首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The functional role of creatine phosphokinase (CPK) in the process of energy supply for the Ca2+-ATPase reaction and ion transport across the membrane of heart sarcoplasmic reticulum (SR) has been studied. It has been shown that isolated and purified preparations of heart SR contain significant activity of CPK. The localization of CPK on the membrane of SR has been revealed also by an electron microscopic histochemical method. Under conditions of the Ca+-ATPase reaction in the presence of creatine phosphate the release of creatine into the reaction medium is observed, the rate of the latter process being dependent upon the MgATP concentration in accordance with the kinetic parameters of the Ca2+-ATPase reaction. CPK localized on the SR membrane is able to maintain higher rate of calcium uptake by SR vesicles, as compared to that with added ATP-regenerating system. The results obtained demonstrate the close functional coupling between CPK and Ca2+-ATPase in the membrane of SR.  相似文献   

2.
The involvement of membrane protein in dystrophic chicken fragmented sarcoplasmic reticulum alterations has been examined. A purified preparation of the (Ca2+ + Mg2+)-ATPase protein from dystrophic fragmented sarcoplasmic reticulum was found to have a reduced calcium-sensitive ATPase activity and phosphoenzyme level, in agreement with alterations found in dystrophic chicken fragmented sarcoplasmic reticulum. An amino acid analysis of the ATPase preparations showed no difference in the normal and dystrophic (Ca2+ + Mg2+)-ATPase. The (Ca2+ + Mg2+)-ATPase was investigated further by isoelectric focusing and proteolytic digestion of the fragmented sarcoplasmic reticulum. Neither of these methods indicated any alteration in the composition of the dystrophic (Ca2+ + Mg2+)-ATPase. We have concluded that the alterations observed in dystrophic fragmented sarcoplasmic reticulum are not due to increased amounts of non-(Ca2+ + Mg2+)-ATPase protein, and that the normal and dystrophic (Ca2+ + Mg2+)-ATPase protein are not detectably different.  相似文献   

3.
Muscle function depends on an adequate ATP supply to sustain the energy consumption associated with Ca(2+) cycling and actomyosin sliding during contraction. In this regulation of energy homeostasis, the creatine kinase (CK) circuit for high energy phosphoryl transfer between ATP and phosphocreatine plays an important role. We earlier established a functional connection between the activity of the CK system and Ca(2+) homeostasis during depolarization and contractile activity of muscle. Here, we show how CK activity is coupled to the kinetics of spontaneous and electrically induced Ca(2+) transients in the sarcoplasm of myotubes. Using the UV ratiometric Ca(2+) probe Indo-1 and video-rate confocal microscopy in CK-proficient and -deficient cultured cells, we found that spontaneous and electrically induced transients were dependent on ryanodine-sensitive Ca(2+) release channels, sarcoplasmic/endoplasmic reticulum Ca(2+)-ATPase pumps, extracellular calcium, and functional mitochondria in both cell types. However, at increasing sarcoplasmic Ca(2+) load (induced by electrical stimulation at 0.1, 1, and 10 Hz), the Ca(2+) removal rate and the amount of Ca(2+) released per transient were gradually reduced in CK-deficient (but not wild-type) myotubes. We conclude that the CK/phosphocreatine circuit is essential for efficient delivery of ATP to the sarcoplasmic/endoplasmic reticulum Ca(2+)-ATPase pumps and thereby directly influences sarcoplasmic reticulum refilling and the kinetics of the sarcoplasmic Ca(2+) signals.  相似文献   

4.
The dependence of the (Ca2+ + Mg2+)-ATPase activity of sarcoplasmic reticulum vesicles upon the concentration of pentobarbital shows a biphasic pattern. Concentrations of pentobarbital ranging from 2 to 8 mM produce a slight stimulation, approximately 20-30%, of the ATPase activity of sarcoplasmic reticulum vesicles made leaky to Ca2+, whereas pentobarbital concentrations above 10 mM strongly inhibit the activity. The purified ATPase shows a higher sensitivity to pentobarbital, namely 3-4-fold shift towards lower values of the K0.5 value of inhibition by this drug. These effects of pentobarbital are observed over a wide range of ATP concentrations. In addition, this drug shifts the Ca2+ dependence of the (Ca2+ + Mg2+)-ATPase activity towards higher values of free Ca2+ concentrations and increases several-fold the passive permeability to Ca2+ of the sarcoplasmic reticulum membranes. At the concentrations of pentobarbital that inhibit this enzyme in the sarcoplasmic reticulum membrane, pentobarbital does not significantly alter the order parameter of these membranes as monitored with diphenylhexatriene, whereas the temperature of denaturation of the (Ca2+ + Mg2+)-ATPase is decreased by 4-5 C degrees, thus, indicating that the conformation of the ATPase is altered. The effects of pentobarbital on the intensity of the fluorescence of fluorescein-labeled (Ca2+ + Mg2+)-ATPase in sarcoplasmic reticulum also support the hypothesis of a conformational change in the enzyme induced by millimolar concentrations of this drug. It is concluded that the inhibition of the sarcoplasmic reticulum ATPase by pentobarbital is a consequence of its binding to hydrophobic binding sites in this enzyme.  相似文献   

5.
To identify the functional unit of Ca(2+)-ATPase in the sarcoplasmic reticulum, we assessed Ca(2+)-transport activities occurring on sarcoplasmic reticulum membranes with different combinations of active and inactive Ca(2+)-ATPase molecules. We prepared heterodimers, consisting of a native Ca(2+)-ATPase molecule and a Ca(2+)-ATPase molecule inactivated by FITC labelling, by fusing vesicles loaded with each type of Ca(2+)-ATPase. The heterodimers exhibited neither Ca(2+) transport nor ATP hydrolysis, suggesting that Ca(2+) transport by the Ca(2+)-ATPase requires an interaction between functional Ca(2+)-ATPase monomers. This finding implies that the functional unit of the Ca(2+)-ATPase is a dimer.  相似文献   

6.
Sarcoplasmic reticulum isolated from moderately fast rabbit skeletal muscle contains intrinsic adenosine 3',5'-monophosphate (cAMP)-independent protein kinase activity and a substrate of 100 000 Mr. Phosphorylation of skeletal sarcoplasmic reticulum by either endogenous membrane bound or exogenous cAMP-dependent protein kinase results in stimulation of the initial rates of Ca2+ transport and Ca2+-ATPase activity. To determine the molecular mechanism by which protein kinase-dependent phosphorylation regulates the calcium pump in skeletal sarcoplasmic reticulum, we examined the effects of protein kinase on the individual steps of the Ca2+-ATPase reaction sequence. Skeletal sarcoplasmic reticulum vesicles were preincubated with cAMP and cAMP-dependent protein kinase in the presence (phosphorylated sarcoplasmic reticulum) and absence (control sarcoplasmic reticulum) of adenosine 5'-triphosphate (ATP). Control and phosphorylated sarcoplasmic reticulum were subsequently assayed for formation (5-100 ms) and decomposition (0-73 ms) of the acid-stable phosphorylated enzyme (E approximately P) of Ca2+-ATPase. Protein kinase mediated phosphorylation of skeletal sarcoplasmic reticulum resulted in pronounced stimulation of initial rates and levels of E approximately P in sarcoplasmic reticulum preincubated with either ethylene glycol bis(beta-aminoethyl ether)-N,N'-tetraacetic acid (EGTA) prior to assay (Ca2+-free sarcoplasmic reticulum), or with calcium/EGTA buffer (Ca2+-bound sarcoplasmic reticulum). These effects were evident within a wide range of ionized Ca2+. Phosphorylation of skeletal sarcoplasmic reticulum by protein kinase also increased the initial rate of E approximately P decomposition. These findings suggest that protein kinase-dependent phosphorylation of skeletal sarcoplasmic reticulum regulates several steps in the Ca2+-ATPase reaction sequence which result in an overall stimulation of the active calcium transport observed at steady state.  相似文献   

7.
In this article the morphology of sarcoplasmic reticulum, classification of Ca(2+)-ATPase (SERCA) isoenzymes presented in this membrane system, as well as their topology will be reviewed. The focus is on the structure and interactions of Ca(2+)-ATPase determined by electron and X-ray crystallography, lamellar X-ray and neutron diffraction analysis of the profile structure of Ca(2+)-ATPase in sarcoplasmic reticulum multilayers. In addition, targeting of the Ca(2+)-ATPase to the sarcoplasmic reticulum is discussed.  相似文献   

8.
We have studied the effect of Ruthenium red on the sarcoplasmic reticulum Ca(2+)-ATPase. Ruthenium red does not modify the Ca2+ pumping activity of the enzyme, despite its interaction with cationic binding sites on sarcoplasmic reticulum vesicles. Two pools of binding sites were distinguished. One pool (10 nmol/mg) is dependent upon the presence of micromolar Ca2+ and may therefore represent the high-affinity Ca2+ transport sites of the Ca(2+)-ATPase. However, Ruthenium red only slightly competes with Ca2+ on these sites. The other pool (15-17 nmol/mg) is characterized as low-affinity cation binding sites of sarcoplasmic reticulum, distinct from the Mg2+ site involved in the ATP binding to the Ca(2+)-ATPase. The interaction of Ruthenium red with these low-affinity cation binding sites, which may be located either on the Ca(2+)-ATPase or on surrounding lipids, decreases tryptophan fluorescence level of the protein. As much as 25% of the tryptophan fluorescence of the Ca(2+)-ATPase is quenched by Ruthenium red (with a dissociation constant of 100 nM), tryptophan residues located near the bilayer being preferentially affected.  相似文献   

9.
Localization of the Ca2+ + Mg2+-ATPase of the sarcoplasmic reticulum in rat papillary muscle was determined by indirect immunofluorescence and immunoferritin labeling of cryostat and ultracryotomy sections, respectively. The Ca2+ + Mg2+-ATPase was found to be rather uniformly distributed in the free sarcoplasmic reticulum membrane but to be absent from both peripheral and interior junctional sarcoplasmic reticulum membrane, transverse tubules, sarcolemma, and mitochondria. This suggests that the Ca2+ + Mg2+-ATPase of the sarcoplasmic reticulum is antigenically unrelated to the Ca2+ + Mg2+-ATPase of the sarcolemma. These results are in agreement with the idea that the sites of interior and peripheral coupling between sarcoplasmic reticulum membrane and transverse tubules and between sarcoplasmic reticulum and sarcolemmal membranes play the same functional role in the excitation-contraction coupling in cardiac muscle.  相似文献   

10.
The effects of cardiotoxin on the ATPase activity and Ca2+-transport of guinea pig erythrocyte and rabbit muscle sarcoplasmic reticulum (Ca2+ + Mg2+)-ATPase (E.C.3.6.1.3) were investigated. Erythrocyte (Ca2+ + Mg2+)-ATPase was inhibited by cardiotoxin in a time- and dose-dependent fashion and inhibition appears to be irreversible. Micromolar calcium prevented this inhibitory effect. Specificity for (Ca2+ + Mg2+)-ATPase inhibition by cardiotoxin was indicated since a homologous neurotoxin had no effect. Cardiotoxin did not affect (Ca2+ + Mg2+)-ATPase activity from sarcoplasmic reticulum, but Ca2+-transport was 50% inhibited. This inhibition was not due to an increased Ca2+-efflux and could be the result of an intramolecular uncoupling of ATPase activity from Ca2+-transport. Inhibition of Ca2+-transport by cardiotoxin could not be prevented by millimolar concentrations of Ca2+. It is suggested that the biological effects of cardiotoxin could be a consequence of inhibition of plasma membrane (Ca2+ + Mg2+)-ATPases.  相似文献   

11.
The sarcoplasmic reticulum Ca2(+)-ATPase of skeletal muscle has two high affinity calcium sites, one of fast access ("f" site) and one of slow access ("s" site). In addition to Ca2+ these sites are able to interact with other cations like Mg2+ or K+. We have studied with a stopped-flow method the modifications produced by Mg2+ and K+ on the kinetics of the intrinsic fluorescence changes produced by Ca2+ binding to and dissociation from the Ca2(+)-ATPase of sarcoplasmic reticulum. The presence of Mg2+ ions (K1/2 = 0.5 mM at pH 7.2) leads to the appearance of a rapid phase in the Ca2+ binding, which represents half of the signal amplitude at optimal Mg2+. The presence of K+ greatly accelerates both the Ca2+ binding and the Ca2+ dissociation reactions, giving, respectively, a 4- and 8-fold increase of the rate constant of the induced fluorescence change. K+ ions also increase the rate of the 45Ca/40Ca exchange reaction at the s site measured by rapid filtration. These results lead us to build up a model for the Ca2(+)-binding mechanism of the sarcoplasmic reticulum Ca2(+)-ATPase in which Mg2+ and K+ participate at particular steps of the reaction. Moreover, we propose that, in the absence of Ca2+, this enzyme may be the pathway for monovalent ion fluxes across the sarcoplasmic reticulum membrane.  相似文献   

12.
Conditions which were optimal for the stabilization of Ca2(+)-transporting ATPase in solubilized sarcoplasmic reticulum membranes (Piku?la, S., Mullner, N., Dux, L. and Martonosi, A. (1988) J. Biol. Chem. 263, 5277-5286) were also found conducive for preservation of (Ca2+ + Mg2+)-ATPase activity in detergent-solubilized erythrocyte plasma membrane for up to 60 days. Of particular importance for the stabilization of calmodulin-stimulated Ca2(+)-dependent activity of (Ca2+ + Mg2+)-ATPase of solubilized erythrocyte plasma membrane was the presence of Ca2+ (10-20 mM), glycerol, anti-oxidants, proteinase inhibitors and appropriate detergents. Among eight detergents tested octaethylene glycol dodecyl ether, polyoxyethylene glycol(10) lauryl alcohol and polydocanol were found to be promotive in long-term preservation of the enzyme activity. Under these conditions (Ca2+ + Mg2+)-ATPase of erythrocyte ghosts became highly stable and developed microcrystalline arrays after storage for 35 days. Electron micrographs of the negatively stained and thin sectioned material indicated that crystals of purified, detergent-solubilized, lipid-stabilized erythrocyte (Ca2+ + Mg2+)-ATPase differ from those of Ca2(+)-ATPase of detergent-solubilized sarcoplasmic reticulum microsomes.  相似文献   

13.
Sarcolemmal and sarcoplasmic reticulum membrane vesicle fractions were isolated from cardiac microsomes. Separation of sarcolemmal and sarcoplasmic reticulum membrane markers was documented by a combination of correlative assay and centrifugation techniques. To facilitate the separation, the crude microsomes were incubated in the presence of ATP, Ca2+, and oxalate to increase the density of the sarcoplasmic reticulum vesicles. After sucrose gradient centrifugation, the densest subfraction (sarcoplasmic reticulum) contained the highest (K+,Ca2+)-ATPase activity and virtually no (Na2+,K+)-ATPase activity, even when latent (Na+,K+)-ATPase activity was unmasked. In addition, the sarcoplasmic reticulum fraction contained no significant sialic acid, beta receptor binding activity, or adenylate cyclase activity. Sarcolemmal membrane fractions were of low buoyant density. Preparations most enriched in sarcolemmal vesicles contained the highest level of all the other parameters and only about 10% of the (K+,Ca2+)-ATPase activity of the sarcoplasmic reticulum fraction. The results suggest that (Na+,K+)-ATPase, sialic acid, beta-adrenergic receptors, and adenylate cyclase can be entirely accounted for by the sarcolemmal content of cardiac microsomes. Gel electrophoresis of the sarcolemmal and sarcoplasmic reticulum membrane fractions showed distinct bands. Membrane proteins exclusive to each of the fractions were also demonstrated by phosphorylation. Cyclic AMP stimulated phosphorylation by [gamma-32P]ATP of two proteins of apparent Mr = 20,000 and 7,000 that were concentrated in sarcoplasmic reticulum, but the stimulation was markedly dependent on the presence of added soluble cyclic AMP-dependent protein kinase. Cyclic AMP also stimulated phosphorylation of membrane proteins in sarcolemma, but this phosphorylation was mediated by an endogenous protein kinase activity. The apparent molecular weights of these phosphorylated proteins were 165,000, 90,000, 56,000, 24,000, and 11,000. The results suggest that sarcolemma may contain an integral enzyme complex, not present in sarcoplasmic reticulum, that contains beta-adrenergic receptors, adenylate cyclase, cyclic AMP-dependent protein kinase, and several substrates of the protein kinase.  相似文献   

14.
The local anesthetics dibucaine and tetracaine inhibit the (Ca2+ + Mg2+)-ATPase from skeletal muscle sarcoplasmic reticulum [DeBoland, A. R., Jilka, R. L., & Martonosi, A. N. (1975) J. Biol. Chem. 250, 7501-7510; Suko, J., Winkler, F., Scharinger, B., & Hellmann, G. (1976) Biochim. Biophys. Acta 443, 571-586]. We have carried out differential scanning calorimetry and fluorescence measurements to study the interaction of these drugs with sarcoplasmic reticulum membranes and with purified (Ca2+ + Mg2+)-ATPase. The temperature range of denaturation of the (Ca2+ + Mg2+)-ATPase in the sarcoplasmic reticulum membrane, determined from our scanning calorimetry experiments, is ca. 45-55 degrees C and for the purified enzyme ca. 40-50 degrees C. Millimolar concentrations of dibucaine and tetracaine, and ethanol at concentrations higher than 1% v/v, lower a few degrees (degrees C) the denaturation temperature of the (Ca2+ + Mg2+)-ATPase. Other local anesthetics reported to have no effect on the ATPase activity, such as lidocaine and procaine, did not significantly alter the differential scanning calorimetry pattern of these membranes up to a concentration of 10 mM. The order parameter of the sarcoplasmic reticulum membranes, calculated from measurements of the polarization of the fluorescence of diphenylhexatriene, is not significantly altered at the local anesthetic concentrations that shift the denaturation temperature of the (Ca2+ + Mg2+)-ATPase.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

15.
Crystalline arrays of Ca2+ transport ATPase develop in sarcoplasmic reticulum membranes after treatment with Na3VO4 in a calcium-free medium [ Dux , L. and Martonosi , A. (1983) J. Biol. Chem. 258, 2599-2603]. The proportion of vesicles containing Ca2+-ATPase crystals in microsome preparations isolated from rat muscle of different fiber types (semimembranosus, levator ani, extensor digitorum longus, diaphragm, soleus, and heart) correlates well with the Ca2+-ATPase content and Ca2+-modulated ATPase activity. This implies that the concentration of Ca2+-ATPase in sarcoplasmic reticulum membranes of fast and slow skeletal or cardiac muscles differs only slightly, and the low Ca2+ transport activity of 'sarcoplasmic reticulum' preparations isolated from slow-twitch skeletal and cardiac muscles is due to the presence of large amount of non-sarcoplasmic-reticulum membrane elements. This is in accord with the relatively small differences in the density of 8.5-nm intramembranous particles seen by freeze-etch electron microscopy in sarcoplasmic reticulum of red and white muscles. The dimensions of the Ca2+-ATPase crystal lattice are similar in sarcoplasmic reticulum membranes of different fiber types; therefore if structural differences exist between 'isoenzymes' of Ca2+-ATPase, these are not reflected in the crystal-lattice.  相似文献   

16.
Skeletal muscle sarcoplasmic reticulum of large mammals such as rabbit contains sarcolipin (SLN), a small peptide with a single transmembrane alpha-helix. When reconstituted with the Ca(2+)-ATPase from skeletal muscle sarcoplasmic reticulum into sealed vesicles, the presence of SLN leads to a reduced level of accumulation of Ca(2+). Heats of reaction of the reconstituted Ca(2+)-ATPase with ATP were measured using isothermal calorimetry. The heat released increased linearly with time over 30 min and increased with increasing SLN content. Rates ATP hydrolysis by the reconstituted Ca(2+)-ATPase were constant over a 30-min time period and were the same when measured in the presence or absence of an ATP-regenerating system. The calculated values of heat released per mol of ATP hydrolyzed increased with increasing SLN content and fitted to a simple binding equation with a dissociation constant for the SLN.ATPase complex of 6.9 x 10(-4) +/- 2.9 x 10(-4) in units of mol fraction per monolayer. It is suggested that the interaction between Ca(2+)-ATPase and SLN in the sarcoplasmic reticulum could be important in thermogenesis by the sarcoplasmic reticulum.  相似文献   

17.
We have investigated some characteristics of the sarcoplasmic reticulum (Ca2+ + Mg2+)-dependent ATPase (Ca2+-ATPase) mRNA from smooth muscle using specific cDNA probes isolated from a rat heart cDNA library. RNA blot analysis has shown that the Ca2+-ATPase mRNA expressed in smooth muscle is identical in size to the cardiac mRNA but differs from that of fast skeletal muscle. S1 nuclease mapping has moreover shown that the cardiac and smooth muscle isoforms possess different 3'-end sequences. These results indicate that a distinct sarcoplasmic reticulum Ca2+-ATPase mRNA is present in smooth muscle.  相似文献   

18.
The labelling of the sarcoplasmic reticulum membranes by the chemical probes, trinitrobenzenesulfonate (TNBS) and fluorodinitrobenzene (FDNB) has been investigated. The incorporation of TNBS, but not of FDNB, depends on the binding of Ca2+ or Mg2+ to the membranes. The labelling of lipids and of the various reticulum proteins by TNBS is increased by those agents, but the effect is not uniform for all membrane proteins. The Ca2+ -ATPase contributes only 2.2% for the total labelling of the sarcoplasmic reticulum proteins, whereas the proteins of molecular weight 90 000 and 30 000 contribute about 34 and 56%, respectively. However, the Ca2+-ATPase isolated from the membrane reacts with an amount of TNBS 5-fold higher than that which reacts with the enzyme in situ. Both probes, TNBS and FDNB, inhibit the Ca2+-ATPase activity and the Ca2+ uptake by sarcoplasmic reticulum, whereas the Mg2+-ATPase remains unaffected. The results indicate that FDNB is maximally incorporated into the sarcoplasmic reticulum membrane, whereas only some of the membrane amino groups are accessible to TNBS in the absence of Ca2+, Mg2+ or ATP which, when present, make additional amino groups available to TNBS. The highest degree of TNBS incorporation takes place into proteins, other than the ATPase, but sufficient reaction occurs with the enzyme to inhibit its activity.  相似文献   

19.
A microsomal preparation with a high ability for Ca2+ uptake has been isolated from pigeon heart. A method of further purification of Ca2+-accumulating system of heart, based on the ability of sarcoplasmic reticulum for the energy-dependent Ca2+ accumulation in the presence of oxalate, has been developed. Upon centrifugation in the gradient of sucrose and KCl concentration the fragments of sarcoplasmic reticulum, rendered "heavy" by calcium oxalate, can be separated from foreign cell membranes. The main component of heart "calcium pump" is Ca2+-dependent ATPase (making up to about 50% of all proteins of the purified reticulum), having a molecular weight of 100.000--105.000. Specific activity of heart Ca2+-ATPase as well as the ability of purified heart sarcoplasmic reticulum for Ca2+ uptake are only slightly less than those of the skeletal muscle reticulum. The data obtained suggest that heart sarcoplasmic reticulum may be efficient for providing heart muscle relaxation.  相似文献   

20.
The effects of hypothyroidism on the Ca2+-transport capabilities of fast-twitch muscle (m. gastrocnemius) of the rat were studied in whole-muscle homogenate and isolated sarcoplasmic reticulum. Hypothyroidism did not affect the percentage recovery and the vesicle composition of the sarcoplasmic reticulum fraction, the total lipid and phospholipid-to-protein ratios and the protein composition (both qualitative and quantitative). Also the Ca2+-loading capacity of purified sarcoplasmic reticulum, in the presence of oxalate, and the Ca2+ and pH dependence of both the uptake reaction and the coupled ATPase activity were unchanged. However, the homogenate Ca2+-loading capacity and the Ca2+-uptake activity were depressed, as was the yield of purified sarcoplasmic reticulum. The results indicate a 31% reduction of the entire sarcoplasmic reticulum membrane system per volume of muscle. Ca2+/ATP coupling ratios, determined in purified sarcoplasmic reticulum vesicles by measurement of initial rates of net Ca2+ uptake and Ca2+-Mg2+-dependent hydrolysis of ATP, were found to be 1.48 +/- 0.06 and 2.08 +/- 0.05 in the euthyroid and hypothyroid groups, respectively. Identical values were obtained with a recently described Ca2+-pulse method (Meltzer, S. and Berman, M.C. (1984) Anal. Biochem. 138, 458-464), i.e., 1.53 +/- 0.06 and 2.01 +/- 0.03 in the euthyroid and hypothyroid groups, respectively. Passive Ca2+ efflux from sarcoplasmic reticulum was the same in both groups (30 nmol/mg per min), as was the fraction of vesicles that did not show net uptake of Ca2+ (less than 10%), which makes it unlikely that these parameters provide an explanation for the differences in the coupling ratio. The energy of activation of the (Ca2+ + Mg2+)-ATPase was increased in hypothyroidism, which may point to changes in the phospholipid environment of the enzyme. Physiological concentrations of T3 and T4 had no effect on the (Ca2+ + Mg2+)-ATPase in vitro, but all observed changes in the hypothyroid state could be reversed within 14 days by administration of T3 to hypothyroid animals. Approximate calculations indicate that the observed changes in the sarcoplasmic reticulum as a result of thyroid-hormone depletion may contribute significantly to the decrease in relaxation rate and the decrease in energy consumption during contraction.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号