首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 484 毫秒
1.
《Bioresource technology》2000,71(2):103-112
Granular activated carbons (GACs) were produced from sugarcane bagasse combined with one of two binders (corn syrup, coal tar) by physical activation and from pecan shells by physical and chemical activation. GACs were evaluated for their physical (hardness, bulk density), chemical (ash, pH), surface (surface area, pore size distribution, surface chemistry), and adsorption properties (molasses color removal, sugar decolorization) and compared with two commercial reference carbons. Results showed that larger surface area, a well-developed macro- and mesoporosity, and a minimal surface charge were desirable in GACs designed for sugar decolorization. Steam activation of pecan shells carbon was the only by-product-activation combination that produced GAC with all the above three desirable characteristics of a good sugar decolorizer. Chemical activation of pecan shells yielded GACs with high surface area and adequate pore size distribution but with large surface charge. In contrast, sugarcane bagasse-based GACs exhibited low surface areas and unsatisfactory physical/chemical properties.  相似文献   

2.
The adsorption on activated carbons of dark colored compounds contained in sugar beet vinasse was studied. Four commercial activated carbons with different properties (particle size, residual acidity and microporous properties) were respectively checked for efficiency at two temperature levels (25 °C and 40 °C) and at four pH levels (2, 3.5, 7, 10). The adsorption of organic molecules was determined by quantifying the amounts of total polyphenolic compounds and total organic carbon. The results showed that the adsorption capacity of dark colored compounds was enhanced by the decrease in both temperature and pH values of the solution. In this study, it is shown that this capacity depends on activated carbon characteristics which can be classified in the following order: particle size > residual acidity > microporous volume. Three models (Langmuir, Freundlich and Dubinin–Radushkevich) were tested from experimental data and compared. The Langmuir model provided the best correlation on all the activated carbons studied.  相似文献   

3.
《Bioresource technology》2000,71(2):113-123
Representative samples of soft, low density, group 1 (rice straw, rice hulls, sugarcane bagasse) and hard, high density, group 2 agricultural by-products (pecan shells) were converted into granular activated carbons (GACs). GACs were produced from group 1 and 2 materials by physical activation or from group 2 materials by chemical activation. Carbons were evaluated for their physical (hardness, bulk density), chemical (ash, conductivity, pH), surface (total surface area), and adsorption properties (molasses color removal, sugar decolorization) and compared with two commercial reference carbons. The results show that the type of by-product, binder, and activation method determine the properties of GACs. Regardless of the binder, sugarcane bagasse showed a better potential than rice straw or rice hulls as precursor of GACs with the desirable properties of a sugar decolorizing carbon. Pecan shells produced GACs that were closest to the reference carbons in terms of all the properties investigated.  相似文献   

4.
Summary Pleurotus florida was grown in submerged culture with different concentrations of sugar beet pulp with a view to its nutritional upgrading. Micelial growth, protein enrichment and dry weight loss of the solid residues of cultures, as well as the evolution of reducing sugars in the liquid medium, were followed for 14 days. A product with 45% (w/w) protein and a saccharification extent as high as 35% (w/w) were obtained after 7 days with 1% (w/v) sugar beet pulp.  相似文献   

5.
甜菜纤维的制备及其性质   总被引:2,自引:0,他引:2  
甜菜纤维的制备及其性质樊志和周人纲王占武李晓芝韩炜(河北省农林科学院农业物理生理生化研究所,石家庄050051)Apracticalpreparationandcharacterizationofdietaryfiberfromsugar┐beetp...  相似文献   

6.
The presence of melanoidins in molasses wastewater leads to water pollution both due to its dark brown color and its COD contents. In this study, a bacterial consortium isolated from waterfall sediment was tested for its decolorization. The identification of culturable bacteria by 16S rDNA based approach showed that the consortium composed of Klebsiella oxytoca, Serratia mercescens, Citrobacter sp. and unknown bacterium. In the context of academic study, prevention on the difficulties of providing effluent as well as its variations in compositions, several synthetic media prepared with respect to color and COD contents based on analysis of molasses wastewater, i.e., Viandox sauce (13.5% v/v), caramel (30% w/v), beet molasses wastewater (41.5% v/v) and sugarcane molasses wastewater (20% v/v) were used for decolorization using consortium with color removal 9.5, 1.13, 8.02 and 17.5%, respectively, within 2 days. However, Viandox sauce was retained for further study. The effect of initial pH and Viandox concentration on decolorization and growth of bacterial consortium were further determined. The highest decolorization of 18.3% was achieved at pH 4 after 2 day of incubation. Experiments on fresh or used medium and used or fresh bacterial cells, led to conclusion that the limitation of decolorization was due to nutritional deficiency. The effect of aeration on decolorization was also carried out in 2 L laboratory-scale suspended cell bioreactor. The maximum decolorization was 19.3% with aeration at KLa = 2.5836 h−1 (0.1 vvm).  相似文献   

7.
《Process Biochemistry》2014,49(2):250-257
This study investigates the hypothesis that loosening of the egg-box structure by presence of divalent ion chelating agents during enzymatic degradation of homogalacturonan (HG) can improve enzymatic polysaccharide solubilization on pectinaceous, agro-industrial co-processing streams. The influence of different levels of ethylene-diaminetetraacetic acid (EDTA), citric acid, oxalic acid, and phosphate was assessed in relation to enzymatic solubilization of isopropanol precipitatable oligo- and polysaccharides from sugar beet pulp, citrus peel, and two types of potato pulp. The two types of potato pulp were FiberBind 400, a dried commercial potato pulp product, and PUF, a dried calcium reduced product, respectively. The enzymatic treatment consisted of 1% (w/w) of substrate treated with pectin lyase from Aspergillus nidulans and polygalacturonase from A. aculeatus [each dosed at 1.0% (w/w) enzyme/substrate] at 60 °C, pH 6.0 for 1 min. Characterization of the released fractions demonstrated a significantly improved effect of chelating agents for polysaccharide solubilization from FiberBind 400, PUF, and citrus peel, whereas only low amounts of polysaccharides were solubilized from the sugar beet pulp. The results substantiated the importance of chelating agents during enzymatic extraction of pectinaceous polysaccharides. Lower levels of chelating agents were required for the calcium-reduced potato pulp substrate (PUF) indicating the significance of calcium cross-linking in HG in relation to the enzymatic solubilization yields. The effect of the chelating agents correlated to their dissociation constants (pKa values) and calcium binding constants and citric acid and EDTA exerted highest effects. Maximum polysaccharide yield was obtained for FiberBind 400 where the enzymatic treatment in presence of citric acid yielded 22.5% (w/w) polysaccharides of the initial substrate dry matter.  相似文献   

8.
Four different bacterial strains were isolated from pulp and paper mill sludge in which one alkalotolerant isolate (LP1) having higher capability to remove color and lignin, was identified as Bacillus sp. by 16S RNA sequencing. Optimization of process parameters for decolorization was initially performed to select growth factors which were further substantiated by Taguchi approach in which seven factors, % carbon, % black liquor, duration, pH, temperature, stirring and inoculum size, at two levels, applying L-8 orthogonal array were taken. Maximum color was removed at pH 8, temperature 35°C, stirring 200 rpm, sucrose (2.5%), 48 h, 5% (w/v) inoculum size and 10% black liquor. After optimization 2-fold increase in color and lignin removal from 25–69% and 28–53%, respectively, indicated significance of Taguchi approach in decolorization and delignification of lignin in pulp and paper mill effluent. Enzymes involved in the process of decolorization of effluent were found to be xylanase (54 U/ml) and manganese peroxidase (28 U/ml). Treated effluent was also evaluated for toxicity by Comet assay using Saccharomyces cerevisiae MTCC 36 as model organism, which indicated 58% reduction after treatment by bacterium.  相似文献   

9.
Culture filtrates of Talaromyces emersonii UCG 208 grown on beet pulp can convert the polysaccharide components of this agricultural waste to soluble sugars. The saccharification process is facilitated if the pulp is milled or incubated with alkali or peracetic acid before addition of enzyme. However, treatment of unmilled pulp with commercial pectinase prior to incubation with Talaromyces filtrate is also very effective; under suitable conditions, complete hydrolysis of total polysaccharides has been achieved.  相似文献   

10.
The objective of this research was to determine the effectiveness of using pecan and almond shell-based granular activated carbons (GACs) in the adsorption of volatile organic compounds (VOCs) of health concern and known toxic compounds (such as bromo-dichloromethane, benzene, carbon tetrachloride, 1,1,1-trichloromethane, chloroform, and 1,1-dichloromethane) compared to the adsorption efficiency of commercially used carbons (such as Filtrasorb 200, Calgon GRC-20, and Waterlinks 206C AW) in simulated test medium. The pecan shell-based GACs were activated using steam, carbon dioxide or phosphoric acid. An almond shell-based GAC was activated with phosphoric acid. Our results indicated that steam- or carbon dioxide-activated pecan shell carbons were superior in total VOC adsorption to phosphoric acid-activated pecan shell or almond shell carbons, inferring that the method of activation selected for the preparation of activated carbons affected the adsorption of VOCs and hence are factors to be considered in any adsorption process. The steam-activated, pecan shell carbon adsorbed more total VOCs than the other experimental carbons and had an adsorption profile similar to the two coconut shell-based commercial carbons, but had greater adsorption than the coal-based commercial carbon. All the carbons studied adsorbed benzene more effectively than the other organics. Pecan shell, steam-activated and acid-activated GACs showed higher adsorption of 1,1,1-trichloroethane than the other carbons studied. Multivariate analysis was conducted to group experimental carbons and commercial carbons based on their physical, chemical, and adsorptive properties. The results of the analysis conclude that steam-activated and acid-activated pecan shell carbons clustered together with coal-based and coconut shell-based commercial carbons, thus inferring that these experimental carbons could potentially be used as alternative sources for VOC adsorption in an aqueous environment.  相似文献   

11.
Incubation of beet pulp with two arabinases (alpha-L-arabinofuranosidase and endo-arabinase), used singularly or in combination at different units of activity per gram of beet pulp, caused the hydrolysis of arabinan, which produced a hydrolyzate consisting mainly of arabinose. Pectin and a residue enriched with cellulose were subsequently separated from the incubation mixture. The best enzymatic hydrolysis results were obtained when 100 U/g of beet pulp of each enzyme worked synergistically with yields of 100% arabinose and 91.7% pectin. These yields were higher than those obtained with traditional chemical hydrolysis. The pectin fraction showed a low content of neutral sugar content and the cellulose residue contained only a small amount of pentoses. Semicontinuous hydrolysis with enzyme recycling in an ultrafiltration unit was also carried out to separate arabinose, pectin, and cellulose from beet pulp in 7 cycles of hydrolysis followed by ultrafiltration. The yields of separation were similar to those obtained in batch experiments, with an enzyme consumption reduced by 3.5 times and some significant advantages over batch processes.  相似文献   

12.
Digestibility trials with 8 lots of pelleted dried sugar beet pulp, carried out with wethers, demonstrated that dried sugar beet pulp is a highly digestible energy source for ruminants. From the digestion coefficients obtained, and a value number of 95, the starch equivalent of the dry matter of dried sugar beet pulp was calculated to be 73.3, while the net energy expressed in EFr was 619 EFr per kg dry matter. This is about 90% of the net energy content of barley containing 4% crude fibre in the dry matter.Beef production trials were carried out with 702 young bulls fed on complete dry rations based on dried sugar beet pulp. Two categories of animals were used: 322 baby-beef bulls (intensive system) slaughtered at 13 months of age at an average live-weight of 480 kg; and 380 young bulls coming from pasture (semi-intensive system) at about 250 kg live-weight, and fattened indoors up to at least 550 kg live-weight. With each category, three different rations have been studied. These contained respectively, 50, 60 or 70% pelleted dried sugar beet pulp; the remainder of the rations consisted of respectively 50, 40 or 30% concentrates. The diets were fed ad libitum; straw and water were always available. The three complete dry rations proved to be equally successful for intensive beef production. The carcass quality was good for all animals. The average daily gain obtained with the baby-beef bulls for the three rations respectively was 1 207 g, 1 274 g and 1 172 g; for the second category of bulls the mean growth rates were generally slightly higher: 1 281 g, 1 309 g and 1 357 g.The feed efficiency was higher with the younger animals: the baby-beef bulls (live-weight interval: 150–480 kg) consumed about 2.5 kg protein supplement and 3.5 kg dried sugar beet pulp per kg live-weight gain; while the intake per kg live-weight gain with the bulls of the second category (live-weight interval: 250–560 kg) amounted approximately to 2.75 kg protein supplement and 4 kg dried sugar beet pulp. Within each category of bulls, the feed cost per kg live-weight gain decreased with increasing amounts of dried sugar beet pulp in the rations.  相似文献   

13.
Summary The effects of wheat straw and pressed sugar beet pulp on sulphur oxidation were determined in a loam soil amended with 1% (w/w) elemental sulphur. Wheat straw stimulated the oxidation of elemental sulphur over the first 2 to 3 weeks of the incubation period, resulting in an increase in LiCl-extractable sulphate. After 4 to 7 weeks incubation however, the only significant increase in soil sulphate followed the 1% straw addition, while at week 7 sulphate concentrations in the 0.25% and 5.0% straw amended soils were lower than the control. Pressed sugar beet pulp (1% w/w) initially stimulated the oxidation of elemental sulphur in the soil, but by weeks 3 to 7 of the incubation period rates of oxidation in pulp-amended soils were lower than the control. Towards the end of the incubation period however, sulphate concentrations in the amended soils exceeded the control values, significantly so by week 11. The concentration of thiosulphate and tetrathionate also increased in soils receiving sugar beet pulp. Nitrification was inhibited in soils in which sulphur oxidation was actively occurring. Although possible alternatives are mentioned, such inhibition appears to result from a decrease in soil pH brought about by the oxidation of elemental sulphur to sulphuric acid.  相似文献   

14.
Select metal adsorption by activated carbon made from peanut shells   总被引:12,自引:0,他引:12  
Agricultural by-products, such as peanut shells, contribute large quantities of lignocellulosic waste to the environment each growing season; but few, if any, value-added uses exist for their disposal. The objective of this study was to convert peanut shells to activated carbons for use in adsorption of select metal ions, namely, cadmium (Cd2+), copper (Cu2+), lead (Pb2+), nickel (Ni2+) and zinc (Zn2+). Milled peanut shells were pyrolyzed in an inert atmosphere of nitrogen gas, and then activated with steam at different activation times. Following pyrolysis and activation, the carbons underwent air oxidation. The prepared carbons were evaluated either for adsorption efficiency or adsorption capacity; and these parameters were compared to the same parameters obtained from three commercial carbons, namely, DARCO 12x20, NORIT C GRAN and MINOTAUR. One of the peanut shell-based carbons had metal ion adsorption efficiencies greater than two of the three commercial carbons but somewhat less than but close to Minotaur. This study demonstrates that peanut shells can serve as a source for activated carbons with metal ion-removing potential and may serve as a replacement for coal-based commercial carbons in applications that warrant their use.  相似文献   

15.
AIMS: Five bacterial strains belonging to Bacillus subtilis, Pseudomonas fluorescens and Ps. corrugata and two fungal strains belonging to Trichoderma viride and Gliocladium virens were evaluated for their efficacy in controlling sugar beet and cucumber damping-off caused by Pythium ultimum. METHODS AND RESULTS: The in vitro antagonistic activity of bacteria against various Pythium spp. was evaluated with dual cultures in various media. Pseudomonas strains inhibited the pathogen better than Bacillus strains. To identify potentially useful antagonist combinations, dual compatibility of antagonists was also evaluated, based on growth in two liquid media containing substrate previously used by other antagonists. Four pairs of bacteria were selected. Sugar beet damping-off biocontrol was attempted with bacterial seed treatments (individually and in pairs). Cucumber damping-off biocontrol was attempted with bacterial seed treatments and bacterial and fungal compost treatments. In sugar beet, satisfactory biocontrol was only achieved with Pseudomonas antagonists. Antagonist combinations did not show any superior biocontrol ability to individual antagonists and compatibility of bacteria in vitro did not correlate with compatibility in vivo. Bacterial seed treatments and fungal compost treatments failed to control cucumber damping-off. Better biocontrol in cucumber was achieved when bacterial antagonists were applied by drenching or by coating seed with bacteria in a peat carrier. CONCLUSIONS: Pseudomonas antagonists were superior to Bacillus antagonists in controlling damping-off in cucumber and sugar beet. Pseudomonas peat inocula maintained a good shelf-life 2 years after preparation. SIGNIFICANCE AND IMPACT OF THE STUDY: Pseudomonas peat formulations have the potential for development into commercial biopesticides.  相似文献   

16.
The pectinase enzymes are involved in several industrial applications, and industrial waste is one of the largest environmental pollutants, so this study aims to Endo-polygalacturonase (endo-PG) producing using Aspergillus niger AUMC 4156, Penicillium oxalicum AUMC 4153 and P. variotii AUMC 4149 by using some agro-industrial wastes (dried orange peel and sugar beet pulp) as a sole raw carbon source for degradation these waste in the process of urban wastes disposal. The fermentation process was carried out as a submerged culture technique under both shaken and static culture conditions. A. niger AUMC 4156 was the most promising producer of endo-PG under static conditions while P. oxalicum AUMC 4153 was the highest producer of endo-PG under shaken conditions. Sugar beet pulp proved to be the most preferable to orange peel as the only source of carbon in both shaken and static cultures. The medium that encompassing orange peel as a single carbon source afforded the highest protein content with all tested fungal strains in stirred and static cultures in comparison with sugar beet pulp. The highest activity of endo-polygalacuronase that produced using A. niger AUMC 4156 and P. oxalicum AUMC 4153 was achieved by using sugar beet pulp at 3% concentration under static cultures, meanwhile maximal enzyme activity produced by both fungal strains required 2% sugar beet pulp under shaken cultures. Sugar beet pulp showed promised potential as a good inducer for endo-polygalacturoase production, and enzymes production depended on fungal strains, culture medium, and submerged fermentation conditions.  相似文献   

17.
AIMS: To determine the fermentation profiles by human gut bacteria of arabino-oligosaccharides of varying degree of polymerization. MATERIALS AND METHODS: Sugar beet arabinan was hydrolyzed with a commercial pectinase and eight fractions, of varying molecular weight, were isolated by gel-filtration chromatography. Hydrolysis fractions, arabinose, arabinan and fructo-oligosaccharides were fermented anaerobically by gut bacteria. Total bacteria, bifidobacteria, bacteroides, lactobacilli and the Clostridium perfringens/histolyticum sub. grp. were enumerated using fluorescent in situ hybridization. RESULTS: Bifidobacteria were stimulated to different extents depending on molecular weight, i.e. maximum increase in bifidobacteria after 48 h was seen on the lower molecular weight fractions. Lactobacilli fluctuated depending on the initial inoculum levels. Bacteroides numbers varied according to fraction; arabinan, arabinose and higher oligosaccharides (degree of polymerization, dp > 8) resulted in significant increases at 24 h. Only carbohydrate mixtures with dp of 1-2 resulted in significant increases at 48 h (log 8.77 +/- 0.23). Clostridia decreased on all substrates. CONCLUSIONS: Arabino-oligosaccharides can be considered as potential prebiotics. Significance and Impact of the Study: Arabinan is widely available as it is a component of sugar beet pulp, a co-product from the sugar beet industry. Generation of prebiotic functionality from arabinan would represent significant added value to a renewable resource.  相似文献   

18.
The objectives of this study were to evaluate selected physical and chemical properties of agricultural byproduct-based activated carbons made from pecan shells and sugarcane bagasse, and compare those properties to a commercial coal-based activated carbon as well as to compare the adsorption efficiency of these carbons for geosmin. Comparison of the physical and chemical properties of pecan shell- and bagasse-based carbons to the commercial carbon, Calgon Filtrasorb 400, showed that pecan shell carbon, but not the bagasse carbon, compared favorably to Filtrasorb 400, especially in terms of surface area, bulk density, ash and attrition. A carbon dosage study done in a model system showed the amount of geosmin adsorbed to be greater for Filtrasorb 400 and the bagasse-based carbon at low carbon concentrations than for the pecan shell carbons, but geosmin adsorption was similar in all carbons at higher carbon dosages. Application of the Freundlich isotherm model to the adsorption data showed that carbons made by steam activation of pecan shells or sugarcane bagasse had geosmin adsorption characteristics most like those of the commercial carbon. In terms of physical, chemical and adsorptive properties, steam-activated pecan shell carbon most resembled the commercial carbon and has the potential to replace Filtrasorb 400 in applications involving removal of geosmin from aqueous environments.  相似文献   

19.
ABSTRACT:?

Phenolic effluents are waste products of pulp and paper, coal conversion, dying, textile, and olive oil industries. Such effluents impose coloration and toxicity problems in the receiving waters, causing serious environmental hazards. The pulp and paper mill effluent is highly colored, imparting black/brown color to the water body. The color is mainly due to lignin and its derivatives released during various stages in the paper-making process. The complex nature of such lignin compounds and their phenolic nature make them extremely resistant to microbial degradation. Conventional treatment methods such as aerated lagoons and activated sludge process are ineffective in removing color. However, physical and chemical treatment methods, including ultrafiltration, ion-exchange, and lime precipitation, are expensive and less efficient. Therefore, alternate low-cost biotreatment processes are now being considered, most of which are based on lignin-degrading fungi. Depending on the treatment process, the fungal inoculum for decolorization could be used in the form of mycelium, pellets, or in the immobilized state. The decomposition of lignin is an enzymatic process employing various ligninases being produced by the fungal species. Soluble and immobilized ligninolytic enzymes have also been employed for effluent decolorization. Therefore, the present review is an attempt to compile the scattered information on pulp-paper mill effluent decolorization employing microbes. The structure, distribution, physiology, and enzymology of lignin degradation is also briefly discussed.  相似文献   

20.
Extraction of high-value protein fractions for techno-functional applications in foods can considerably increase the commercial value of microalgae biomass. Proteins from Tetraselmis sp. were extracted and purified after cell disintegration by bead milling, centrifugation, ion exchange chromatography using the absorbent Streamline DEAE, and final decolorization by precipitation at pH 3.5. The algae soluble isolate was free from the intense color typical for algae products and contained 64% (w/w) proteins and 24% (w/w) carbohydrates. The final isolate showed solubility independent of ionic strength and 100% solubility at and above pH 5.5. Since most plant proteins used in foods show poor solubility in the pH range 5.5-6.5, the algae soluble protein isolate could be useful for techno-functional applications in this pH range.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号