首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Some plants rapidly close their leaves in response to mechanical stimulation, but no case is known in which mechanical stimulation causes rapid petal closure. In this study, we found that Drosera tokaiensis closes petals within 2–10 min after experimental stimulation of the calyx, closed flowers or scapes with a pair of tweezers. Although petal closure was induced more rapidly by touching a position closer to a flower, it was not induced by stimulating stamens and pistils. The habit of petal closure varies among species of Drosera: after experimental stimulations of the calyx or scapes, D. tokaiensis and D. spatulata often closed petals but D. rotundifolia and D. toyoakensis did not close them. The petal closure may function as defense against a specialist florivore.  相似文献   

2.
The most advanced in vitro cardiac models are today based on the use of induced pluripotent stem cells (iPSCs); however, the maturation of cardiomyocytes (CMs) has not yet been fully achieved. Therefore, there is a rising need to move towards models capable of promoting an adult-like cardiomyocytes phenotype. Many strategies have been applied such as co-culture of cardiomyocytes, with fibroblasts and endothelial cells, or conditioning them through biochemical factors and physical stimulations. Here, we focus on mechanical stimulation as it aims to mimic the different mechanical forces that heart receives during its development and the post-natal period. We describe the current strategies and the mechanical properties necessary to promote a positive response in cardiac tissues from different cell sources, distinguishing between passive stimulation, which includes stiffness, topography and static stress and active stimulation, encompassing cyclic strain, compression or perfusion. We also highlight how mechanical stimulation is applied in disease modelling.  相似文献   

3.
Summary The apical sensory cone on the antenna of a terrestrial isopod,Hemilepistus reaumuri, was investigated by both morphological and electrophysiological methods. It was found to consist of about 50 hair-like units, each containing 3–11 receptor cells which communicate with the environment through an apical porus. Single fiber recordings in the antennal nerve showed activity of receptor cells responding to mechanical, gustatory or olfactory stimuli. Two groups of olfactory and four groups of gustatory receptors were found.  相似文献   

4.
Qu LH  Sun MX 《Plant cell reports》2007,26(8):1187-1193
When mechanical stimulation is applied to a plant cell, the nucleus usually shows oriented movement to the site of stimulation (as a defensive response). Former researchers have revealed that applying mechanical pressure to plant tissues could line up cell division plane. A proposal, therefore, was put forward that cells inside plant tissue could receive mechanical signals from their growing neighbors to adjust their nuclear position and thus regulate the orientation of their dividing plane in order to form characteristic morphology of plant organs. To explore nuclear capacity and sensitivity to rapidly changing signals, multiple mechanical stimulations were applied to the same plant cell at intervals, either locally or at distance. The results revealed that the nucleus was highly sensitive to mechanical stimulations. It responded quickly to both local and distant stimulation by showing oriented movement toward the stimulation site. The nucleus was able to respond immediately to a second stimulation (no time lag) by starting up a second oriented movement toward the new signal; the completion of nuclear oriented movement to a first site of stimulation was not necessary for startup of a subsequent movement track to a second stimulation site, regardless of whether the second stimulation was applied ahead of or behind the moving nucleus. The nucleus responded to a second stimulation without loss of velocity, whether or not it was in a resting or moving state. This novel finding favors the proposal that growing tissues adjust the location of nuclei in cells by varying mechanical pressures; they thus control cell division according to a plan whereby organs and their constituent tissues develop in an orderly, specified manner. It appears that the enhanced sensitivity of plant cells to mechanical pressure is necessary not only in response to the external environment, but also to the developmental microenvironment inside the tissues.  相似文献   

5.
Male moths respond to sex pheromone sources with up-wind flight behaviour. Localization of the odour source requires not only detection of the olfactory stimulus, but also other sensory input regarding, e.g. visual and mechanical stimuli. Thus, integration of different types of sensory input is necessary. It is, however, not known where in the central nervous system the integration of information regarding different sensory modalities takes place. Using intracellular recording and staining techniques, we investigated neurons in the antennal lobe of Spodoptera littoralis, during stimulation with a mechanical stimulus and a sex pheromone. Fifteen percent of all the neurons investigated responded to the mechanical stimulus and the majority of these neurons showed altered responses if the olfactory stimulus was added. A receptor neuron responding only to the wind stimulus was found to arborise in the antennal lobe. Most projection neurons responded with an enhanced action potential frequency to the combined stimulus. In local interneurons, enhancement, depression, or no change of the responses to the wind stimulus was found when the olfactory stimulus was added. The results suggest that neurons present in the antennal lobe integrate mechanosensory and olfactory input, possibly assisting the moths to orient during up-wind flight towards an odour source.  相似文献   

6.
Olfactory sensory stimulation induces a fast-phase arrest response (FPA-R) of the blowfly heart activity that has been described as a sensitive tool for testing insect reactivity to odor perception. We analyzed FPA-R occurrence to repeated olfactory stimulation with low and high 1-hexanol concentrations that are behaviorally attractant and repellent, respectively, in the blowfly. FPA-R occurrence diminished and ceased with repeated presentations of low and medium odor concentrations, according to dynamics inversely related to odor doses. On the other hand, repeated stimulation with higher odor concentrations induced persistent FPA-Rs. Sensory input amplitude to repeated presentations of singly tested odor concentrations did not change throughout stimulation sessions. A spontaneous restoration of FPA-R to olfactory stimulation was recorded 30 min after cessation of FPA-R to a previous olfactory stimulation session. However, a prompt restoration of FPA-R to olfactory stimulation after cessation of FPA-R was obtained following mechano-taste stimulation of labellar sensilla. Our findings show that the FPA-R habituates to olfactory sensory stimulation with low and medium odor concentrations according to dynamics inversely related to odor intensities. On the other hand, the FPA-R does not habituate to higher odor concentrations. Therefore, flies learn to disregard nonaversive odor information, but they cannot ignore iterative detection of a repellent volatile.  相似文献   

7.
Wang RP  Lin Q  Li QJ  Lu GW 《生理学报》2000,52(5):407-410
用微透析方法在麻醉麻痹大鼠的脊髓局部应用一氧化氮(NO)供体亚硝基铁氰化钠(sodium nitroprusside,SNP),以碳丝微电极在腰膨大处行细胞外记录,观察NO对机械刺激大鼠后足部皮肤引起的诱发反应和自发反应的影响。脊深层神经元透析1μmol/L SNP,10~12min后,非伤害性机械刺激诱发的反应增强,伤害性机械刺激诱发的反应减弱;透析20~30min后,伤害性和非伤害性机械刺激诱  相似文献   

8.
Spike trains from individual antennal olfactory cells of tsetse flies (Glossina spp.) obtained during steady-state conditions (spontaneous as well as during stimulation with 1-octen-3-ol) and dynamic stimulation with repetitive pulses of 1-octen-3-ol were investigated by studying the spike frequency and the temporal structure of the trains. In general, stimulation changes the intensity of the spike activity but leaves the underlying stochastic structure unaffected. This structure turns out to be a renewal process. The only independently varying parameter in this process is the mean interspike interval length, suggesting that olfactory cells of tsetse flies may transmit information via a frequency coding. In spike records with high firing rates, however, the stationary records had significant negative first- order serial correlation coefficients and were non-renewal. Some cells in this study were capable of precisely encoding the onset of the odour pulses at frequencies up to at least 3 Hz. Cells with a rapid return to pre-stimulus activity at the end of stimulation responded more adequately to pulsed stimuli than cells with a long increased spike frequency. While short-firing cells process information via a frequency code, long-firing cells responded with two distinctive phases: a phasic, non-renewal response and a tonic, renewal response which may function as a memory of previous stimulations.   相似文献   

9.
Purpose: The present study aimed to compare the neuromuscular response under various mechanical stimulations of the lumbar spine in participants with and without chronic low back pain (cLBP). Methods: Four mechanical stimulations, characterized by forces ranging from 75 to 225 N, were delivered using a servo-controlled linear actuator motor to the L3 spinous process of 25 healthy participants and 26 participants with cLBP. Lumbar neuromuscular responses were recorded using 64-electrodes large surface electromyography arrays. Between-group differences in the dose–response relationship (neuromuscular response amplitude according to each force level) were assessed using mixed model ANOVAs. Results: No differences between groups were shown (all p values > .05). A significant linear relationship was observed between forces and neuromuscular response amplitudes (p < .001) indicating an increase in response amplitudes with increasing stimulation force. Responses were observed throughout the lumbar region with highest response amplitudes in the vicinity of the contacted vertebra. Conclusion: The neuromuscular response amplitude triggered by localized lumbar mechanical stimulations does not differ between participants with and without cLBP. Moreover, even though stimulations were delivered at specific spinal segment, a neuromuscular response, although rapidly decreasing, was observed in areas distant from the contact site.  相似文献   

10.
In cycling female rats, vaginocervical stimulation (VCS) received naturally during mating or by artificial mechanical stimulation induces neuroendocrine and behavioral responses that are critical for reproduction, including bi-circadian prolactin surges which result in pregnancy or an 8-14-day diestrous period called pseudopregnancy (PSP). Following mating, the incidence of PSP is higher when females receive high (10) as opposed to low (3-5) numbers of intromissions. Therefore, a threshold level of VCS must be exceeded before hypothalamic changes required for PSP can occur. This study characterized the threshold curve for PSP induction for artificial VCS (VCS-a). Proestrous females were given 1, 2, 3, 4, or 8 VCS-a applied with a glass rod using 200 g of force for 2 s, with an 8-min interval between stimulations. The lordosis response (LR) to the stimulus was measured on a scale of increasing intensity from 0 to 3, and the occurrence of PSP was measured by daily vaginal lavage. In contrast to previous findings, VCS-a induced robust lordosis responses without concurrent flank and perineal stimulation. The frequency of PSP induction did not increase in females as a function of amounts of VCS-a. However, the occurrence of PSP was strongly tied to the maximum lordosis response (LR(max)) observed. PSP was observed only among multiply stimulated females that showed the highest LR(max) (3.0) to at least one of the stimulations. Multiply stimulated females that showed a LR(max) < 3.0 or females that received only one VCS-a never became PSP. PSP and a stronger LR(max) were more likely to occur in females that had 5-day compared to 4-day prestimulus estrous cycle lengths. We conclude that central mechanisms important for VCS-induced PSP and lordosis may be potentiated by estradiol's actions in estrogen-concentrating forebrain areas.  相似文献   

11.
Summary A special pattern of the flicker is studied in insects belonging to four Orders, i. e. the differential electrical synchronised response of the eye periodically stimulated by two slightly different alternating illuminations.After having checked that the flicker in response to a regular periodical stimulation at every frequency is made up of successive equal potentials, we use two slightly different alternate flickering flashes. It is established that the alternation of two periodical stimulations of a different duration, as well as the alternation of two periodical stimulations of a different intensity, results, over a certain frequency which depends on the insect studied, in the appearance of a flicker marked with the alternation of two potentials whose difference increases at the same time as the frequency of stimulation.The dependence of this phenomenon on modulation of the light flux is described. At a given frequency of stimulation, the alternation of a high and low potential is more obvious when the modulation is lower.A particular experiment allows us to admit that the differential threshold of electrical response to two different stimulations is under 0.25%, at the frequency 100 Hz, inCalliphora erythrocephala.All the phenomena observed can be explained by a mathematical theory which considers the characteristics of the amplitude of the response to sinusoidal stimulations of various frequencies, i. e. the characteristics of the transfer function of the frequencies.  相似文献   

12.
The interactions between electrical polarizations of the olfactory epithelium and odour stimulations were investigated at the level of the extracellular spike activity of the receptor cells in the frog. 1. In most cases, surface positive polarizations enhanced the excitatory olfactory responses, negative polarizations suppressed these responses; both interactive effects were graded. 2. The response of receptor cells to electrical polarization was markedly reduced or suppressed for several seconds following olfactory stimulation. This effect and the time course of the recovery period depended on the nature and the concentration of the olfactory stimulus. 3. The decrease in electrical excitability seemed to be independent of whether the recorded neuron had responded or not to the prior olfactory stimulation. 4. It is suggested that the olfactory stimulation caused the total constant current to change its distribution in the different cell pathways. Changes in conductance induced by olfactory stimuli could implicate the supporting cells. 5. The experimental findings are discussed with reference to a model of receptor cell function that assumes a deep, axo-somatic localization of the action potential trigger-zone.  相似文献   

13.
Background and AimsWheat crops are exposed to a range of mechanical stimulations in their natural environment, yet we know very little about their response to such conditions. The aim of this study was to better understand the effect of mechanical stimulation on wheat growth and development, stem mechanical properties and grain measures. We focused on the following questions: (1) Does plant age affect the response to mechanical stimulation? (2) Is there a minimum threshold for the perception of mechanical stimuli? (3) Is the effect of manual brushing different to natural wind stimulation?MethodsFor age– and dose–response experiments, wheat plants were grown under controlled glasshouse conditions with brushing treatments applied using a purpose-built rig. The results of the controlled experiments are compared with those from an outside experiment where wheat plants were exposed to natural wind, with or without additional brushing. Detailed phenotypic measurements were conducted and treatment effects on grain characteristics were determined using micro-computed tomography imaging.Key ResultsTwo-week-old wheat plants were particularly sensitive to mechanical stimulation by controlled brushing treatments. Amongst others, plants exhibited a large reduction in height and grain yield, and an increase in tillers, above-ground biomass and stiffness of stem segments. Plants responded significantly to doses as small as one daily brushstroke. Outdoor experiments by and large confirmed results from controlled environment experiments.ConclusionsThe morphological and developmental response to mechanical brushing treatment, in relation to vegetative above-ground biomass and grain yield, is dependent on plant age as well as the dose of the treatments. This study shows that mechanical stimulation of wheat impacts on a multitude of agriculturally relevant traits and provides a much needed advancement of our understanding of wheat thigmomorphogenesis and the potential applications of mechanical conditioning to control relevant traits.  相似文献   

14.
Adaptation of the spike-frequency response to constant stimulation, as observed on various timescales in many neurons, reflects high-pass filter properties of a neuron's transfer function. Adaptation in general, however, is not sufficient to make a neuron's response independent of the mean intensity of a sensory stimulus, since low frequency components of the stimulus are still transmitted, although with reduced gain. We here show, based on an analytically tractable model, that the response of a neuron is intensity invariant, if the fully adapted steady-state spike-frequency response to constant stimuli is independent of stimulus intensity. Electrophysiological recordings from the AN1, a primary auditory interneuron of crickets, show that for intensities above 60 dB SPL (sound pressure level) the AN1 adapted with a time-constant of approximately 40 ms to a steady-state firing rate of approximately 100 Hz. Using identical random amplitude-modulation stimuli we verified that the AN1's spike-frequency response is indeed invariant to the stimulus' mean intensity above 60 dB SPL. The transfer function of the AN1 is a band pass, resulting from a high-pass filter (cutoff frequency at 4 Hz) due to adaptation and a low-pass filter (100 Hz) determined by the steady-state spike frequency. Thus, fast spike-frequency adaptation can generate intensity invariance already at the first level of neural processing.  相似文献   

15.
In teleostean fish, ventilation increases have been observed in response to low dissolved oxygen levels, visual stimuli, and gustatory cues. However, olfactory sensory input may also stimulate gill ventilation rate. We investigated whether olfactory sensory input mediates gill ventilation responses, as suggested by the observation that steroidal compounds detected by the olfactory system elicited increases in opercular activity in the perciform teleost, the round goby (Neogobius melanostomus). Close parallels between gill ventilation and olfactory responses, led us to conduct an empirical study that used two different olfactory sensory deprivation techniques to seek a causal relationship between olfactory epithelial activity and hyperventilation. Chemical lesion of olfactory sensory neurons or mechanical occlusion of the nasal cavities inhibited gill ventilation responses of reproductive male round gobies to estrone (1,3,5(10)-estratrien-3-ol-17-one) and to ovarian extracts. This direct evidence demonstrates the role of olfactory sensory input for the gill ventilation response to putative reproductive pheromones and may represent an important regulatory mechanism for odorant sampling during pheromone communication.  相似文献   

16.
The objectives of this study were to determine: (1) the frequency and distribution of carbonic anhydrase (CA) activity in the bullfrog nasal cavities, and (2)␣whether inhibition of nasal CA affects the olfactory receptor response to CO2 or other odorants. It was found, using Hansson's staining technique, that some olfactory receptor neurons exhibited CA activity and that these CA-positive receptors were distributed throughout the nasal cavity with peak densities in the dorsal and ventral sensory epithelial regions. To test for the role of CA in olfactory transduction, electro-olfactograms (EOGs) were recorded from the surface of the ventral sensory epithelium in response to 2-s pulses of 5% CO2 and amyl acetate before and after topical CA inhibition with acetazolamide (10−3 mol · l−1). In 52 bullfrogs, 1222 sites on the ventral epithelium were tested resulting in 23 locations that exhibited a response to 5% CO2. Inhibition of CA caused an immediate 65% reduction in the EOG response to CO2 while the response to amyl acetate was not affected. These results, along with the histochemical localization of CA in some olfactory receptor neurons, indicate that CA plays a role in the detection of CO2 in frog olfactory neurons and that only a small population of olfactory receptor neurons are CO2 sensitive. Accepted: 31 July 1997  相似文献   

17.
In cats we have simultaneously (monopolarly) recorded the responses in different parts of the associative cortex (ac) (motor cortex, proreal, orbital, anterior marginal, and mid-part of the suprasylvian gyri) appearing for different peripheral stimulations (stimulation of the skin of the forelimbs, a light flash and a sound click). In all the regions of the ac associative responses (ar) almost identical in configuration appeared to all the peripheral stimulations. The ar of the orbitofrontal and the motor cortex differed from the ar of the suprasylvian gyrus in the shorter latent period and greater stability. In each part of the ac we found the same focus of maximum activity for all the peripheral stimulations. For paired stimulations of the same and different modalities the greatest stability in relation to the blocking influence due to the conditioning stimulation characterized the ar which appeared in response to skin stimulation in the orbitofrontal cortex and the ar which appeared in the suprasylvian gyrus on exposure to a light flash. It is assumed that in the orbitofrontal cortex an efferent discharge is formed in response to pulses of different sensory modality whereas in the suprasylvian gyrus there is only sensory integration. Some aspects of afferent convergence are discussed.Institute of Physiology, Academy of Sciences of the Georgian SSR, Tbilisi. Translated from Neirofiziologiya, Vol. 2, No. 2, pp. 126–139, March–April, 1970.  相似文献   

18.
Ito I  Watanabe S  Kimura T  Kirino Y  Ito E 《Zoological science》2003,20(11):1327-1335
Although primary olfactory systems in various animals display spontaneous oscillatory activity, its functional significance in olfactory processing has not been elucidated. The tentacular ganglion, the primary olfactory system of the terrestrial slug Limax marginatus, also displays spontaneous oscillatory activity at 1-2 Hz. In the present study, we examined the relationship between odor-evoked spike activity and spontaneous field potential oscillations in the tentacular nerve, representing the pathway from the primary olfactory system to the olfactory center. Neural activity was recorded from the tentacular nerve before, during and after application of various odors (garlic, carrot, and rat chow) to the sensory epithelium and the changes in firing rate and spontaneous oscillations were analyzed. We detected the baseline amplitude of the oscillations and baseline spike activity before stimulation. Odor stimulations for 20 s or 60 s evoked a transient increase in the firing rate followed by a decrease in the amplitude of spontaneous oscillations. The decrease in the amplitude was larger in the first 8 s of stimulation and subsequently showed recovery during stimulation. The amplitude of the recovered oscillations often fluctuated. Odor-evoked spikes appeared when the amplitude of the recovered oscillations was transiently small. These results suggest that the large oscillations could inhibit spike activity whereas the first transient increase in spike activity was followed by the decrease in the oscillation amplitude. Our results indicate that there is a significant negative correlation between spontaneous oscillations and odor-evoked spike activity, suggesting that the spontaneous oscillations contribute to the olfactory processing in slugs.  相似文献   

19.
The peptide hormone adiponectin is secreted by adipose tissue and the circulating concentration is reversely correlated with body fat mass; it is considered as starvation signal. The observation that mature sensory neurons of the main olfactory epithelium express the adiponectin receptor 1 has led to the concept that adiponectin may affect the responsiveness of the olfactory system. In fact, electroolfactogram recordings from olfactory epithelium incubated with exogenous adiponectin resulted in large amplitudes upon odor stimulation. To determine whether the responsiveness of the olfactory sensory neurons was enhanced, we have monitored the odorant-induced expression of the immediate early gene Egr1. It was found that in an olfactory epithelium incubated with nasally applied adiponectin the number of Egr1 positive cells was significantly higher compared to controls, suggesting that adiponectin rendered the olfactory neurons more responsive to an odorant stimulus. To analyze whether the augmented responsiveness of sensory neurons was strong enough to elicit a higher neuronal activity in the olfactory bulb, the number of activated periglomerular cells of a distinct glomerulus was determined by monitoring the stimulus-induced expression of c-fos. The studies were performed using the transgenic mOR256-17-IRES-tauGFP mice which allowed to visualize the corresponding glomerulus and to stimulate with a known ligand. The data indicate that upon exposure to 2,3-hexanedione in adiponectin-treated mice the number of activated periglomerular neurons was significantly increased compared to controls. The results of this study indicate that adiponectin increases the responsiveness of the olfactory system, probably due to a higher responsiveness of olfactory sensory neurons.  相似文献   

20.
Food quality is an important consideration in the foraging strategy of all animals, including herbivores. Those that can detect and assess the nutritional value of plants from afar, using senses such as smell and sight, can forage more efficiently than those that must assess food quality by taste alone. Selective foraging not only affects herbivore fitness but can influence the structure and composition of plant communities, yet little is known about how olfactory and visual cues help herbivores to find preferred plants. We tested the ability of a free‐ranging, generalist mammalian browser, the swamp wallaby Wallabia bicolor, to use olfactory and visual plant cues to find and/or browse differentially on Eucalyptus pilularis seedlings grown under different nutrient conditions. Low‐nutrient seedlings differed from high‐nutrient seedlings, having lighter coloured leaves, red stems and lower biomass and nitrogen content. In the absence of visual cues, wallabies used odour to differentiate vials containing cut seedlings. They visited and investigated patches with high‐nutrient seedling odour most, followed by patches with low‐nutrient seedling odour, and patches with no added odour least. However, when visual and olfactory cues of seedlings were present, wallabies reversed their foraging response and were more likely to browse low‐ than high‐nutrient seedlings. This browsing difference, in turn, disappeared when long‐range visual cues were reduced by pinning seedlings horizontal to the ground. We suggest that visual cues overrode the effects of olfactory cues on browsing patterns of intact seedlings. Our study shows that herbivores can respond to odours of higher nutrient plants but in ecologically realistic scenarios they use a variety of visual and olfactory cues, with a context‐dependent outcome that is not always selection of high nutrient food. Our results demonstrate the importance of testing the sensory abilities of herbivores in realistic multi‐sensory settings to understand their function in selective foraging.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号