首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
Stepien A  Ziecik AJ 《Theriogenology》2002,57(9):2217-2227
LH/hCG as well as oxytocin receptors are present in the porcine endometrium. Oxytocin increases phosphatidylinositol hydrolysis in this tissue, but its action on adenylate cyclase activity is disputed. The second messenger system responding to LH/hCG in endometrial cells has not been established. In this study, we investigated the involvement of protein kinase A and C signaling mechanisms in the action of LH on porcine endometrial cells in vitro. The possibility of cAMP accumulation after treatment of endometrial cells with oxytocin was also investigated. Endometrial tissue was obtained from gilts during Days 12-15 of the estrous cycle. To study the adenylate cyclase system, endometrial cells were cultured for 48 h and then incubated with different doses of LH or oxytocin for 15, 30, 60, and 180 min. To study the phospholipase C system, dispersed cells were first labeled with myo-[3H]inositol and then treated with increasing doses of LH or 100 nM of oxytocin for 30 min. Time- and dose-dependent effect of LH and oxytocin on cAMP concentration was observed. After 30 min of incubation only the highest dose of LH (100 ng/ml) was able to increase cAMP concentration in medium (P < 0.05). Longer periods (1 and 3 h) caused increased cAMP accumulation after treatment with 10 and 100 ng/ml of LH (P < 0.001). Oxytocin-stimulated cAMP concentration was observed after 1 h when only the highest dose (1000 nM) of hormone was used (P < 0.01) and after 3 h of incubation with doses of 10-1000 nM (P < 0.01). LH (10 and 100 ng/ml) increased inositol phosphates (IPs) accumulation in endometrial cells after 30 min of incubation (P < 0.01). Oxytocin involvement in IPs synthesis was more apparent than was LH (P < 0.001 versus P < 0.01). This is the first demonstration that LH receptor signaling leads to increased cAMP generation as well as IPs turnover in porcine endometrium. Oxytocin-dependent cAMP production in endometrial cells of swine was found after longer periods (3 h) of incubation. Our observations lead to the conclusion that both protein kinase A and C second messenger systems are involved in LH action and that oxytocin is able to stimulate adenylate cyclase activity in porcine endometrial cells.  相似文献   

2.
The secretion of steroids and the release of cAMP in response to repeated luteinizing hormone (LH) stimulation were examined during superfusion of isolated preovulatory rat follicles. A high dose of ovine LH (1 microgram/ml for 20 min) caused a prolonged increase in the secretion of progesterone (P) and 20 alpha-dihydroprogesterone (20 alpha-OHP) and a transient increase in the secretion of testosterone (T) and estradiol-17 beta (E2), and was accompanied by a peak of cAMP release. A single pulse of LH at a low dose level (10 mg/ml for 20 min) gave a limited increase in T secretion, but no clear change in P, 20 alpha-OHP and E2 secretion or cAMP release. When the follicles were challenged with a second pulse of LH (at 1 microgram/ml), the response varied according to the dose of LH delivered in the preceding pulse. Following exposure to the high dose of LH, the follicles were partially refractory to the second LH challenge in terms of cAMP and P and the secretion of T and E2 remained low. The low dose of LH, however, had a conditioning effect on the follicles since the response to the second LH challenge was amplified in terms of P, 20 alpha-OHP and cAMP. In this case a secondary increase in T and E2 secretion was found. The differential response to varying doses of LH are likely to reflect the physiological control of steroidogenesis during final follicular maturation.  相似文献   

3.
The role of adenosine 3',5'-cyclic monophosphate (cAMP) as an intracellular second messenger of luteinizing hormone (LH) was reinvestigated in vitro with diterpene forskolin, a highly specific activator of adenylate cyclase. Treatment of cultured testicular cells from adult hypophysectomized rats with increasing concentrations (10(7)-10(-4) M) of forskolin produced dose-dependent increments in cAMP and testosterone accumulation. Concomitant blockade of cAMP-phosphodiesterase activity with 3-isobutyl-1-methyl-xanthine (10(-4) M) resulted in significant (P less than 0.05) enhancement of the forskolin effect for all but the 10(-4) M forskolin dose. Potency evaluation as judged by half-maximal stimulation of testosterone accumulation revealed median effective doses (mean +/- SE) of 1.25 +/- 0.2 x 10(-5), 1.7 +/- 0.5 x 10(-5), and 2.5 +/- 0.4 x 10(-10) M for forskolin, N6, O2'-dibutyryl cAMP (Bt2cAMP), and human chorionic gonadotropin (hCG), respectively. Examination of the time requirements of forskolin disclosed time-dependent increments in the accumulation of extracellular cAMP and testosterone, the earliest significant (P less than 0.05) increases being noted by 6 hr of treatment. In comparison, a minimal time requirement of less than or equal to 12 hr was noted for hCG- and choleragen-stimulated androgen biosynthesis, whereas the apparent onset of action of Bt2cAMP was delayed to the 24-hr time point. Although 10(-7) M of forskolin by itself did not alter the accumulation of testosterone, its addition resulted in substantial amplification of the hCG effect, producing a 4.6-fold reduction in the median effective dose (ED50) of hCG. Moreover, concurrent treatment with this functionally inert dose of forskolin rendered steroidogenically inert doses of hCG (eg, 10(-11) or 3 x 10(-11) M) steroidogenically potent. However, combined treatment with maximally stimulatory doses of Bt2cAMP (10(-4) M) and one of several testicular cell agonists [forskolin (10(-4) M), choleragen (10(-9) M) or hCG (10(-9) M)] did not prove additive. Taken together, our findings indicate that forskolin, like LH, is capable of stimulating testicular cAMP generation as well as androgen biosynthesis and that a functionally inert low dose of forskolin can significantly amplify LH hormonal action. Inasmuch as forskolin-stimulated and forskolin-amplified hormonal action are acceptable as novel criteria of cAMP dependence, our observations provide new evidence in keeping with the notion that cAMP may be in intracellular second messenger of LH.  相似文献   

4.
Previous experiments have demonstrated differences in various follicular characteristics between the prolific Chinese Meishan (MS) pig and European Large-White (LW) hybrids and the present experiment was designed to compare the cAMP response to LH by granulosa and theca cells in vitro between the two breeds. Ovaries were recovered from MS (n = 7) and LW hybrid (n = 8) gilts on the day before predicted oestrus and the 12 largest follicles dissected. Quadruplicate aliquots of granulosa cells or minced theca tissue were incubated for 1 h in the presence of 0, 0.1, 1.0, 10, 100 or 1000 ng/ml LH and cAMP production measured. Follicles from MS gilts were smaller (5.9 vs. 7.7 mm; P < 0.001), contained less fluid (81.5 vs. 177.4 microl; P < 0.001), had fewer granulosa cells (3.8 vs. 5.3 x 10(6); P < 0.01) and less theca tissue (30.3 vs. 50.5 mg; P < 0.05) than those from LW hybrid animals. Mean follicular fluid oestradiol concentration was > or = 149 ng/ml in all animals and tended to be higher in the MS follicles (P = 0.07). LH stimulated cAMP production by granulosa and theca cells from both breeds (P < 0.001). Although there was no overall breed effect for the granulosa cells, there was a significant (P < 0.001) interaction between LH dose and breed in the granulosa cells, whether cAMP production was expressed per 10(6) cells or per follicle. In the theca incubations, cAMP production by MS tissue was higher (P < 0.01) when results were expressed per mg tissue and again there was an interaction (P < 0.001) between LH dose and breed whether cAMP production was expressed per mg tissue or per follicle. For both tissue types, MS follicles produced more cAMP at the higher LH doses. In conclusion, this study has shown that MS granulosa and theca tissue respond differently to increasing doses of LH in terms of cAMP production in vitro compared to LW hybrid tissue and this supports previous suggestions of enhanced maturity of MS follicles in the late follicular phase.  相似文献   

5.
We wished to evaluate the effects of FSH/LH ratio and number of doses of p-FSH during a superovulatory treatment on ovulation rate and embryo production (Experiment I). In Experiment II, we studied the efficacy of fertilization after various insemination schedules in superovulated donors. In Experiment I estrus was synchronized in 40 ewes (FGA, for 9 days plus PGF2alpha on Day 7) and the ewes were randomly assigned to four treatment groups as follows (n = 10 ewes each): Group A: four p-FSH doses with the FSH/LH ratio held constant (1.6); Group B: four p-FSH doses with the FSH/LH ratio decreasing (FSH/LH 1.6-1.0-0.6-0.3); Group C: eight p-FSH doses with the FSH/LH ratio held constant (1.6); Group D: eight p-FSH doses and FSH/LH ratio decreasing (1.6-1.6, 1.0-1.0, 0.6-0.6, 0.3-0.3). p-FSH administrations were performed twice daily 12 h apart. The ewes were mated at the onset of estrus and again after 12 and 24 h; then, one ram per four ewes was maintained with the ewes for two additional days. Ovarian response and embryo production were assessed on Day 7 after estrus. Experiment II. Three groups (n = 10 each) of superovulated ewes were inseminated as follows: Group M: mated at onset of estrus; Group AI: artificial insemination 30 h after onset of estrus; M + AI) mating at onset of estrus and intrauterine AI performed 30 h from estrus with fresh semen. Results of Experiment I showed that treatment (D) improved (P < 0.05) ovulatory response in comparison to Groups (C) and (A). The fertilization rate was lower (P < 0.01) in Group D) than Group (A). Also the proportion of transferable embryos was lower in Group (D) in comparison to all the other treatments (P < 0.01). Group A gave the best production of embryos (7.3/ewe; 89.0% transferable). In Experiment II, combined mating plus AI improved fertilization rate (80.3%) compared to both mating (P < 0.01) and AI (P < 0.02) alone.  相似文献   

6.
Sheep anterior-pituitary cells permeabilized with Staphylococcus aureus alpha-toxin were used to investigate the role of cyclic AMP (cAMP) in exocytosis of luteinizing hormone (lutropin, LH) under conditions where the intracellular free Ca2+ concentration ([Ca2+]free) is clamped by Ca2+ buffers. At resting [Ca2+]free (pCa 7), cAMP rapidly stimulated LH exocytosis (within 5 min) and continued to stimulate exocytosis for at least 30 min. When cAMP breakdown was inhibited by 3-isobutyl-1-methylxanthine (IBMX), the concentration giving half-maximal response (EC50) for cAMP-stimulated exocytosis was 10 microM. cAMP-stimulated exocytosis required millimolar concentrations of MgATP, as has been found with Ca2(+)- and phorbol-ester-stimulated LH exocytosis. cAMP caused a modest enhancement of Ca2(+)-stimulated LH exocytosis by decreasing in the EC50 for Ca2+ from pCa 5.6 to pCa 5.9, but had little effect on the maximal LH response to Ca2+. Activation of protein kinase C (PKC) with phorbol 12-myristate 13-acetate (PMA) dramatically enhanced cAMP-stimulated LH exocytosis by both increasing the maximal effect 5-7-fold and decreasing the EC50 for cAMP to 3 microM. This synergism between cAMP and PMA was further augmented by increasing the [Ca2+]free. Gonadotropin-releasing hormone (gonadoliberin, GnRH) stimulated cAMP production in intact pituitary cells. Since GnRH stimulation is reported to activate PKC and increase the intracellular [Ca2+]free, our results suggest that a synergistic interaction of the cAMP, PKC and Ca2+ second-messenger systems is of importance in the mechanism of GnRH-stimulated LH exocytosis.  相似文献   

7.
The direct effects of alpha- and beta-adrenergic agents on luteinizing hormone (LH) secretion in vitro by porcine pituitary cells and the participation of secondary messengers, adenosine 3'5'-monophosphate (cAMP) and guanosine 3'5'-monophospate (cGMP), in transduction of signals induced by adrenergic agents and gonadotropin-releasing hormone (GnRH) in these cells have been investigated. Pituitary glands were obtained from mature gilts, which were ovariectomized (OVX) 1 month before slaughter. OVX gilts, assigned to four groups, were primed with: (1) vehicle (OVX); (2 and 3) estradiol benzoate (EB; 2.5mg/100kg b.w.) at 30-36h (OVX+EB I) or 60-66h (OVX+EB II) before slaughter, respectively; (4) progesterone (P(4); 120mg/100kg b.w.) for 5 consecutive days before slaughter (OVX+P(4)). Anterior pituitaries were dispersed with trypsin and then pituitary cells were cultured (10(6) per well) in McCoy's 5a medium containing horse serum (10%) and fetal calf serum (2.5%) for 3 days, at 37 degrees C and under the atmosphere of 95% air and 5% CO(2). On day 4 of the culture, the cells were submitted to 3.5h incubation in the presence of GnRH (a positive control), alpha- and beta-adrenergic agonists (phenylephrine (PHEN) and isoproterenol (ISOP), respectively), and alpha- and beta-adrenergic blockers (phentolamine (PHENT) and propranolol (PROP), respectively). The culture media were assayed for LH (experiment I) and cyclic nucleotides (experiment II).In experiment I, addition of GnRH (100ng/ml) increased LH secretion by pituitary cells taken from gilts of all experimental groups. The effects of alpha- and beta-adrenergic agents on LH secretion by the cells depended on hormonal status of gilts. The LH secretion by pituitary cells of OVX gilts was potentiated in the presence of PHEN (10, 100nM, and 1microM) and PHENT (1microM), alone or in combination with PHEN (100nM) and by the cells derived from OVX+EB I and OVX+P(4) animals in response to PHEN (100nM) and ISOP (1microM). ISOP (1microM) also stimulated LH secretion by the cells taken from OVX+EB II gilts. In experiment II, GnRH (100ng/ml) increased cGMP production by pituitary cells obtained from all groups of gilts and cAMP secretion by the cells taken from OVX and OVX+P(4) animals. PHEN (100nM) decreased and PROP (1microM) enhanced cAMP production by pituitary cells derived from OVX+EB I and OVX gilts, respectively. Moreover, PHEN (100nM) reduced, while PHENT (1microM) stimulated the release of cGMP by pituitary cells taken from OVX+EB II animals. In turn, ISOP (100nM) decreased and increased cGMP production by the cells derived from OVX+EB II and OVX+P(4) gilts, respectively. PROP (1microM) potentiated cGMP accumulation by pituitary cells taken from OVX+EB I and OVX+P(4) animals.In conclusion, our results suggest that adrenergic agents can modulate LH release by porcine pituitary cells acting through guanyl and adenylyl cyclase and in a manner dependent on hormonal status of gilts.  相似文献   

8.
Two soluble cyclic nucleotide phosphodiesterase activities, designated Peak I (Mr = 216,000) and Peak II (Mr = 230,000), have been isolated from bovine adrenal medulla by DEAE-cellulose chromatography. Peak I has Ca2+-independent, cGMP-specific phosphodiesterase activity and Peak II has cGMP-stimulated cyclic nucleotide phosphodiesterase activity. Peak I hydrolyzes cGMP with hyperbolic kinetics and demonstrates a Km of 23 microM. Peak II hydrolyzes cGMP with hyperbolic kinetics but hydrolyzes cAMP with slightly sigmoidal kinetics and demonstrates Km values of 54 +/- 0.7 microM cGMP and 38 +/- 6 microM cAMP. Cyclic AMP and cGMP are competitive inhibitors of each other's hydrolysis, suggesting that these nucleotides may be hydrolyzed at the same catalytic site. Micromolar concentrations of cGMP cause a 5-fold stimulation of the hydrolysis of subsaturating concentrations of cAMP by the Peak II phosphodiesterase. Half-maximal activation occurs at 0.5 microM cGMP and the result of activation is a decrease in the apparent Km for cAMP. Stimulation of the hydrolysis of subsaturating concentrations of cGMP by cAMP was also detected; however, cAMP is a less potent activator of the enzyme than cGMP. Cyclic AMP causes a 1.5-fold stimulation of cGMP hydrolysis and half-maximal activation occurs at 2.5 microM cAMP.  相似文献   

9.
Three experiments (EXP) were conducted to determine the role of insulin-like growth factor-I (IGF-I) in the control of growth hormone (GH) and LH secretion. In EXP I, prepuberal gilts, 65 ± 6 kg body weight and 140 days of age received intracerebroventricular (ICV) injections of saline (n = 4), 25 μg (n = 4) or 75 μg (n = 4) IGF-I and jugular blood samples were collected. In EXP II, anterior pituitary cells in culture collected from 150-day-old prepuberal gilts (n = 6) were challenged with 0.1, 10 or 1000 nM [Ala15]-h growth hormone-releasing hormone-(1-29)NH2 (GHRH), or 0.01, 0.1, 1, 10, 30 nM IGF-I individually or in combinations with 1000 nM GHRH. Secreted GH was measured at 4 and 24 h after treatment. In EXP III, anterior pituitary cells in culture collected from 150-day-old barrows (n = 5) were challenged with 10, 100 or 1000 nM gonadotropin-releasing hormone (GnRH) or 0.01, 0.1, 1, 10, 30 nM IGF-I individually or in combinations with 100 nM GnRH. Secreted LH was measured at 4 h after treatment. In EXP I, serum GH and LH concentrations were unaffected by ICV IGF-I treatment. In EXP II, relative to control all doses of GHRH increased (P < 0.01) GH secretion. Only 1, 10, 30 nM IGF-I enhanced (P < 0.02) basal GH secretion at 4 h, whereas by 24 h all doses except for 30 nM IGF-I suppressed (P < 0.02) basal GH secretion compared to control wells. All doses of IGF-I in combination with 1000 nM GHRH increased (P < 0.04) the GH response to GHRH compared to GHRH alone at 4 h, whereas by 24 h all doses of IGF-I suppressed (P < 0.04) the GH response to GHRH. In EXP III, all doses of IGF-I increased (P < 0.01) basal LH levels while the LH response to GnRH was unaffected by IGF-I (P > 0.1). In conclusion, under these experimental conditions the results suggest that the pituitary is the putative site for IGF-I modulation of GH and LH secretion. Further examination of the role of IGF-I on GH and LH secretion is needed to understand the inhibitory and stimulatory action of IGF-I on GH and LH secretion.  相似文献   

10.
A set of cAMP analogs were synthesized that combined exocyclic sulfur substitutions in the equatorial (Rp) or the axial (Sp) position of the cyclophosphate ring with modifications in the adenine base of cAMP. The potency of these compounds to inhibit the binding of [3H]cAMP to sites A and B from type I (rabbit skeletal muscle) and type II (bovine myocardium) cAMP-dependent protein kinase was determined quantitatively. On the average, the Sp isomers had a 5-fold lower affinity for site A and a 30-fold lower affinity for site B of isozyme I than their cyclophosphate homolog. The mean reduction in affinities for the equivalent sites of isozyme II were 20- and 4-fold, respectively. The Rp isomers showed a decrease in affinity of approximately 400-fold and 200-fold for site A and B, respectively, of isozyme I, against 200-fold and 45-fold for site A and B of isozyme II. The Sp substitutions therefore increased the relative preference for site A of isozyme I and site B of isozyme II. The Rp substitution, on the other hand, increased the relative preference for site B of both isozymes. These data show that the Rp and Sp substitutions are tolerated differently by the two intrachain sites of isozymes I and II. They also support the hypothesis that it is the axial, and not the previously proposed equatorial oxygen that contributes the negative charge for the ionic interaction with an invariant arginine in all four binding sites. In addition, they demonstrate that combined modifications in the adenine ring and the cyclic phosphate ring of cAMP can enhance the ability to discriminate between site A and B of one isozyme as well as to discriminate between isozyme I and II. Since Rp analogs of cAMP are known to inhibit activation of cAMP-dependent protein kinases, the findings of the present study have implications for the synthesis of analogs having a very high selectivity for isozyme I or II.  相似文献   

11.
The present studies were conducted to determine the effects of gonadotropins (LH and hCG) and prostaglandin F2a (PGF2a) on the production of "second messengers" and progesterone synthesis in purified preparations of bovine small luteal cells. Corpora lutea were removed from heifers during the luteal phase of the normal estrous cycle. Small luteal cells were isolated by unit-gravity sedimentation and were 95-99% pure. LH provoked rapid and sustained increases in the levels of [3H]inositol mono-, bis-, and trisphosphates (IP, IP2, IP3, respectively), cAMP and progesterone in small luteal cells. LiCl (10 mM) enhanced inositol phosphate accumulation in response to LH but had no effect on LH-stimulated cAMP or progesterone accumulation. Time course studies revealed that LH-induced increases in IP3 and cAMP occurred simultaneously and preceded the increases in progesterone secretion. Similar dose-response relationships were observed for inositol phosphate and cAMP accumulation with maximal increases observed with 1-10 micrograms/ml of LH. Progesterone accumulation was maximal at 1-10 ng/ml of LH. LH (1 microgram/ml) and hCG (20 IU/ml) provoked similar increases in inositol phosphate, cAMP and progesterone accumulation in small luteal cells. 8-Bromo-cAMP (2.5 mM) and forskolin (1 microM) increased progesterone synthesis but did not increase inositol phosphate accumulation in 30 min incubations. PGF2a (1 microM) was more effective than LH (1 microgram/ml) at stimulating increases in inositol phosphate accumulation (4.4-fold vs 2.2-fold increase for PGF2a and LH, respectively). The combined effects of LH and PGF2a on accumulation of inositol phosphates were slightly greater than the effects of PGF2a alone. In 30 min incubations, PGF2a had no effect on cAMP accumulation and provoked small increases in progesterone secretion. Additionally, PGF2a treatment had no significant effect on LH-induced cAMP or progesterone accumulation in 30 min incubations of small luteal cells. These findings provide the first evidence that gonadotropins stimulate the cAMP and IP3-diacylglycerol transmembrane signalling systems in bovine small luteal cells. PGF2a stimulated phospholipase C activity in small cells but did not reduce LH-stimulated cAMP or progesterone accumulation. These results also demonstrate that induction of functional luteolysis in vitro requires more than the activation of the phospholipase C-IP3/calcium and -diacylglycerol/protein kinase C transmembrane signalling system.  相似文献   

12.
Finnish Landrace x Southdown ewes were ovariectomized (OVX) and subjected to daily photoperiods of 16L:8D (Group I) or 8L:16D (Group II) for 84 days. Ewes were then either adrenalectomized (ADX) (N = 5 for Group I; N = 4 for Group II) or sham ADX (N = 6 for Groups I + II). After surgery, ewes in Group I were subjected to 8L:16D for 91 days and 16L:8D for 91 days whereas ewes in Group II were exposed to 16L:8D for 91 days and 8L:16D for 91 days. Oestradiol implants were inserted into all ewes on Day 148. Sequential blood samples were taken at 28, 56, 91, 119, 147 and 168 days after surgery to determine secretory profiles of LH and prolactin. Photoperiod did not influence LH release in Group I in the absence of oestradiol. Although photoperiod influenced frequency and amplitude of LH pulses in Group II before oestradiol treatment, adrenalectomy did not prevent these changes in patterns of LH release. However, in Group II the increase in LH pulse amplitude during exposure to long days was greater (P less than 0.01) in adrenalectomized ewes than in sham-operated ewes. Mean concentrations of LH increased in ADX ewes on Days 91 (P = 0.07) and 119 (P less than 0.05). Adrenalectomy failed to influence photoperiod-induced changes in mean concentrations of LH, amplitude of LH pulses and frequency of LH pulses in the presence of oestradiol. Concentrations of prolactin were influenced by photoperiod. In Groups I and II concentrations of prolactin increased (P less than 0.01) after adrenalectomy, but the magnitude of this effect decreased over time.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

13.
Recombinant human interleukin-1 (IL-1) inhibits the follicle-stimulating hormone (FSH)-induced development of luteinizing hormone (LH) receptors and suppresses progesterone secretion in cultured rat granulosa cells. Since activation of adenylate cyclase by FSH is considered to be the primary second messenger system responsible for differentiation of granulosa cells, we examined whether IL-1 could alter the FSH, cholera toxin, or forskolin-induced accumulation of cyclic adenosine 3', 5'-monophosphate (cAMP) from these cells. In addition, we sought to determine if IL-1 could influence differentiation induced by the cAMP analog, 8-bromo cAMP. Cells collected from ovaries of immature, diethylstilbestrol-treated rats were stimulated to differentiate by addition of FSH, cholera toxin, forskolin, or 8-bromo cAMP to the cultures. IL-1 or interleukin-2 (IL-2) was added to some of the tubes, and the primary cultures were incubated for various periods of time. At the end of the culture, the tubes were centrifuged, the medium was saved for progesterone and cAMP radioimmunoassay, and the cells were assayed for specific 125I-human chorionic gonadotropin (hCG) binding to determine the number of LH receptors. In the presence of FSH, IL-1, at a dose as small as 5 ng/ml, but not IL-2, significantly inhibited LH receptor formation and suppressed progesterone secretion in a dose-related manner. IL-1 also significantly suppressed FSH-induced cAMP accumulation after 72 h of incubation but did not appear to do so in a dose-related fashion. In the presence of FSH, IL-1 did not significantly alter the protein content of granulosa cells at the end of culture. During stimulation of granulosa cells with cholera toxin, forskolin, or 8-bromo cAMP, IL-1 significantly reduced LH receptor formation compared to that observed in the absence of IL-1. However, in contrast to IL-1 in the presence of FSH, IL-1 significantly augmented the forskolin-induced secretion of progesterone and accumulation of cAMP after 72 h at subsaturating doses of forskolin. Thus, IL-1 appeared to inhibit forskolin-induced and cholera toxin-induced formation of LH receptors even when cAMP levels were elevated. Similar to forskolin, 8-bromo cAMP-stimulated progesterone secretion was significantly enhanced by IL-1, but LH receptor formation was inhibited. Over a 72-h time course at single doses of FSH or forskolin, IL-1 did not affect cAMP accumulation until 48 h of culture, at which time IL-1 significantly suppressed FSH-induced, but augmented forskolin-induced, accumulation of cAMP.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

14.
An intratesticular site of action has been proposed for the ability of estradiol (E2) to suppress testosterone secretion. Because testicular testosterone and E2 secretion as well as E2 receptors change during development, a physiologic role for E2 is possible. The present experiments compared the testes from 12-day-old and adult rats for the capacity of in vivo estradiol treatment to change in vitro androgen secretion in response to luteinizing hormone (LH) and dibutyryl cyclic AMP (Bt2cAMP). After 5 days in vivo treatment, in vitro responsiveness was estimated by radioimmunoassay (RIA) measurement of androgen secretion elicited by various doses of NIAMDD-LH-24 or 1.0 mM Bt2cAMP. Five days of E2 alone (500 ng/g BW s.c. once daily) markedly inhibited basal, LH-stimulated and Bt2cAMP-stimulated androgen production at both ages. Similar treatment of infant rats with LH (100 ng NIAMDD-LH-24/g BW) caused an increase in basal and LH-stimulated androgen secretion in vitro, but had no effect on the response to Bt2cAMP. The same pretreatment of adults with LH had no effect on basal, but inhibited LH- or Bt2cAMP-stimulated androgen secretion. Combined treatment of infants with E2 and LH for 5 days had no effect on basal or maximally stimulated androgen production; the in vitro response to submaximal stimulation with LH was significantly inhibited. Combined E2/LH treatment of adults significantly decreased the basal production of androgens and the response to LH or Bt2cAMP. These results suggest a major difference between the response to E2 of the Leydig cells from the rats of the two ages tested.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

15.
The possible influence of an activator of protein kinase C, the tumor-promoting phorbol ester, PMA (phorbol-12-myristate-13-acetate), upon small bovine luteal cell steroidogenesis was investigated in vitro, PMA had no significant effect on basal and dibutyryl cyclic AMP (dbcAMP)-stimulated progesterone production but markedly modulated the LH-stimulated progesterone and cAMP productions. PMA potentiated the LH-stimulated cAMP accumulation whatever the dose of LH used. It also potentiated the LH-induced progesterone production in the presence of low doses of LH. Paradoxically, in the presence of maximal or submaximal effective doses of LH, PMA exerted a time- and dose-dependent inhibition of progesterone synthesis. Diacylglycerol was able to mimic the effects of PMA on LH-induced steroidogenesis. These observations suggest that the Ca2+- and phospholipid-dependent protein kinase C can modulate the regulation by LH of small bovine luteal cell steroidogenesis at a step before the synthesis of cAMP. They also suggest that the interaction between LH and its receptor is able to trigger a negative regulatory signal which would be only expressed for high doses of LH and in the presence of an activator of PKC.  相似文献   

16.
Agents that elevated intracellular cyclic adenosine 3',5'-monophosphate (cAMP) caused a 3- to 10-fold increase in the luteinizing hormone (LH) receptor level and in progesterone biosynthesis in primary cultures of pig ovarian granulosa cells. Associated with these effects was a 2- to 4-fold increase in the total activity of the catalytic subunit of cAMP-dependent protein kinase in the tissue. From quantitation by [3H]cAMP binding and changes in the specific labeling with the photoaffinity analog [32P]-8-azido-cAMP, these agents were found to cause a concomitant 5- to 15-fold increase in two isoforms of the type II R-subunit (Mr = 54,000 and 56,000) of the protein kinase. Since the two intrasubunit cAMP binding sites of the protein kinase have been found to be positively cooperative, the addition of a combination of an analog selective for site 1 and an analog selective for site 2 causes synergistic increases in protein kinase activation in vitro and synergistic increases in intact cell responses if mediated by the cAMP-dependent protein kinase. In the present study, the addition of such a combination of site 1- and site 2-selective analogs to granulosa cells caused a synergistic increase in LH receptor induction and progesterone production. For both responses, synergism did not occur when two analogs selective for the same site were combined. The results indicated that these responses are mediated by either of the two major isozyme types of cAMP-dependent protein kinase.  相似文献   

17.
18.
Ovaries from 18-21-day-old foetal as well as from 2-10-day-old infantile rats were cultured in vitro in the presence of [3H]19-hydroxyandrostenedione and in the presence or absence of LH, FSH or (Bu)2 cAMP, and oestrone and oestradiol formed were determined by double isotopic dilution and recrystallization to constant specific activity. In foetal ovaries, the stimulation factor with FSH was 0.9-1.3, which was considered insignificant in comparison with the 8-13-fold stimulation obtained with (Bu)2 cAMP. At infantile stages, aromatase activity was stimulated 1.3-3.5-fold, which was close to the 3.9-fold stimulation obtained with (Bu)2cAMP. LH was ineffective at both foetal and infantile stages.  相似文献   

19.
Experiments were conducted to determine whether continuous pituitary hormone support is required for expression of the LH and beta-adrenergic cAMP signal transduction pathways in rabbit CL during pseudopregnancy. Parameters of the LH and catecholamine cAMP signal transduction pathways in CL of estrogen-treated hypophysectomized rabbits were compared to those of pituitary-intact rabbits. Results showed that each of the parameters of the LH and beta-adrenergic cAMP signal transduction pathways was retained in CL taken from estrogen-treated pseudopregnant rabbits that had been hypophysectomized for as long as 13 days at levels not significantly different from those of estrogen-treated pituitary-intact rabbits. These included luteal basal, and LH-, epinephrine-, and fluoride-stimulated adenylyl cyclase activities; total luteal cAMP levels; the number and affinity of cAMP-dependent protein kinase regulatory subunit cAMP binding sites; binding activity of the type I and type II regulatory subunits; and the amount of catalytic subunit protein of cAMP-dependent protein kinase. We conclude that expression of the proteins of the cAMP signal pathway for LH and beta-adrenergic hormones in CL of estrogen-treated rabbits does not require pituitary hormone support.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号