首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Glucose stimulation of islets is coupled with the rapid intracellular release of myo-inositol 1,4,5-trisphosphate (IP3) and arachidonic acid which in turn mobilize Ca2+ stored in the endoplasmic reticulum (ER). The metabolism of glucose is required for insulin secretion although the link between glucose metabolism and the cellular events resulting in insulin release is unknown. In digitonin-permeabilized islets, glucose 6-phosphate (0.5-4 mM) increased significantly the ATP-dependent Ca2+ content of the ER at a free Ca2+ concentration of 1 microM. At 0.2 microM free Ca2+, glucose 6-phosphate (2-10 mM) had a smaller effect. Glucose, phosphate, mannose 6-phosphate, and fructose 1,6-diphosphate had no effect on the ATP-dependent Ca2+ content of the ER. Glucose 1-phosphate and fructose 6-phosphate also increased ATP-dependent Ca2+ content of the ER, presumably due to conversion to glucose 6-phosphate by islet phosphoglucomutase and phosphoglucoisomerase, respectively. The glucose 6-phosphate increase in the ATP-dependent Ca2+ content of the ER was shown to be mediated by glucose 6-phosphatase localized to the ER. Both arachidonic acid (10 microM) and the Ca2+ ionophore A23187 (2 microM) mobilized Ca2+ stored in the ER by glucose 6-phosphate. However, IP3-induced (10 microM) Ca2+ release from the ER was abolished in the presence of glucose 6-phosphate (0.5-10 mM). We propose that glucose 6-phosphate could provide a regulatory link between glucose metabolism and intracellular Ca2+ regulation by augmenting Ca2+ sequestered in the ER as well as attenuating IP3-induced Ca2+ release. Thus, glucose 6-phosphate would serve as an "off" signal leading to a decrease in intracellular Ca2+ when both the free Ca2+ and glucose 6-phosphate concentrations have increased following glucose stimulus.  相似文献   

2.
The SOCE (store-operated Ca2+ entry) pathway is a central component of cell signalling that links the Ca2+-filling state of the ER (endoplasmic reticulum) to the activation of Ca2+-permeable channels at the PM (plasma membrane). SOCE channels maintain a high free Ca2+ concentration within the ER lumen required for the proper processing and folding of proteins, and fuel the long-term cellular Ca2+ signals that drive gene expression in immune cells. SOCE is initiated by the oligomerization on the membrane of the ER of STIMs (stromal interaction molecules) whose luminal EF-hand domain switches from globular to an extended conformation as soon as the free Ca2+ concentration within the ER lumen ([Ca2+]ER) decreases below basal levels of ~500 μM. The conformational changes induced by the unbinding of Ca2+ from the STIM1 luminal domain promote the formation of higher-order STIM1 oligomers that move towards the PM and exposes activating domains in STIM1 cytosolic tail that bind to Ca2+ channels of the Orai family at the PM and induce their activation. Both SOCE and STIM1 oligomerization are reversible events, but whether restoring normal [Ca2+]ER levels is sufficient to initiate the deoligomerization of STIM1 and to control the termination of SOCE is not known. The translocation of STIM1 towards the PM involves the formation of specialized compartments derived from the ER that we have characterized at the ultrastructural level and termed the pre-cortical ER, the cortical ER and the thin cortical ER. Pre-cortical ER structures are thin ER tubules enriched in STIM1 extending along microtubules and located deep inside cells. The cortical ER is located in the cell periphery in very close proximity (8-11?nm) to the plasma membrane. The thin cortical ER consists of thinner sections of the cortical ER enriched in STIM1 and devoid of chaperones that appear to be specialized ER compartments dedicated to Ca2+ signalling.  相似文献   

3.
K H Sit  B H Bay  K P Wong 《Acta anatomica》1992,145(2):119-126
In the preferential harvesting of rounded mitotic (M phase) cells of human Chang liver monolayer cultures by mechanical agitation in Ca(2+)-free phosphate-buffered saline, degranulation of endoplasmic reticulum (ER) was observed. Mitotic cells are known to have a series of Ca2+ transients and, without being subjected to Ca(2+)-free washings, did not have degranulated ER. Quiescent cells incubated with 0.7 mM adenosine 5'-triphosphate (ATP) in Ca(2+)-free HEPES-buffered saline produced very similar ER degranulations. Confocal argon laser imaging of fluo-3-loaded cells showed a Ca2+ transient peaking at 2 min after ATP treatment. In the absence of extracellular Ca2+, transients of Ca2+ elevation in the cytosol would exit the cell in a down-gradient, draining the ER Ca2+ stores. Substituting ATP with 1 microM brominated A23187 calcium ionophore in the incubation that contained 1-100 mM CaCl2, respectively, did not produce ER degranulation, thereby excluding raised cytosolic Ca2+ per se as the cause of ER degranulation. In fact, incubation with 0.7 mM ATP in the presence of 1-5 mM CaCl2 failed to produce ER degranulation. ER degranulated cells, from treatment with ATP without extracellular Ca2+ as well as from Ca(2+)-free washings at M phase, could be rescued by subsequent incubation in growth medium that contains Ca2+ whereupon the rounded cells re-flatten (a round-to-flat change) and have well-defined rough ER. It therefore seems possible for Ca2+ depletion, or at least a reduction, to be causally related to ER degranulation. If that were the case, ER granularity would appear to be a facultative rather than a constitutive state.  相似文献   

4.
Genetically encoded Ca2+ indicators are outstanding tools for the assessment of intracellular/organelle Ca2+ dynamics. Basically, most indicators contain the Ca2+-binding site of a (mutated) cytosolic protein that interacts with its natural (mutated) interaction partner upon binding of Ca2+. Consequently, a change in the structure of the sensor occurs that, in turn, alters the fluorescent properties of the sensor. Herein, we present a new type of genetically encoded Ca2+ indicator for the endoplasmic reticulum (ER) (apoK1-er (W. F. Graier, K. Osibow, R. Malli, and G. M. Kostner, patent application number 05450006.1 at the European patent office)) that is based on a single kringle domain from apolipoprotein(a), which is flanked by yellow and cyan fluorescent protein at the 3'- and 5'-ends, respectively. Notably, apoK1-er does not interact with Ca2+ itself but serves as a substrate for calreticulin, the main constitutive Ca2+-binding protein in the ER. ApoK1-er assembles with calreticulin and the protein disulfide isomerase ERp57 and undergoes a conformational shift in a Ca2+-dependent manner that allows fluorescence resonance energy transfer between the two fluorophores. This construct primarily offers three major advantages compared with the already existing probes: (i) it resolves perfectly the physiological range of the free Ca2+ concentration in the ER, (ii) expression of apoK1-er does not affect the Ca2+ buffering capacity of the ER, and (iii) apoK1-er is not inactivated by binding of constitutive interaction partners that prevent Ca2+-dependent conformational changes. These unique characteristics of apoK1-er make this sensor particularly attractive for studies on ER Ca2+ signaling and dynamics in which alteration of Ca2+ fluctuations by expression of any additional Ca2+ buffer essentially has to be avoided.  相似文献   

5.
CICR from an intracellular store, here directly characterized as the ER, usually refers to net Ca(2)+ release that amplifies evoked elevations in cytosolic free calcium [Ca2+](i). However, the companion paper (Albrecht, M.A., S.L. Colegrove, J. Hongpaisan, N.B. Pivovarova, S.B. Andrews, and D.D. Friel. 2001. J. Gen. Physiol. 118:83-100) shows that in sympathetic neurons, small [Ca2+](i) elevations evoked by weak depolarization stimulate ER Ca accumulation, but at a rate attenuated by activation of a ryanodine-sensitive CICR pathway. Here, we have measured depolarization-evoked changes in total ER Ca concentration ([Ca](ER)) as a function of [Ca2+](i), and found that progressively larger [Ca2+](i) elevations cause a graded transition from ER Ca accumulation to net release, consistent with the expression of multiple modes of CICR. [Ca](ER) is relatively high at rest (12.8 +/- 0.9 mmol/kg dry weight, mean +/- SEM) and is reduced by thapsigargin or ryanodine (5.5 +/- 0.7 and 4.7 +/- 1.1 mmol/kg, respectively). [Ca](ER) rises during weak depolarization (to 17.0 +/- 1.6 mmol/kg over 120s, [Ca2+](i) less than approximately 350 nM), changes little in response to stronger depolarization (12.1 +/- 1.1 mmol/kg, [Ca2+](i) approximately 700 nM), and declines (to 6.5 +/- 1.0 mmol/kg) with larger [Ca2+](i) elevations (>1 microM) evoked by the same depolarization when mitochondrial Ca2+ uptake is inhibited (FCCP). Thus, net ER Ca2+ transport exhibits a biphasic dependence on [Ca2+](i). With mitochondrial Ca2+ uptake enabled, [Ca](ER) rises after repolarization (to 16.6 +/- 1.8 mmol/kg at 15 min) as [Ca2+](i) falls within the permissive range for ER Ca accumulation over a period lengthened by mitochondrial Ca2+ release. Finally, although spatially averaged [Ca](ER) is unchanged during strong depolarization, net ER Ca2+ release still occurs, but only in the outermost approximately 5-microm cytoplasmic shell where [Ca2+](i) should reach its highest levels. Since mitochondrial Ca accumulation occurs preferentially in peripheral cytoplasm, as demonstrated here by electron energy loss Ca maps, the Ca content of ER and mitochondria exhibit reciprocal dependencies on proximity to sites of Ca2+ entry, possibly reflecting indirect mitochondrial regulation of ER Ca(2)+ transport.  相似文献   

6.
Onn Brandman  Jen Liou  Wei Sun Park  Tobias Meyer 《Cell》2007,131(7):1327-1339
Deviations in basal Ca2+ levels interfere with receptor-mediated Ca2+ signaling as well as endoplasmic reticulum (ER) and mitochondrial function. While defective basal Ca2+ regulation has been linked to various diseases, the regulatory mechanism that controls basal Ca2+ is poorly understood. Here we performed an siRNA screen of the human signaling proteome to identify regulators of basal Ca2+ concentration and found STIM2 as the strongest positive regulator. In contrast to STIM1, a recently discovered signal transducer that triggers Ca2+ influx in response to receptor-mediated depletion of ER Ca2+ stores, STIM2 activated Ca2+ influx upon smaller decreases in ER Ca2+. STIM2, like STIM1, caused Ca2+ influx via activation of the plasma membrane Ca2+ channel Orai1. Our study places STIM2 at the center of a feedback module that keeps basal cytosolic and ER Ca2+ concentrations within tight limits.  相似文献   

7.
Stromal interaction molecule 1 (STIM1) has recently been identified as a key player in store-operated Ca2+ entry. Endoplasmic reticulum (ER) luminal Ca2+ depletion results in STIM1 redistribution from ER membrane homogeneity to distinctly localized aggregates near the plasma membrane; these changes precede and are linked to cytoplasmic Ca2+ influx via Ca2+ release-activated channels (CRACs). The molecular mechanisms initiating ER STIM1 redistribution and plasma membrane CRAC activity are not well understood. We recombinantly expressed the Ca2+-sensing region of STIM1 consisting of the EF-hand together with the sterile alpha-motif (SAM) domain (EF-SAM) to investigate its Ca2+-related conformational and biochemical features. We demonstrate that Ca2+-loaded EF-SAM (holo) contains high alpha-helicity, whereas EF-SAM in the absence of Ca2+ (apo) is much less compact. Accordingly, the melting temperature (Tm) of the holoform is approximately 25 degrees C higher than apoform; heat and urea-derived thermodynamic parameters indicate a Ca2+-induced stabilization of 3.2 kcal mol(-1). We show that holoEF-SAM exists as a monomer, whereas apoEF-SAM readily forms a dimer and/or oligomer, and that oligomer to monomer transitions and vice versa are at least in part mediated by changes in surface hydrophobicity. Additionally, we find that the Ca2+ binding affinity of EF-SAM is relatively low with an apparent dissociation constant (Kd) of approximately 0.2-0.6 mM and a binding stoichiometry of 1. Our results suggest that EF-SAM actively participates in and is the likely the molecular trigger initiating STIM1 punctae formation via large conformational changes. The low Ca2+ affinity of EF-SAM is reconciled with the confirmed role of STIM1 as an ER Ca2+ sensor.  相似文献   

8.
When mature cerebellar granule neurons (CGN) grown in high K+ (25 mM K+, HK)-serum containing medium are subjected to the HK/serum deprivation, they are destined for neuronal death. In this study, we attempted to elucidate the roles of endoplasmic reticular (ER) Ca2+-store and co-cultured astrocytes in HK/serum deprivation induced neuronal death. Thapsigargin (TG), an inhibitor of ER Ca2+-ATPase was simultaneously applied with normal K+ (5 mM K+, NK) serum free medium, and its effects on neuronal death in either astrocyte-poor or astrocyterich culture were examined. By means of the fura-2 microfluorimetric technique, we monitored the changes of the intracellular Ca2+ concentration, [Ca2+]i, associated with neuronal death under various treatments. The results obtained showed that in astrocyte-poor cultures of mature CGN (10 days in vitro, DIV), the basal level of [Ca2+]i markedly decreased from 184 +/- 5 to 89.7 +/- 5 nM 24 h after HK/serum deprivation. Although treatment with TG slightly increased the [Ca2+]i to 117.6 +/- 4 nM, the survival rate of the neurons was even worse; it was reduced from 49 +/- 4% to 28 +/- 2%. In the astrocyte-rich cultures, HK/serum deprivation also caused a profound reduction of neuronal [Ca2+]i, from 166 +/- 3 to 90.2 +/- 6 nM, accompanied by even more serious neuronal death (95.5 +/- 1%). On the other hand, treatment with TG in astrocyterich cultures further lowered the [Ca2+]i to 65 +/- 2 nM but markedly improved the neuronal survival rate from 4.5 +/- 1% to 60 +/- 2% in a concentration-dependent manner. The strong implication of these findings is that ER Ca2+-store and astrocytes participate in modulating the responses of neurons to stress stimulation.  相似文献   

9.
Venom from the ectoparasitic wasp Nasonia vitripennis induces cellular injury that appears to involve the release of intracellular calcium stores via the activation of phospholipase C, and culminates in oncotic death. A linkage between release of intracellular Ca2+ and oncosis has not been clearly established and was the focus of this study. When BTI-TN-5B1-4 cells were treated with suramin, an uncoupler of G-proteins, venom-induced swelling and oncotic death were inhibited in a dose-dependent manner for at least 24 h. Suramin also blocked increases in free cytosolic [Ca2+], arguing that venom induces calcium mobilization through G-protein signaling pathways. Endoplasmic reticulum (ER) was predicted to be the source of intracellular calcium release, but labeling with the fluorescent probe ER-tracker revealed no indication of organelle swelling or loss of membrane integrity as would be expected if the Ca(2+)-ATPase pump was disabled by crude venom. Incubation of cell monolayers with calmodulin or nitrendipine, modulators of ER calcium release channels, neither attenuated nor augmented the effects of wasp venom. These results suggest that wasp venom stimulates calcium release from ER compartments distinct from RyRs, L-type Ca2+ channels, and the Ca(2+)-ATPase pump, or calcium is released from some other intracellular store. A reduction of mitochondrial membrane potential delta psi(m) appeared to precede a rise in cytosolic free Ca2+ as evidenced by fluorescent microscopy using the calcium-sensitive probe fluo-4 AM. This argues that the initial insult to the cell resulting from venom elicits a rapid loss of (delta psi(m)), followed by unregulated calcium efflux from mitochondria into the cytosol. Mobilization of calcium in this fashion could stimulate cAMP formation, and subsequently promote calcium release from NAADP-sensitive stores.  相似文献   

10.
Mitochondria are dynamic organelles that modulate cellular Ca2+ signals by interacting with Ca2+ transporters on the plasma membrane or the endoplasmic reticulum (ER). To study how mitochondria dynamics affects cell Ca2+ homeostasis, we overexpressed two mitochondrial fission proteins, hFis1 and Drp1, and measured Ca2+ changes within the cytosol and the ER in HeLa cells. Both proteins fragmented mitochondria, decreased their total volume by 25-40%, and reduced the fraction of subplasmalemmal mitochondria by 4-fold. The cytosolic Ca2+ signals elicited by histamine were unaltered in cells lacking subplasmalemmal mitochondria as long as Ca2+ was present in the medium, but the signals were significantly blunted when Ca2+ was removed. Upon Ca2+ withdrawal, the free ER Ca2+ concentration decreased rapidly, and hFis1 cells were unable to respond to repetitive histamine stimulations. The loss of stored Ca2+ was due to an increased activity of plasma membrane Ca2+-ATPase (PMCA) pumps and was associated with an increased influx of Ca2+ and Mn2+ across store-operated Ca2+ channels. The increased Ca2+ influx compensated for the loss of stored Ca2+, and brief Ca2+ additions between successive agonist stimulations fully corrected subsequent histamine responses. We propose that the lack of subplasmalemmal mitochondria disrupts the transfer of Ca2+ from plasma membrane channels to the ER and that the resulting increase in subplasmalemmal [Ca2+] up-regulates the activity of PMCA. The increased Ca2+ extrusion promotes ER depletion and the subsequent activation of store-operated Ca2+ channels. Cells thus adapt to the lack of subplasmalemmal mitochondria by relying on external rather than on internal Ca2+ for signaling.  相似文献   

11.
We investigated the effect of cytosolic and extracellular Ca2+ on Ca2+ signals in pancreatic acinar cells by measuring Ca2+ concentration in the cytosol([Ca2+]c) and in the lumen of the ER([Ca2+]Lu). To control buffers and dye in the cytosol, a patch-clamp microelectrode was employed. Acetylcholine released Ca2+ mainly from the basolateral ER-rich part of the cell. The rate of Ca2+ release from the ER was highly sensitive to the buffering of [Ca2+]c whereas ER Ca2+ refilling was enhanced by supplying free Ca2+ to the cytosol with [Ca2+]c clamped at resting levels with a patch pipette containing 10 mM BAPTA and 2 mM Ca2+. Elevation of extracellular Ca2+ to 10 mM from 1 mM raised resting [Ca2+]c slightly and often generated [Ca2+]c oscillations in single or clustered cells. Although pancreatic acinar cells are reported to have extracellular Ca2+-sensing receptors linked to phospholipase C that mobilize Ca2+ from the ER, exposure of cells to 10 mM Ca2+ did not decrease [Ca2+]Lu but rather raised it. From these findings we conclude that 1) ER Ca2+ release is strictly regulated by feedback inhibition of [Ca2+]c, 2) ER Ca2+ refilling is determined by the rate of Ca2+ influx and occurs mainly in the tiny subplasmalemmal spaces, 3) extracellular Ca2+-induced [Ca2+]c oscillations appear to be triggered not by activation of extracellular Ca2+-sensing receptors but by the ER sensitised by elevated [Ca2+]c and [Ca2+]Lu.  相似文献   

12.
Lee HS  Park CS  Lee YM  Suk HY  Clemons TC  Choi OH 《Cell calcium》2005,38(6):581-592
Inositol 1,4,5-trisphosphate (IP3) has long been recognized as a second messenger for intracellular Ca2+ mobilization. Recently, sphingosine 1-phosphate (S1P) has been shown to be involved in Ca2+ release from the endoplasmic reticulum (ER). Here, we investigated the role of S1P and IP3 in antigen (Ag)-induced intracellular Ca2+ mobilization in RBL-2H3 mast cells. Antigen-induced intracellular Ca2+ mobilization was only partially inhibited by the sphingosine kinase inhibitor dl-threo-dihydrosphingosine (DHS) or the IP3 receptor inhibitor 2-aminoethoxydiphenyl borate (2-APB), whereas preincubation with both inhibitors led to complete inhibition. In contrast, stimulation of A3 adenosine receptors with N5-ethylcarboxamidoadenosine (NECA) caused intracellular Ca2+ mobilization that was completely abolished by 2-APB but not by DHS, suggesting that NECA required only the IP3 pathway, while antigen used both the IP3 and S1P pathways. Interestingly, however, inhibition of IP3 production with the phospholipase C inhibitor U73122 completely abolished Ca2+ release from the ER induced by either stimulant. This suggested that S1P alone, without concomitant production of IP3, would not cause intracellular Ca2+ mobilization. This was further demonstrated in some clones of RBL-2H3 cells excessively overexpressing a beta isoform of Class II phosphatidylinositol 3-kinase (PI3KC2beta). In such clones including clone 5A4C, PI3KC2beta was overexpressed throughout the cell, although endogenous PI3KC2beta was normally expressed only in the ER. Overexpression of PI3KC2beta in the cytosol and the PM led to depletion of phosphatidylinositol 4,5-bisphosphate (PI(4,5)P2), resulting in a marked reduction in IP3 production. This could explain the abolishment of intracellular Ca2+ mobilization in clone 5A4C. Supporting this hypothesis, the Ca2+ mobilization was reconstituted by the addition of exogenous PI(4,5)P2 in these cells. Our results suggest that both IP3 and S1P contribute to FcvarepsilonRI-induced Ca2+ release from the ER and production of IP3 is necessary for S1P to cause Ca2+ mobilization from the ER.  相似文献   

13.
Inositol 1,4,5-trisphosphate (IP3) has long been recognized as a second messenger for intracellular Ca2+ mobilization. Recently, sphingosine 1-phosphate (S1P) has been shown to be involved in Ca2+ release from the endoplasmic reticulum (ER). Here, we investigated the role of S1P and IP3 in antigen (Ag)-induced intracellular Ca2+ mobilization in RBL-2H3 mast cells. Antigen-induced intracellular Ca2+ mobilization was only partially inhibited by the sphingosine kinase inhibitor dl-threo-dihydrosphingosine (DHS) or the IP3 receptor inhibitor 2-aminoethoxydiphenyl borate (2-APB), whereas preincubation with both inhibitors led to complete inhibition. In contrast, stimulation of A3 adenosine receptors with N5-ethylcarboxamidoadenosine (NECA) caused intracellular Ca2+ mobilization that was completely abolished by 2-APB but not by DHS, suggesting that NECA required only the IP3 pathway, while antigen used both the IP3 and S1P pathways. Interestingly, however, inhibition of IP3 production with the phospholipase C inhibitor U73122 completely abolished Ca2+ release from the ER induced by either stimulant. This suggested that S1P alone, without concomitant production of IP3, would not cause intracellular Ca2+ mobilization. This was further demonstrated in some clones of RBL-2H3 cells excessively overexpressing a beta isoform of Class II phosphatidylinositol 3-kinase (PI3KC2beta). In such clones including clone 5A4C, PI3KC2beta was overexpressed throughout the cell, although endogenous PI3KC2beta was normally expressed only in the ER. Overexpression of PI3KC2beta in the cytosol and the PM led to depletion of phosphatidylinositol 4,5-bisphosphate (PI(4,5)P2), resulting in a marked reduction in IP3 production. This could explain the abolishment of intracellular Ca2+ mobilization in clone 5A4C. Supporting this hypothesis, the Ca2+ mobilization was reconstituted by the addition of exogenous PI(4,5)P2 in these cells. Our results suggest that both IP3 and S1P contribute to FcvarepsilonRI-induced Ca2+ release from the ER and production of IP3 is necessary for S1P to cause Ca2+ mobilization from the ER.  相似文献   

14.
The inositol 1,4,5-trisphosphate receptor (InsP3R) is an integral membrane protein in the endoplasmic reticulum (ER) which functions as a ligand-gated Ca2+ release channel. InsP3-mediated Ca2+ release modulates the cytoplasmic free Ca2+ concentration ([Ca2+]i), providing a ubiquitous intracellular signal with high temporal and spatial specificity. Precise localization of the InsP3R is believed to be important for providing local [Ca2+] regulation and for ensuring efficient functional coupling between Ca2+ release sites by enabling graded recruitment of channels with increasing stimulus strength in the face of the intrinsically unstable regenerative process of Ca2+-induced Ca2+ release. Highly localized Ca2+ release has been attributed to the ability of the InsP3R channels to cluster and to be localized to discrete areas, suggesting that mechanisms may exist to restrict their movement. Here, we examined the lateral mobility of the type 3 isoform of the InsP3R (InsP3R3) in the ER membrane by performing confocal fluorescence recovery after photobleaching of an InsP3R3 with green fluorescent protein fused to its N terminus. In Chinese hamster ovary and COS-7 cells, the diffusion coefficient D was approximately 4 x 10(-10) cm2/s at room temperature, a value similar to that determined for other ER-localized integral membrane proteins, with a high fraction (approximately 75%) of channels mobile. D was modestly increased at 37 degrees C, and it as well as the mobile fraction were reversibly reduced by ATP depletion. Although disruption of the actin cytoskeleton (latrunculin) was without effect, disruption of microtubules (nocodazole) reduced D by half without affecting the mobile fraction. We conclude that the entire ER is continuous in these cells, with the large majority of InsP3R3 channels free to diffuse throughout it, at rates that are comparable with those measured for other polytopic ER integral membrane proteins. The observed InsP3R3 mobility may be higher than its intrinsic diffusional mobility because of additional ATP- and microtubule-facilitated motility of the channel.  相似文献   

15.
Endoplasmic reticulum (ER) Ca2+ refilling is an active process to ensure an appropriate ER Ca2+ content under basal conditions and to maintain or restore ER Ca2+ concentration during/after cell stimulation. The mechanisms to achieve successful ER Ca2+ refilling are multiple and built on a concerted action of processes that provide a suitable reservoir for Ca2+ sequestration into the ER. Despite mitochondria having been found to play an essential role in the maintenance of capacitative Ca2+ entry by buffering subplasmalemmal Ca2+, their contribution to ER Ca2+ refilling was not subjected to detailed analysis so far. Thus, this study was designed to elucidate the involvement of mitochondria in Ca2+ store refilling during and after cell stimulation. ER Ca2+ refilling was found to be accomplished even during continuous inositol 1,4,5-trisphosphate (IP3)-triggered ER Ca2+ release by an agonist. Basically, ER Ca2+ refilling depended on the presence of extracellular Ca2+ as the source and sarcoplasmic/endoplasmic reticulum Ca2+ ATPase (SERCA) activity. Interestingly, in the presence of an IP3-generating agonist, ER Ca2+ refilling was prevented by the inhibition of trans-mitochondrial Ca2+ flux by CGP 37157 (7-chloro-5-(2-chlorophenyl)-1,5-dihydro-4,1-benzothiazepin-2(3H)-one) that precludes the mitochondrial Na+/Ca2+ exchanger as well as by mitochondrial depolarization using a mixture of oligomycin and antimycin A. In contrast, after the removal of the agonist, ER refilling was found to be largely independent of trans-mitochondrial Ca2+ flux. Under these conditions, ER Ca2+ refilling took place even without an associated Ca2+ elevation in the deeper cytosol, thus, indicating that superficial ER domains mimic mitochondrial Ca2+ buffering and efficiently sequester subplasmalemmal Ca2+ and consequently facilitate capacitative Ca2+ entry. Hence, these data point to different contribution of mitochondria in the process of ER Ca2+ refilling based on the presence or absence of IP3, which represents the turning point for the dependence or autonomy of ER Ca2+ refilling from trans-mitochondrial Ca2+ flux.  相似文献   

16.
A fluorescent Ca2+ indicator, acetoxymethyl Quin2, was used to quantify changes in the cytosolic free calcium concentration ([Ca2+]i) of confluent mouse osteoblasts. 1,25 - Dihydroxycholecalciferol (1,25 - (OH)2D3, 10-100 pM), 25-hydroxycholecalciferol (25-(OH)D3, 10-100 nM), parathyroid hormone (PTH(1-84), 0.1-10 nM), and prostaglandin E2 (PGE2, 10-1000 nM) all induced immediate (t less than 15 s) transient increases in [Ca2+]i, from a basal level of 135 +/- 8 nM to levels of 179-224 nM. These increases rapidly returned to a plateau approximately 10% higher than the basal level. 24,25-Dihydroxycholecalciferol (24,25-(OH)2D2, 0.1-10 nM) induced a rapid increase in [Ca2+]i which remained elevated for 5 min before decreasing. The 1,25-(OH)2D3- and PTH-induced spikes were abolished by the prior addition of EGTA and Ca2+ entry blockers (verapamil, nifedipine, 1 microM) while the responses to 25-(OH)D3, 24,25-(OH)2D3, and PGE2 were unaffected. Addition of 1,25-(OH)2D3 + EGTA or PTH + EGTA caused enhanced Ca efflux. Addition of drugs which interfere with calcium sequestration by the endoplasmic reticulum (ER) (caffeine, 4 mM; 8-(diethyl-amino)-octyl 3,4,5-trimethoxybenzoate HCl, 0.5 mM) or mitochondria (antimycin, 10 microM; oligomycin, 5 microM) showed that 25-(OH)D3 and PGE2 mainly mobilized Ca2+ from ER. 1,25-(OH)2D3 and bovine PTH caused a transient increase in [Ca2+]i, 70% of which resulted from Ca2+ influx from outside the cells and 30% by release from the ER. The [Ca2+]i increase induced by 24,25-(OH)2D3 included a 30% contribution from the ER and 70% from the mitochondria.  相似文献   

17.
Previous studies have demonstrated that myo-inositol 1,4,5-trisphosphate (IP3) mobilizes Ca2+ from the endoplasmic reticulum (ER) of digitonin-permeabilized islets and that an increase in intracellular free Ca2+ stimulates insulin release. Furthermore, glucose stimulates arachidonic acid metabolism in islets. In digitonin-permeabilized islets, exogenous arachidonic acid at concentrations between 1.25 to 10 microM elicited significant Ca2+ release from the ER at a free Ca2+ concentration of 0.1 microM. Arachidonic acid-induced Ca2+ release was not due to the metabolites of arachidonic acid. Arachidonic acid induced a rapid release of Ca2+ within 2 min. Comparison of arachidonic acid-induced Ca2+ release with IP3-induced Ca2+ release revealed a similar molar potency of arachidonic acid and IP3. The combination of both arachidonic acid and IP3 resulted in a greater effect on Ca2+ mobilization from the ER than either compound alone. The mass of endogenous arachidonic acid released by islets incubated with 28 mM glucose was measured by mass spectrometric methods and was found to be sufficient to achieve arachidonic acid concentrations equal to or exceeding those required to induce release of Ca2+ sequestered in the ER. These observations indicate that glucose-induced arachidonic acid release could participate in glucose-induced Ca2+ mobilization and insulin secretion by pancreatic islets, possibly in cooperation with IP3.  相似文献   

18.
IP3-induced Ca2+ release from the endoplasmic reticulum (ER) of islets is believed to be a key intracellular event in glucose-induced insulin secretion. Calmodulin was shown to increase ATP-dependent Ca2+ steady-state and inhibit by 57.2% IP3-induced Ca2+ mobilization from the ER. Conversely, the calmodulin antagonist, N-(6-aminohexyl)-5-chloro-1-naphtalene sulfonamide (W-7), induced Ca2+ release from the ER. The combination of W-7 (100 microM) and IP3 (10 microM), resulted in a greater release of Ca2+ from the ER than either W-7 or IP3 alone. W-7 was shown not to affect the structural integrity of the ER. Our results suggest that IP3-induced Ca2+ release from the ER is regulated by a calmodulin-dependent process.  相似文献   

19.
In all cells Ca2+ signals are key to controlling a spectrum of cellular responses. Ca2+ signals activated by phospholipase C-coupled receptors have two components-rapid Ca2+ release from ER stores followed by slower Ca2+ entry from outside the cell. The coupling process between ER and PM to mediate this "store-operated" Ca2+ entry process has remained a molecular and mechanistic mystery. Through a combination of high throughput screening and molecular physiological approaches, the machinery and mechanism of this process have been elucidated. Two proteins are key to the coupling process. STIM1, a single spanning membrane protein with an unpaired Ca2+ binding EF-hand functions as the sensor of ER luminal Ca2+ and through redistribution in the ER transduces information directly to the PM. Orai1, a tetra-spanning PM protein, functions as the highly Ca2+ selective channel in the PM that is gated through interactions with the store-activated ER Ca2+ sensor. This molecular pas-de-deux between ER and PM components represents not only a crucial signaling pathway, but also a new paradigm in inter-organelle communication.  相似文献   

20.
Interactions between Ca2+, calmodulin and turkey gizzard myosin light chain kinase have been studied by equilibrium gel filtration and analyzed in terms of the theory of free energy coupling as formulated by Huang and King for calmodulin-regulated systems (Current Topics in Cellular Regulation 27, 1966-1971, 1985). Direct binding studies revealed that upon interaction with the enzyme, calmodulin acquires strong positive cooperativity in Ca2+-binding. The determination of the Ca2+-binding constants is inherently approximative due to the apparent homotropic cooperativity; therefore a statistical chi 2 analysis was carried out to delimit the formation-, and subsequently the stoichiometric Ca2+-binding constants. Whereas the first two stoichiometric Ca2+-binding constants of enzyme-bound CaM do not differ or are at the upmost 10-fold higher than those in free calmodulin, the third Ca2+ ion binds with an at least 70-fold and more likely 3000-fold higher affinity constant. The binding constant for the fourth Ca2+ is only 5-fold higher than the corresponding one in free calmodulin, thus creating a plateau at 3 bound Ca2+ in the isotherm. Direct binding of Ca2+-free calmodulin to myosin light chain kinase at 10(-7) M free Ca2+ yielded a l/l stoichiometry and an affinity constant of 2.2 x 10(5) M-1. It is thus anticipated that in resting smooth muscle ([Ca2+] less than or equal to 10(-7) M) more than half of the enzyme is bound to metal-free calmodulin. Analysis of the enzymatic activation of myosin light chain kinase at different concentrations of calmodulin and Ca2+ revealed that this Ca2+-free complex is inactive and that activation is concomitant with the formation of the enzyme.calmodulin.Ca3 complex.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号