic models for many biological systems that have been shown to share a number of common structural properties such as power-law degree distribution and small-worldness. Real-world networks are composed of building blocks called motifs that are indeed specific subgraphs of (usually) small number of nodes. Network motifs are important in the functionality of complex networks, and the role of some motifs such as feed-forward loop in many biological networks has been heavily studied. On the other hand, many biological networks have shown some degrees of robustness in terms of their efficiency and connectedness against failures in their components. In this paper we investigated how random and systematic failures in the edges of biological networks influenced their motif structure. We considered two biological networks, namely, protein structure network and human brain functional network. Furthermore, we considered random failures as well as systematic failures based on different strategies for choosing candidate edges for removal. Failure in the edges tipping to high degree nodes had the most destructive role in the motif structure of the networks by decreasing their significance level, while removing edges that were connected to nodes with high values of betweenness centrality had the least effect on the significance profiles. In some cases, the latter caused increase in the significance levels of the motifs.  相似文献   

20.
Duplication models for biological networks.   总被引:11,自引:0,他引:11  
Are biological networks different from other large complex networks? Both large biological and nonbiological networks exhibit power-law graphs (number of nodes with degree k, N(k) approximately k(-beta)), yet the exponents, beta, fall into different ranges. This may be because duplication of the information in the genome is a dominant evolutionary force in shaping biological networks (like gene regulatory networks and protein-protein interaction networks) and is fundamentally different from the mechanisms thought to dominate the growth of most nonbiological networks (such as the Internet). The preferential choice models used for nonbiological networks like web graphs can only produce power-law graphs with exponents greater than 2. We use combinatorial probabilistic methods to examine the evolution of graphs by node duplication processes and derive exact analytical relationships between the exponent of the power law and the parameters of the model. Both full duplication of nodes (with all their connections) as well as partial duplication (with only some connections) are analyzed. We demonstrate that partial duplication can produce power-law graphs with exponents less than 2, consistent with current data on biological networks. The power-law exponent for large graphs depends only on the growth process, not on the starting graph.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号