首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 453 毫秒
1.
V K Moudgil  C Hurd 《Biochemistry》1987,26(16):4993-5001
Effects of different transforming agents were examined on the sedimentation characteristics of calf uterine progesterone receptor (PR) bound to the synthetic progestin [3H]R5020 or the known progesterone antagonist [3H]RU38486 (RU486). [3H]R5020-receptor complexes [progesterone-receptor complexes (PRc)] sedimented as fast migrating 8S moieties in 8-30% linear glycerol gradients containing 0.15 M KCl and 20 mM Na2MoO4. Incubation of cytosol containing [3H]PRc at 23 degrees C for 10-60 min, or at 0 degrees C with 0.15-0.3 M KCl or 1-10 mM ATP, caused a gradual transformation of PRc to a slow sedimenting 4S form. This 8S to 4S transformation was molybdate sensitive. In contrast, the [3H]RU486-receptor complex exhibited only the 8S form. Treatment with all three activation agents caused a decrease in the 8S form but no concomitant transformation of the [3H]RU486-receptor complex into the 4S form. PR in the calf uterine cytosol incubated at 23 or at 0 degrees C with 0.3 M KCl or 10 mM ATP could be subsequently complexed with [3H]R5020 to yield the 4S form of PR. However, the cytosol PR transformed in the absence of any added ligand failed to bind [3H]RU486. Heat treatment of both [3H]R5020- and [3H]RU486-receptor complexes caused an increase in DNA-cellulose binding, although the extent of this binding was lower when RU486 was bound to receptors. An aqueous two-phase partitioning analysis revealed a significant change in the surface properties of PR following both binding to ligand and subsequent transformation. The partition coefficient (Kobsd) of the heat-transformed [3H]R5020-receptor complex increased about 5-fold over that observed with PR at 0 degrees C.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

2.
We have investigated the effect of elastase and alkaline protease from Pseudomonas aeruginosa on airway secretion into the trachea of anesthetized cats and from human bronchial mucosa in vitro. Secretory macromolecules were radiolabeled biosynthetically with two precursors in the cat, [3H]glucose and [35S]sulfate, and with [35S]-sulfate only in human tissue. Both enzymes (2.6 x 10(-9) to 1.3 x 10(-6)M elastase and 8 x 10(-9) to 2.4 x 10(-6)M alkaline protease) released radiolabeled macromolecules in a concentration-dependent manner from the two preparations. Purified elastase, 1.3 x 10(-6)M, released radiolabeled macromolecules (delta 3H = +397 +/- 72%, delta 35S 225 +/- 40% over control, P less than 0.001) and periodic acid-Schiff- (PAS) reactive glycoconjugates (delta PAS = +4.1 +/- 0.96 micrograms/min or +102 +/- 20%; P less than 0.01) from cat trachea, as did alkaline protease, 2.4 x 10(-6)M (delta 3H = +356 +/- 57%, delta 35S = +176 +/- 25%, delta PAS = +7.5 +/- 1.3 micrograms/min or 194 +/- 36%, P less than 0.001). Increases in 3H exceeded those of 35S, suggesting surface epithelium as the main source of secretion. Inhibition of enzyme activity abolished secretory effects. Both enzymes also stimulated secretion from human bronchus (e.g., with elastase, 1.3 x 10(-6)M: delta 35S = +331 +/- 67%, delta PAS = +4.3 +/- 0.92 micrograms/min or +131 +/- 24%, P less than 0.001; with alkaline protease, 2.4 x 10(-6)M: delta 35S = +220 +/- 67%, delta PAS = +12.7 +/- 3.2 micrograms/min or +575 +/- 245%, P less than 0.001).(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

3.
Antiglucocorticoid and antiprogestin RU38486 (RU486) stimulated the growth of highly androgen- and moderately glucocorticoid-sensitive SC-3 cells (a cloned cell line from Shionogi mouse mammary carcinoma 115) in a dose-dependent manner. A maximal 8-fold stimulation of growth by RU486 has been observed at 10(-7) M in a serum-free medium and its potency has been found to be almost the same as that of dexamethasone (Dex). The growth rate of SC-3 cells treated by triamcinolone acetonide (TA) or Dex combined with RU486 at 10(-9)-10(-7) M was enhanced compared to cells treated by TA or Dex alone, indicating that RU486 had additive rather than antagonistic effects. Our previous study revealed that RU486 could compete with the specific uptake of [3H]testosterone in intact SC-3 cells at relatively low affinity and the present study showed that the stimulatory effect of RU486 on the growth of SC-3 cells was significantly inhibited by pure antiandrogen flutamine and that half-maximal inhibition by flutamine was achieved at 10(-6) M. Moreover, we demonstrated that the conditioned medium from RU486-stimulated SC-3 cells contained growth-promoting activity which caused a 3.5-fold increase in DNA synthesis by SC-3 cells in the absence of RU486 and which was abolished by treatment with heparin-Sepharose. These results indicate that RU486-induced growth of SC-3 cells may be expressed as an androgenic activity through androgen receptor and mediated by a heparin-binding growth factor.  相似文献   

4.
In order to understand the molecular basis for antiprogestin action, we have compared the interaction of the antiprogestin [3H]RU38, 486 (RU486) and the progestin [3H]R5020 with the progesterone receptor (PR). In both MCF-7 and T47D human breast cancer cells, we have observed marked differences in the sedimentation properties of the PR on high salt sucrose gradients: while the R5020-receptor complexes sediment at approximately 4 S (4.4 +/- 0.1 S), the RU486-receptor sediments as a prominent 6 S species as well as a 4 S species. This binding is abolished by excess unlabelled R5020, RU486 or progesterone, but is unaffected by excess unlabelled hydrocortisone or dexamethasone, indicating that both the 4 S and 6 S species represent the PR and not glucocorticoid receptor. Although the relative distribution of 4 S and 6 S forms is not altered by treatment with DNAse or RNAse, exposure to 10 mM thioglycerol or to 3 M urea results in conversion of the 6 S to the 4 S form, suggesting that disulfide bonds and hydrophobic interactions are important in maintaining the integrity of the 6 S form. These findings suggest that the 6 S antiprogestin complex is formed as a result of the interaction of PR units with each other or with a different protein. This change in receptor association state may be an important aspect of the antiprogestin activity of RU486.  相似文献   

5.
The effects of RU 486 on the modulation of LH release by progesterone were investigated in cultured anterior pituitary cells from ovariectomized adult female rats. The inhibitory effect of progesterone on LH secretion was demonstrable in estrogen-treated pituitary cells, in which addition of 10(-6) M progesterone to cells cultured in the presence of 10(-9) M estradiol for 52 h reduced the LH response to GnRH (10(-11) to 10(-7) M). When RU 486 was superimposed upon such combined treatment with estradiol and progesterone, the suppressive effect of progesterone on GnRH-induced LH release was completely abolished. The converse (facilitatory) effect of progesterone on LH secretion was observed in pituitary cells pretreated with 10(-9) M estradiol for 48 h and then with 10(-6) M progesterone for 4 h. When RU 486 was added together with progesterone during the 4 h treatment period, the facilitatory effect of progesterone was blocked and LH release fell to below the corresponding control value. The direct effect of RU 486 on LH secretion in the absence of exogenous progesterone was evaluated in cells cultured in the absence or presence of 10(-9) M estradiol and then treated for 4 to 24 h with increasing concentrations of RU 486 (10(-12) to 10(-5) M) and stimulated with GnRH (10(-9) M) during the last 3 h of incubation. In estrogen-deficient cultures, 4 h exposure to RU 486 concentrations of 10(-6) M and above decreased the LH response to GnRH by up to 50%. In cultures pretreated with 10(-9) M estradiol, GnRH-stimulated LH responses was inhibited by much lower RU 486 concentrations, of 10(-9) M and above. After 24 h of incubation the effects of RU 486 were similar in control and estradiol-pretreated pituitary cell cultures. Thus, RU 486 alone has a significant inhibitory effect on LH secretion that is enhanced in the presence of estrogen. The antiprogestin is also a potent antagonist of both the inhibitory and the facilitatory actions of progesterone upon pituitary gonadotropin release in vitro.  相似文献   

6.
We have examined the influence of sulfhydryl (SH)-group modifying agents on the interaction of the rat liver glucocorticoid receptor (GR) with its known agonist triamcinolone acetonide (TA) and the newly synthesized antagonist mifepristone (RU486). In the freshly prepared cytosol, [3H]TA or [3H]RU486 bound to macromolecule(s) which sediment as 8-9 moieties: the binding of either ligand can be competed with radioinert TA or RU486. The presence of 2-10 mM dithiothreitol (DTT), beta-mercaptoethanol (beta-MER), and monothioglycerol (MTG) caused a 2-3 fold increase in the [3H]TA and [3H]RU486 binding to GR. Iodoacetamide (IA) and N-ethylmaleimide (NEM) decreased the agonist binding significantly. In contrast, the [3H]RU486 binding to GR increased by 50 percent in the presence of IA. IA and NEM inhibited the binding of the heat-transformed [3H]TA-receptor complex to DNA-cellulose by 70-90 percent whereas DNA binding of [3H]RU486-bound GR was inhibited only slightly. These results indicate that either a) the interaction of GR with the agonist or antagonist steroid ligands causes differential structural alterations, which are more readily detectable in the presence of SH-modifying agents or b) the agonist and the antagonist interact with distinct steroid binding sites.  相似文献   

7.
Modulation of calf uterine progesterone receptor (PR), in relation to its binding to synthetic steroids with known agonist (R5020) and antagonist (RU486) properties, was studied in the presence of iodoacetamide (IA), N-ethylmaleimide (NEM), beta-mercaptoethanol (MER), and dithiothreitol (DTT). Pretreatment of uterine cytosol at 4 degrees C with NEM (4-10 mM) reduced the binding of [3H]RU486 to PR by 40%, but [3H] R5020 binding was completely abolished. Whereas IA (2-10 mM) treatment did not affect [3H]RU486 binding, [3H]R5020 binding was totally eliminated. DTT or MER increased the binding of both steroids slightly (15%). [3H]R5020- or [3H]RU486-receptor complexes (Rc) migrated in the 8 S region and were eliminated upon pretreatment with NEM. At 23 degrees C, DTT increased the amount of 4 S [3H]R5020-Rc, but had no effect on the [3H]RU486-Rc. In the control, [3H]RU486 binding to the 8 S PR could be competed with radioinert R5020 or RU486, but R5020 failed to compete in the presence of IA. The heat-treated [3H]R5020- and [3H]RU486-Rc showed reduced binding to DNA-cellulose in the presence of NEM and IA. The results of our study suggest that SH group modifications differentially influence the properties of mammalian PR complexed with either R5020 or RU486. In the presence of IA, the [3H]RU486-Rc remained in the 8 S form when incubated at 23 degrees C, indicating that RU486 binding causes conformational changes in PR which are distinct from those that result upon R5020 binding.  相似文献   

8.
9.
A steroid binding protein (Mr = 110,000) has previously been identified in the plasma membrane of Xenopus laevis oocytes by photoaffinity labeling with [3H]R5020. In order to further characterize this steroid receptor, the photoaffinity labeled receptor protein was solubilized with 0.1% Brij 35. The solubilized labeled receptor yielded an approximate mol. wt of 102,000 +/- 2,000 by sucrose density gradient centrifugation, suggesting that the solubilized receptor exists as a monomer. RU 486, a synthetic progestin antagonist for mammalian cytosolic receptor systems, inhibited up to 70% of [3H] R5020 photoaffinity binding to the 110,000-Dalton receptor with an IC50 of 5 microM and induced germinal vesicle breakdown (GVBD) with an EC50 of 9.0 +/- 0.6 microM. GVBD induced by RU 486 was slower than with progesterone, and RU 486 was less powerful than progesterone. Micromolar concentrations of RU 486 also potentiated GVBD induced by sub-optimal concentrations of progesterone or R5020. Furthermore, RU 486 inhibited oocyte plasma membrane adenylate cyclase with an apparent IC50 of 7.5 +/- 2.5 microM. The close correlation of the EC50 value for RU 486 induction of GVBD with the IC50 values for inhibition of [3H]R5020 photoaffinity labeling of the 110,000-Dalton receptor and inhibition of adenylate cyclase activity further supports the physiological significance of the oocyte plasma membrane steroid receptor.  相似文献   

10.
Previous results demonstrated that progesterone (P4) given simultaneously with estradiol (E2) prevented stimulation by E2 of complement C3 expression in the immature rat uterus. Northern blot analysis revealed that simultaneous administration of P4 was able to prevent the E2-stimulated increase in C3 mRNA concentration in the luminal epithelial cells. The purpose of the present investigation was to determine whether progesterone modulates C3 expression after the gene has been induced by prior administration of E2 and also to determine the reversibility of this effect by the concomitant administration of RU38486, 17 beta-hydroxy-11 beta-[4-dimethylaminophenyl]estra-4,9,-dien-3-one (RU486). This regulation was studied by examination of protein synthesis as well as mRNA concentrations. Immature 21-day-old female rats were treated with E2 for 2 days (1 microgram/day), followed 24 h later by P4 (500 micrograms) or vehicle. Uteri were removed 6, 9, and 18 h after progesterone treatment and the radiolabeled secreted proteins were analyzed by SDS-PAGE and immunoprecipitation using a goat anti-rat C3 antibody. In animals treated with vehicle, E2-stimulated C3 synthesis remained elevated at 6 and 9 h and returned to control values by 18 h. In contrast, the administration of P4 resulted in a decrease in C3 synthesis at 6 and 9 h with the greatest decrease observed at 9 h. Similar results were obtained when C3 mRNA concentrations were examined. E2-stimulated C3 mRNA concentrations were decreased in rats treated with progesterone compared to those treated with vehicle alone.2  相似文献   

11.
Progesterone (P4) has been reported to inhibit oxytocin (OT) binding to its receptor in isolated murine endometrial membranes. The purpose of the present research was to 1). examine the in vivo and in vitro effect of P4 on the binding of OT to its receptor in the ovine endometrium and 2). determine whether the endometrial plasma membranes have high-affinity binding sites for P4. Ovariectomized ewes were pretreated with a sequence of estradiol-17beta (2 days) and P4 (5 days) before being treated with estradiol-17beta plus either vehicle (corn oil), P4, or P4 + mifepristone (RU 486) for 3 consecutive days. Treatment of ewes with 10 mg P4/day for 3 days suppressed binding of OT (P < 0.01) compared with that of controls, whereas concomitant treatment with the progestin antagonist RU 486 (10 mg/day) blocked the effect of P4. Similarly, incubation of endometrial plasma membranes with P4 (5 ng/ml) inhibited binding of OT (P < 0.05), whereas this effect of P4 was blocked by the presence of RU 486 (10 ng/ml). By radioreceptor assay, the endometrial plasma membranes were found to contain a high-affinity binding site for P4 and the progestin agonist promegestone (Kd 1.2 x 10-9 and 1.74 x 10-10M, respectively). Incubation of endometrial plasma membranes with P4 (5 ng/ml) significantly increased the concentration of progestin binding sites. Binding of labeled promegestone (R 5020) was competitively inhibited by excess unlabeled R 5020, P4, RU 486, and OT but not by estradiol-17beta, cortisol, testosterone, and arginine vasopressin. These data suggest a direct suppressive action of P4 on the binding of OT to OT receptors in the ovine endometrial plasma membrane.  相似文献   

12.
We previously reported, using a coimmunoprecipitation assay, that the B form (PR-B) of the human progesterone receptor from T47D human breast cancer cells dimerizes in solution with the A receptor (PR-A) and that the extent of dimerization correlates with receptor binding activity for specific DNA sequences [DeMarzo, A.M., Beck, C.A., O?ate, S.A., & Edwards, D.P. (1991) Proc. Natl. Acad. Sci. U.S.A. 88, 72-76]. This suggested that solution dimerization is an intermediate step in the receptor activation process. The present study has tested the effects of the progesterone antagonist RU486 on solution dimerization of progesterone receptors (PR). As determined by the coimmunoprecipitation assay, RU486 binding did not impair dimerization of receptors; rather, the antagonist promoted more efficient solution dimerization than the progestin agonist R5020. This enhanced receptor dimerization correlated with a higher DNA binding activity for transformed receptors bound with RU486. RU486 has been shown previously to produce two other alterations in the human PR when compared with R5020. PR-RU486 complexes in solution exhibit a faster sedimentation rate (6 S) on salt-containing sucrose density gradients than PR-R5020 complexes (4 S), and PR-DNA complexes have a faster electrophoretic mobility on gel-shift assays in the presence of RU486. We presently show that the 6 S PR-RU486 complex is a receptor monomer, not a dimer. The increased sedimentation rate and increased mobility on gel-shift assays promoted by RU486 were also observed with recombinant PR-A and PR-B separately expressed in insect cells from baculovirus vectors. These results suggest that RU486 induces a distinct conformational change both in PR monomers in solution and in dimers bound to DNA. We also examined whether conformational changes in PR induced by RU486 would prevent a PR polypeptide bound to RU486 from heterodimerization with another PR polypeptide bound to R5020. To evaluate this, PR-A and PR-B that were separately bound to R5020 or RU486 in whole cells were mixed in vitro. PR-A-RU486 was capable of dimerization with PR-B-R5020, and this was demonstrated for heterodimers both formed in solution and bound to specific DNA. The capability to form heterodimers in vitro raises the possibility that the antagonist action of RU486 in vivo could in part be imposed in a dominant negative fashion through heterodimerization between one receptor subunit bound to an agonist and another bound to RU486.  相似文献   

13.
Using Chromosorb chromatography and HPLC, we measured the plasma concentrations of RU 486, and its monodemethylated (RU 42633), didemethylated (RU 42848) and alcoholic nondemethylated (RU 42698) metabolites up to 72 h following oral ingestion of 100 mg of RU 486 by five female volunteers. The peak plasma level of RU 486 (4.5 mumol/l) occurred within 1 h after ingestion of the compound; at this point significant amounts of the metabolites were also present in the plasma. After the initial redistribution within 6 h the plasma concentrations of RU 486 and three of its metabolites measured remained stable for 24 h. Concentrations of the monodomethylated metabolite exceeded those of the parent steroid during the time period measured, whereas the concentrations of the didemethylated and alcoholic metabolites were lower than those of RU 486, but still notable. At 72 h the concentrations of all the four steroids were still in the micromolar range. The relative binding affinities of these metabolites to human endometrial and myometrial progesterone receptors as well as to human placental glucocorticoid receptors were determined in vitro. The affinity of RU 486 for the human uterine progesterone receptor (Kd = 1.3 X 10(-9) M for RU 486) was higher than that of progesterone but lower than that of ORG-2058, a potent synthetic progestin. The relative binding affinities of the monodemethylated, alcoholic and didemethylated metabolites to the progesterone receptor were 21, 15 and 9%, respectively, compared with the parent compound RU 486; each was lower than that of progesterone (43%). RU 486 had an approx. 4-fold higher relative binding affinity to the glucocorticoid receptor than dexamethasone. Interestingly, the relative binding affinities of the metabolites studied to the human glucocorticoid receptor exceeded those of dexamethasone or cortisol. Compared with the parent compound RU 486, they were 61, 48 and 45% for the monodemethylated, alcoholic and didemethylated metabolites, respectively; each was higher than that of dexamethasone (23%). The affinity of dexamethasone to the human glucocorticoid receptor was 1.6 X 10(-9) M. These data indicate that the pool of certain metabolites of RU 486 may contribute to a significant extent to the antiprogestagenic (23-33%) and even greater extent to the antiglucocorticoid (47-61%) effects of RU 486.  相似文献   

14.
15.
(H+ + K+)-ATPase-enriched membranes from hog stomachs were tested for their capacity to autophosphorylate using [gamma-32P]ATP or [gamma-35S]ATP[S] as phosphate donors. The radioactive polypeptides were characterized by SDS-PAGE. In the presence of Mg2+ and 5 microM [gamma-32P]ATP, rapid and transient incorporation of 32P occurred at 0 degrees C. Radioactivity was essentially found in the major polypeptide of the material, the 95 kDa subunit of (H+ + K+)-ATPase. Under the same experimental conditions, thiophosphorylation was slower and reached a plateau within 1 h. Incorporation levels were higher with manganese than with magnesium. After one hour at 0 degrees C, and in the presence of 10 mM manganese and 5 microM ATP[S], 0.58 +/- 0.06 nmoles of thiophosphate were incorporated per mg of protein. Twenty seven percent of the thiophosphorylated amino acids were acylphosphates i.e. likely to be the ATPase thiophosphointermediate. The remaining thiophosphorylated amino acids (73%) were thought to be produced by protein kinases. This was supported by the autoradiographies of membrane SDS-PAGE which indicated that, in addition to the 95 kDa ATPase subunit, other polypeptides were thiophosphorylated especially at 108, 58, 47, 45 and 36-40 kDa. A previous study had provided strong evidence that chloride transport in gastric microsomes, is modulated by a protein kinase-dependent phosphorylation (Soumarmon, A., Abastado, M., Bonfils, S. and Lewin M.J.M. (1980) J. Biol. Chem. 255, 11682-11687). In the present work, we demonstrate that the peptidic inhibitor of cAMP-dependent protein kinases decreased thiophosphorylation of a 45 kDa polypeptide. We suggest that this polypeptide could be regarded as a candidate for the role of chloride transporter or chloride transport regulator.  相似文献   

16.
A pulse-chase labeling technique was used to determine the properties of glucocorticoid receptors occupied by the antiglucocorticoid hormone RU486 in S49.1 mouse lymphoma cells. Cells were pulse-labeled with [35S]methionine and then at the beginning of the chase, either no hormone (control), dexamethasone, or RU486 was added to cells. At 4 h into the chase, cytosol was prepared and receptors were immunoadsorbed to protein A-Sepharose using the BuGR2 antireceptor antibody. Immunoadsorbed proteins were resolved by gel electrophoresis and analyzed by autoradiography. The 90 kDa heat shock protein (hsp90) coimmunoadsorbed with receptors from control cells when protein A-Sepharose pellets were washed with 250 mM NaCl but not when protein A-Sepharose pellets were washed with 500 mM NaCl, indicating that hsp90-receptor complexes are disrupted by a high concentration of salt in the absence of molybdate. hsp90 coimmunoadsorbed with receptors from RU486-treated cells even when protein A-Sepharose pellets were washed with 500 mM NaCl, indicating that RU486 stabilizes the association of hsp90 with the glucocorticoid receptor. In contrast, hsp90 did not coimmunoadsorb with receptors from dexamethasone-treated cells, consistent with earlier evidence that hsp90 dissociates from the receptor when the receptor binds glucocorticoid hormone. Dexamethasone induced a rapid quantum decrease in the amount of normal receptor recovered from cytosol but did not induce a decrease in the amount of nuclear transfer deficient receptor recovered from cytosol, consistent with tight nuclear binding of normal receptors occupied by dexamethasone. In contrast, RU486 did not induce a quantum decrease in the recovery of normal receptors from cytosol, indicating that receptors occupied by RU486 are not tightly bound in the nuclear fraction. We conclude that the antiglucocorticoid hormone RU486, in contrast to the glucocorticoid hormone dexamethasone, stabilizes the association between the glucocorticoid receptor and hsp90. The decreased affinity of receptors occupied by RU486 for the nuclear fraction may be due to their association with hsp90 and may account for the failure of RU486 to exert agonist activity.  相似文献   

17.
To clarify the mechanisms by which progesterone acts as a mediator in the ovulatory process, ovulation rate and proteolytic enzyme activities were investigated in immature 22-day-old rats treated with PMSG/hCG, RU486 (10 mg/kg), synthetic antiprogesterone, and RU486 (10 mg/kg) + progesterone (10 mg/kg). The number of ova was significantly decreased when RU486 (10 mg/kg) was given from 2 h before to 4 h after the hCG injection. In addition, its inhibitory action on ovulation was reversed by exogenous progesterone (10 mg/kg) at 2 or 4 h after the hCG injection. Serum progesterone and estradiol concentrations in the rats treated with RU486 did not show any significant differences compared to controls. The proteolytic enzyme activities were measured by using the synthetic substrates alpha-N-benzoyl-DL-Arg-beta naphthylamide (BANA) and dinitrophenyl peptide (DNP). Activities were significantly increased after hCG injection in the control group during 8-9 h for BANA hydrolase and 7-10 h for DNP peptidase. The preovulatory increase of these activities was totally suppressed by RU486 with hCG. After administration of progesterone (10 mg/kg) following hCG and RU486 injection, the elevation of proteolytic, enzyme activities in the preovulatory phase was effectively reversed, and levels became similar to those in the control group. These results suggest that progesterone plays an indispensable role in the first 4 h of the ovulatory process by regulating proteolytic enzyme activities.  相似文献   

18.
C Hurd  V K Moudgil 《Biochemistry》1988,27(10):3618-3623
We have examined and compared the binding characteristics of the progesterone agonist R5020 [promegestone, 17,21-dimethylpregna-4,9(10)-diene-3,20-dione] and the progesterone antagonist RU486 [mifepristone, 17 beta-hydroxy-11 beta-[4-(dimethylamino) phenyl]-17 alpha-(prop-1-ynyl)-estra-4,9-dien-3-one] in calf uterine cytosol. Both steroids bound cytosol macromolecule(s) with high affinity, exhibiting Kd values of 5.6 and 3.6 nM for R5020 and RU486 binding, respectively. The binding of the steroids to the macromolecule(s) was rapid at 4 degrees C, showing saturation of binding sites at 1-2 h for [3H]progesterone and 2-4 h for both [3H]R5020 and [3H]RU486. Addition of molybdate and glycerol to cytosol increased the extent of [3H]R5020 binding. The extent of [3H]RU486 binding remained unchanged in the presence of molybdate, whereas glycerol had an inhibitory effect. Molybdate alone or in combination with glycerol stabilized the [3H]R5020- and [3H]RU486-receptor complexes at 37 degrees C. Although the rate of association of [3H]RU486 with the cytosolic macromolecule was slower than that of [3H]R5020, its dissociation from the ligand-macromolecule complex was significantly slower than [3H]R5020. Competitive steroid binding analysis revealed that [3H]progesterone, [3H]R5020, and [3H]RU486 compete for the same site(s) in the uterine cytosol, suggesting that all three bind to the progesterone receptor (PR). Sedimentation rate analysis showed that both steroids were bound to a molecule that sediments in the 8S region. The 8S [3H]R5020 and [3H]RU486 peaks were abolished by excess radioinert progesterone, RU486, or R5020.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

19.
Incorporation of 35S into protein is reduced by exposure to Al in wheat (Triticum aestivum), but the effects are genotype-specific. Exposure to 10 to 75 [mu]M Al had little effect on 35S incorporation into total protein, nuclear and mitochondrial protein, microsomal protein, and cytosolic protein in the Al-resistant cultivar PT741. In contrast, 10 [mu]M Al reduced incorporation by 21 to 38% in the Al-sensitive cultivar Katepwa, with effects becoming more pronounced (31-62%) as concentrations of Al increased. We previously reported that a pair of 51-kD membrane-bound proteins accumulated in root tips of PT741 under conditions of Al stress. We now report that the 51-kD band is labeled with 35S after 24 h of exposure to 75 [mu]M Al. The specific induction of the 51-kD band in PT741 suggested a potential role of one or both of these proteins in mediating resistance to Al. Therefore, we analyzed their expression in single plants from an F2 population arising from a cross between the PT741 and Katepwa cultivars. Accumulation of 1,3-[beta]-glucans (callose) in root tips after 24 h of exposure to 100 [mu]M Al indicated that this population segregated for Al resistance in about a 3:1 ratio. A close correlation between resistance to Al (low callose content of root tips) and accumulation of the 51-kD band was observed, indicating that at least one of these proteins cosegregates with the Al-resistance phenotype. As a first step in identifying a possible function, we have demonstrated that the 51-kD band is most clearly associated with the tonoplast. Whereas Al has been reported to stimulate the activity of the tonoplast H+-ATPase and H+-PPase, antibodies raised against these proteins did not cross-react with the 51-kD band. Efforts are now under way to purify this protein from tonoplast-enriched fractions.  相似文献   

20.
Sepsis blunts the ability of nutrient signaling by leucine to stimulate skeletal muscle protein synthesis by impairing translation initiation. The present study tested the hypothesis that overproduction of either tumor necrosis factor (TNF)-alpha or glucocorticoids mediate the sepsis-induced leucine resistance. Prior to producing peritonitis, rats received either vehicle, TNF binding protein (TNF(BP)) to inhibit endogenous TNFalpha action, and/or the glucocorticoid receptor antagonist RU486. Leucine was orally administered to all rats 24 h thereafter and the gastrocnemius removed 20 min later to assess protein synthesis and signaling components important in controlling peptide-chain initiation. Muscle protein synthesis was 65% lower in septic rats administered leucine than in leucine-treated control animals. This reduction was not prevented by either TNF(BP) or RU486 alone, but was completely reversed by the combination. This sepsis-induced leucine resistance was associated with an 80% reduction in the amount of active eIF4E.eIF4G complex, a 5-fold increase in the formation of the inactive eIF4E.4E-BP1 complex as well as markedly reduced (at least 70%) phosphorylation of 4E-BP1, eIF4G, S6K1, S6, and mTOR. Pretreatment of septic rats with either TNF(BP) or RU486 individually only nominally improved the leucine action as assessed by the above-mentioned endpoints. In contrast, when TNF(BP) and RU486 were co-administered, the ability of sepsis to impair the leucine-stimulated phosphorylation of 4E-BP1, eIF4G, S6K1, and S6 as well as the redistribution of eIF4E was essentially prevented. No differences in the total amount or phosphorylation of eIF2alpha and eIF2Bepsilon were detected between the different groups, and changes could not be attributed to differences in the prevailing plasma concentration of insulin or leucine. Our data demonstrate the sepsis-induced leucine resistance in skeletal muscle results from the cooperative interaction of both TNFalpha and glucocorticoids.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号