首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 109 毫秒
1.
钱芳 《生物学通报》2003,38(5):61-61
中学课本中 ,通过燕麦胚芽鞘的向光性实验说明 :“胚芽鞘的尖端能产生生长素 ,并从尖端运输到下部 ,能促使下部生长”。而对生长素为什么能使植物显示出向光性是这样解释的 :“这与单侧光引起的生长素分布不均匀有关。光线能改变生长素的分布 :向光的一侧生长素分布得少 ,背光的一侧生长素分布得多。因此 ,向光的一侧 ,细胞生长得慢 ,背光的一侧 ,细胞生长得快。结果 ,茎朝向生长慢的一侧弯曲 ,也就是朝向光源的一侧弯曲 ,使植物的茎表现出向光性。”受单侧光的照射发生生长素分布不均的部位究竟是胚芽鞘尖端、胚芽鞘下部、还是整个部分 ,在…  相似文献   

2.
在不同的环境条件下.植物胚芽鞘的生长情况有所不同.但究竟是什么因素影响胚芽鞘生长呢?本组人员设计用云母片、琼脂块、碳素笔水和钢笔水以及黄豆芽尖端处理了长度约2cm的胚芽鞘的系列实验.观察到不同的实验现象,获得大量的实验数据,总结出影响胚芽鞘生长的各种因素。  相似文献   

3.
已有研究证实,6-甲氧基-2-并噁唑啉酮(6-methoxy-2-benzoxazolinone,MBOA)是引起玉米胚芽鞘向光性运动的主要物质。本文采用生物测定和HPLC分析等方法,对MBOA的生理作用特点做进一步的探讨,结果表明:1.光刺激下收集的胚芽鞘分泌物主要成份是MBOA,该物质明显抑制鸡冠花和水芹下胚轴的伸长。2.将MBOA与IAA混合处理胚芽鞘,产生相互拮抗的效果。3.单侧放置含MBOA琼脂块能引起去顶胚芽鞘弯曲生长。4.伤害胁迫使胚芽鞘MBOA含量增加。因此,MBOA不仅是引起植物向光性运动的物质,也是与抗伤害胁迫有关的天然抑制物质,其生理功能之一是与生长素的作用相互拮抗,并抑制植物生长。  相似文献   

4.
6—甲氧基—2—并恶唑啉酮的一些生理作用   总被引:1,自引:0,他引:1  
已有研究证实,6-甲氧基-2-并恶唑啉酮是引起玉米胚芽鞘向光性运动的主要物质本文采用生物测定和HPLC分析等方法,对MBOA的生理作用特点做进一步的探讨。结果表明:1.光刺激下收集的胚芽鞘发泌物主要成份是MBOA,该物质明显抑制鸡冠花和水芹下胚轴的伸长,2.将MBOA与IAA混合处理胚芽鞘,产生相互拮抗的效果。3.单侧放置含MBOA琼脂块能引起去顶胚芽鞘弯曲生长,4.伤害胁迫使胚芽鞘BMOA含量增  相似文献   

5.
先前的研究考察了红光对玉米(Zea mays L.cv.Royaldent Hit85)胚芽鞘向光性反应的影响,本研究进一步分析了红光对蓝光照射时间依赖型向光性(TDP)影响的光具-反应曲线,发现该反应不像红光对脉冲蓝光诱导的向光性的影响那样属于超低光量反应,而是一种低光量反应,且之后的脉冲远红光可以逆转红光对TDP影响的效果。但远红光预处理延长后,逆转了的TDP反应性可以得到恢复。不仅如此,暗适应胚芽鞘接受不同时间的单独远红光预处理后可同样获得与预处理光量成比例的TDP反应性,表明暗适应胚芽鞘在接受远红光顶处理后亦可建立起长时间向光性蓝光照射的反应能力。远红光对TDP反应性影响的光量-反应曲线分析揭示,该远红光影响依赖于照射时间并要求高光量。鉴于高光量范围内上述远红影响不符合所谓反比定律,远红光对TDP反应性的影响很可能属一高辐照反应,根据上述研究发现探讨了植物光敏素作用模式与不同光性反应信号转导途径之间可能存在的相互关系。  相似文献   

6.
采用高效液相色谱分析等方法,对玉米(ZeamaysL.)胚芽鞘在单侧蓝光作用下产生的生物活性物质进行分析发现:1.在单侧蓝光作用下,胚芽鞘向光侧的生长抑制物质6甲氧基2苯并唑啉酮(MBOA)含量比背光侧多1.5倍。2.向光性刺激后,胚芽鞘向光侧和背光侧生长素的含量没有出现明显的差异。3.于胚芽鞘一侧外施MBOA及其类似物5,6dimethoxy2benzoxazolinone(DMBOA)和2chloro5,6dimethoxy2benzoxazolinone(ClDMBOA)等抑制物质,均使胚芽鞘产生弯曲生长,表明引起玉米胚芽鞘向光性运动的直接原因是MBOA分布不均匀。  相似文献   

7.
“小麦(Triticum aestivum L.)胚芽鞘的向光弯曲”是经典实验,该实验对于提高学生的学习兴趣,培养学生的探究能力,学习科学家严密的科学思维和追求真理的精神具有重要的意义。从小麦种子的处理、胚芽鞘尖端剪切的长度、观察时间等方面对该实验进行了改进,取得良好的实验效果。以青菜(Brassica chinensis L.)为材料进行了拓展探究,发现青菜幼苗是可用于向光性演示实验的好材料。  相似文献   

8.
"生命活动的调节"的复习建议   总被引:1,自引:0,他引:1  
傅孝溪  胡玉 《生物学通报》2002,37(11):39-42
1 建构知识结构植物激素的调节植物激素的概念体内合成、微量有机物运输到作用部位高效调节作用生长素发展史1 880年达尔文对金丝雀 草胚鞘生长的研究1 92 8年荷兰人温特对燕麦胚芽鞘的研究1 934年荷兰人郭葛从植物中分离出吲哚乙酸理论要点产生部位 :主要在叶原基、嫩叶、发育的种子分布部位 :多集中于生长旺盛的部位运输方向、方式 :极性运输、主动运输生理作用向性运动 :植物的向光性、向重力性两重性 :与生长素的浓度有关同一植物不同器官对生长素浓度的反应不一样植物的顶端优势生产应用顶端优势原理的利用促进扦插的枝条生根促进果…  相似文献   

9.
植物的向性运动及机理简介   总被引:3,自引:1,他引:2  
高等植物不能象动物一样自由移动整体的位置 ,但植物体的器官在空间可以产生移动 ,以适应环境的变化 ,这就是植物的运动。高等植物的运动主要有两种类型 :向性运动 (tropicmovement)和感性运动 (nasticmove ment)。植物向性运动是指在刺激方向和诱导所产生运动的方向之间有固定关系的运动。依外界因素的不同 ,向性运动主要包括向光性、向重力性、向触性、向化性和向水性等。向性运动大多是生长性运动 ,是不可逆的运动过程。1 向光性 (Phototropism)植物随光的方向而弯曲的能力称为向光性 ,向光性是植物为捕获更多光能而建立起来的对不良光…  相似文献   

10.
小麦胚芽鞘扩展蛋白特性及对水分胁迫的响应   总被引:3,自引:0,他引:3  
扩展蛋白是植物细胞壁延伸过程中的关键调节因子,在植物的生长发育以及对逆境的响应过程中起着重要作用。本文选用小麦(HF 9703)胚芽鞘为材料,采用Hepes法和SDS法分别提取小麦胚芽鞘扩展蛋白,通过改良的植物组织伸长测定仪测定其活性,并利用扩展蛋白抗体进行免疫印迹以检测其丰度,主要研究了小麦胚芽鞘扩展蛋白的特性及对水分胁迫的响应。结果表明:Hepes法提取的扩展蛋白活性较高,而SDS法的提取效率高;离体小麦胚芽鞘扩展蛋白的活性具有pH依赖性,且随缓冲液的交替更换(pH 4.5:pH 6.8)而反复逆转;扩展蛋白主要定位于细胞壁中;小麦胚芽鞘扩展蛋白和黄瓜下胚轴扩展蛋白具有交叉重组活性,但这种活性具有种属特异性。水分胁迫诱导小麦胚芽鞘扩展蛋白的活性和丰度提高,扩展蛋白活性的提高在小麦对水分胁迫的抗性方面可能具有重要作用。  相似文献   

11.
Distribution of endogenous diffusible auxin into agar blocks from phototropically stimulated maize coleoptile tips was studied using a bioassay and a physicochemical assay, to clarify whether phototropism in maize coleoptiles involves a lateral gradient in the amount of auxin. At 50 min after the onset of phototropic stimulation, when the phototropic response was still developing, direct assay of the blocks with the Avena curvature test showed that the auxin activity in the blocks from the shaded half-tips was twice that of the lighted side, at both the first and second positive phototropic curvatures. However, physicochemical determination following purification showed that the amount of indole-3-acetic acid (IAA) was evenly distributed in the blocks from lighted and shaded coleoptile half-tips at both the first and second positive phototropic curvatures. The even distribution of the IAA was also confirmed with the Avena curvature test following purification by HPLC. These results indicate that phototropism in maize coleoptiles is not caused by a lateral gradient of IAA itself and thus cannot be described by the Cholodny-Went theory. Furthermore, the lower auxin activity in the blocks from the lighted half-tips suggests the presence of inhibitor(s) interfering with the action of auxin and their significant diffusion from unilaterally illuminated coleoptile tips.  相似文献   

12.
It was investigated whether or not gravitropism and phototropismof maize (Zea mays L.) coleoptiles behave as predicted by theCholodny-Went theory in response to auxin application, decapitationand combinations of these treatments. Gravitropism was inducedat an angle of 30° from the vertical, and phototropism,by a pulse of unilateral blue light. Either tropism of the coleoptilewas inhibited by IAA, applied as a ring of IAA-lanolin pasteto its sub-apical part, and by decapitation. The dose-responsecurves for the effects of applied IAA on tropisms and growthof intact coleoptiles as well as the time courses of tropismsinduced in decapitated coleoptiles could be explained by thethree conclusions in the literature: (1) the tip of the coleoptileis the site of auxin production, (2) lateral translocation ofauxin in gravitropism occurs along the length of the coleoptile,and (3) lateral translocation of auxin in phototropism occursin the coleoptile tip. By examining the effects of decapitationmade at different distances from the top and of IAA appliedto the cut surface of decapitated coleoptiles, it was indicatedthat auxin is produced in the apical 1 mm zone of an intactcoleoptile and that lateral auxin translocation for phototropismtakes place in an apical part that somewhat exceeds the zoneof auxin production. (Received October 14, 1994; Accepted December 26, 1994)  相似文献   

13.
Haga K  Takano M  Neumann R  Iino M 《The Plant cell》2005,17(1):103-115
We isolated a mutant, named coleoptile phototropism1 (cpt1), from gamma-ray-mutagenized japonica-type rice (Oryza sativa). This mutant showed no coleoptile phototropism and severely reduced root phototropism after continuous stimulation. A map-based cloning strategy and transgenic complementation test were applied to demonstrate that a NPH3-like gene deleted in the mutant corresponds to CPT1. Phylogenetic analysis of putative CPT1 homologs of rice and related proteins indicated that CPT1 has an orthologous relationship with Arabidopsis thaliana NPH3. These results, along with those for Arabidopsis, demonstrate that NPH3/CPT1 is a key signal transduction component of higher plant phototropism. In an extended study with the cpt1 mutant, it was found that phototropic differential growth is accompanied by a CPT1-independent inhibition of net growth. Kinetic investigation further indicated that a small phototropism occurs in cpt1 coleoptiles. This response, induced only transiently, was thought to be caused by the CPT1-independent growth inhibition. The 3H-indole-3-acetic acid applied to the coleoptile tip was asymmetrically distributed between the two sides of phototropically responding coleoptiles. However, no asymmetry was induced in cpt1 coleoptiles, indicating that lateral translocation of auxin occurs downstream of CPT1. It is concluded that the CPT1-dependent major phototropism of coleoptiles is achieved by lateral auxin translocation and subsequent growth redistribution.  相似文献   

14.
Elongation growth of intact, red-light grown maize (Zea mays L.) coleoptiles was studied by applying a small spot of an indole acetic acid (IAA)-lanolin mixture to the coleoptile tip. We report that: (a) endogenous auxin is limiting for growth, (b) an approximately linear relation holds between auxin concentration and growth rate over a range which spans those rates occurring in phototropism, and (c) an auxin gradient established at the coleoptile tip is well sustained during its basipetal transport. We argue that the growth differential underlying coleoptile phototropism (first-positive curvature) can be explained by redistribution of auxin at the coleoptile tip.  相似文献   

15.
Kaldenhoff R  Iino M 《Plant physiology》1997,114(4):1267-1272
The literature indicates that the tip of maize (Zea mays L.) coleoptiles has the localized functions of producing auxin for growth and perceiving unilateral light stimuli and translocating auxin laterally for phototropism. There is evidence that the auxinproducing function of the tip is restored in decapitated coleoptiles. We examined whether the functions for phototropism are also restored by using blue-light conditions that induced a first pulse-induced positive phototropism (fPIPP) and a time-dependent phototropism (TDP). When the apical 5 mm, in which photosensing predominantly takes place, was removed, no detectable fPIPP occurred even if indole-3-acetic acid (lanolin mixture) was applied to the cut end. However, when the blue-light stimulation was delayed after decapitation, fPIPP became inducible in the coleoptile stumps supplied with indole-3-acetic-acid/lanolin (0.01 mg g-1), indicating that phototropic responsiveness was restored. This restoration progressed 1 to 2 h after decapitation, and the curvature response became comparable to that of intact coleoptiles. The results for TDP were qualitatively similar, but some quantitative differences were observed. It appeared that the overall TDP was based on a major photosensing mechanism specific to the tip and on at least one additional mechanism not specific to the tip, and that the tip-specific TDP was restored in decapitated coleoptiles with kinetics similar to that for fPIPP. It is suggested that the photoreceptor system, which accounts for fPIPP and a substantial part of TDP, is regenerated in decapitated coleoptiles, perhaps together with the mechanism for lateral auxin translocation.  相似文献   

16.
Time-dependent phototropism (TDP), sometimes called second positive curvature, occurs when the duration of phototropic stimulation with blue light (B) exceeds a few minutes. TDP was characterized in maize (Zea mays L.) coleoptiles raised under continuous red light (R). Subsequently, coleoptiles adapted to darkness were used to investigate the effect of R on TDP. It was found that TDP, which is induced in R-grown coleoptiles, does not occur in dark-adapted coleoptiles and that dark-adapted coleoptiles begin to show TDP after treatment with R. The TDP responsiveness became maximal 1-2 h after treatment with a R pulse and decreased during the next few hours. At least 10 min was required after a short pulse of R before the coleoptile began to respond to B for the induction of TDP. The effect of R in establishing the TDP responsiveness was totally suppressed by a pulse of far-red light given immediately after an inductive pulse of R. It is concluded that the mechanism of TDP requires for its establishment a R signal perceived by phytochrome. The TDP of R-grown and R-pretreated coleoptiles showed relationships to stimulation times and fluence rates that are similar to those reported for oat coleoptiles, except that TDP of maize showed a sharp increase in its magnitude within a narrow range of stimulation times as short as 5-10 min.  相似文献   

17.
The short-term growth response of oat (Avena sativa L.) coleoptiles to exogenously applied uridine was studied both in excised apical segments and in the intact seedlings. In both cases growth of coleoptile tissue was inhibited by uridine. The inhibition of coleoptile growth consistently occurred 20–30 min after uridine treatment, which is within the lag period of their phototropic response. Asymmetric application of uridine to coleoptiles in the intact seedlings resulted in their bending toward the direction to which uridine was applied in the absence of light stimulus. These findings suggest that uridine or its metabolites, plays an important role in the phototropism of oat coleoptiles and provide support to the Bruinsma–Hasegawa theory as an alternative to the Cholodny–Went theory for explaining phototropism.  相似文献   

18.
Seedlings of maize ( Zea mays L. cv. Golden Cross Bantam T-51) were grown under microgravity conditions simulated by a three-dimensional clinostat. On the clinostat, maize shoots exhibited curvatures in three different portions: (1) the basal transition zone connecting roots and mesocotyls, (2) the coleoptile node located between mesocotyls and coleoptiles, and (3) the elongating region of the coleoptiles. Even non-clinostatted control shoots showed some degree of curvature away from the caryopsis in the transition zone and bending toward the caryopsis in the coleoptile node. Clinostat rotation greatly stimulated these curvatures. Control coleoptiles elongated almost straightly, whereas coleoptiles on the clinostat bent either away from or toward the caryopsis depending on the timing of rotation. The curvature in all three portions became larger with time, both in control and clinostatted seedlings. There was no difference in the osmotic concentration of the cell sap between the convex and the concave halves of any portion. However, in coleoptile nodes and coleoptiles, the faster-expanding convex side exhibited a higher extensibility of the cell wall than the opposite side, and this appears to be a cause of the curvature. Thus, changes in the cell wall metabolism may be involved in automorphosis, which governs the life cycle of plants under a microgravity environment.  相似文献   

19.
The amounts of two growth inhibitors in diffusates from illuminatedhalves of phototropically stimulated oat (Avena sativa L.)coleoptile tips were larger than those from shaded halves. The less polarinhibitor was isolated from diffusates from oat coleoptile tips illuminatedwithblue light, and identified as uridine from 1H NMR spectrum. Thedistribution of endogenous uridine in diffusates from the illuminated andshadedsides of coleoptile tips unilaterally exposed to blue light for 3, causing a first positive phototropic curvature, and fromdark-control tips, was determined using a physicochemical assay. The uridineconcentration was significantly higher in the diffusates from the illuminatedside than in those from the shaded side and the dark-control. Uridine inhibitedthe growth of etiolated oat coleoptile tips at concentrations of 30 and above. These results suggest that uridine plays a role inthe phototropism of oat coleoptiles.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号