首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
20E-hydroxyecdysone (20E) plays important roles in larval molting and metamorphosis in insects and is also involved in the insect innate immune response. Insect metamorphosis is a highly successful strategy for environmental adaptation and is the most vulnerable stage during which the insect is susceptible to various pathogens. 20E regulates a series of antimicrobial peptides (AMPs) through the immunodeficiency (IMD) pathway activation in Drosophila; nevertheless, whether other immune pathways are involved in 20E-regulated insect immunity is unknown. Our previous studies showed that BmMD-2A is a member of the MD-2-related lipid recognition (ML) family of proteins that are involved in the Bombyx mori innate immunity Toll signaling pathway. In this study, we further demonstrate that BmMD-2A is also positively regulated by 20E, and the BmMD-2A neutralization experiment suggested that 20E activates some downstream immune effect factors, the AMP genes against Escherichia coli and Staphylococcus aureus, through the regulation of BmMD-2A in larval metamorphosis, implying that B. mori may use the Toll-ML signaling pathway to maintain innate immune balance in the larval-pupal metamorphosis stage, which is a different innate immunity pathway regulated by 20E compared to the IMD pathway in Drosophila.  相似文献   

2.
刘小民  袁明龙 《遗传》2018,40(6):451-466
在长期进化过程中,昆虫形成了强大的天然免疫防御系统,即体液免疫和细胞免疫。体液免疫主要包括Toll、IMD和JAK/STAT 3条信号通路,通过信号转导及免疫途径调控免疫相关基因的表达,诱导产生抗菌肽和其他效应分子。细胞免疫由血细胞介导,主要完成对病原物的包裹、吞噬和集结等。近年来,昆虫基因组学快速发展,通过生物信息学等方法从昆虫基因组数据中已鉴定到大量免疫相关基因,对这些基因的研究加深了人们对昆虫天然免疫分子机制的认识和理解。根据基因功能,免疫相关基因分为识别、信号转导、调制器、效应分子、黑化反应、RNA干扰和其他基因等7类,这些基因通过互作来调控体液免疫和细胞免疫。本文对昆虫免疫相关基因的分类、功能及家族进化等方面的研究成果进行总结,并对今后昆虫免疫的研究重点进行了展望,以期为昆虫免疫分子机制的研究及开发新的害虫防治策略提供依据。  相似文献   

3.
4.
5.
The majority of plant disease resistance genes are members of very large multigene families. They encode structurally related proteins containing nucleotide binding site domains (NBS) and C-terminal leucine rich repeats (LRR). The N-terminal region of some resistance genes contain a short sequence called TIR with homology to the animal innate immunity factors, Toll and interleukin receptor-like genes. Only a few plant resistance genes have been functionally analyzed and the origin and evolution of plant resistance genes remain obscure. We have reconstructed gene phylogeny by exhaustive analysis of available genome and amplified NBS domain sequences. Our study shows that NBS domains faithfully predict whole gene structure and can be divided into two major groups. Group I NBS domains contain group-specific motifs that are always linked with the TIR sequence in the N terminus. Significantly, Group I NBS domains and their associated TIR domains are widely distributed in dicot species but were not detected in cereal databases. Furthermore, Group I specific NBS sequences were readily amplified from dicot genomic DNA but could not be amplified from cereal genomic DNA. In contrast, Group II NBS domains are always associated with putative coiled-coil domains in their N terminus and appear to be present throughout the angiosperms. These results suggest that the two main groups of resistance genes underwent divergent evolution in cereal and dicot genomes and imply that their cognate signaling pathways have diverged as well. Received: 17 May 1999 / Accepted: 25 September 1999  相似文献   

6.
昆虫先天性免疫信号通路研究进展   总被引:1,自引:0,他引:1  
昆虫体内形成了强大的免疫防御系统,其被各种微生物攻击时能依靠病原相关分子模式识别蛋白对感染进行区分和激活体内信号通路诱导如抗菌肽之类的效应分子.昆虫体内控制先天性免疫的信号通路分别是:Toll通路、IMD通路和JAS/STAT通路,这3条通路在信号传递过程中存在协作,并且,这些通路与脊椎动物体内某些通路存在惊人相似、在免疫调控通路方面存在共同的进化起源.这揭示了先天性免疫在动物体内存在的普遍性和机体抵御病原感染的重要性.  相似文献   

7.
Insects synthesize a battery of antimicrobial peptides (AMPs) and expression of AMP genes is regulated by the Toll and Imd (immune deficiency) pathways in Drosophila melanogaster. Drosophila Toll pathway is activated after Spätzle (Spz) is cleaved by Spätzle processing enzyme (SPE) to release the active C-terminal C106 domain (DmSpz-C106), which then binds to the Toll receptor to initiate the signaling pathway and regulate expression of AMP genes such as drosomycin. Toll and Spz genes have been identified in other insects, but interaction between Toll and Spz and direct evidence for a Toll-Spz pathway in other insect species have not been demonstrated. Our aim is to investigate a Toll-Spz pathway in Manduca sexta, and compare M. sexta and D. melanogaster Toll-Spz pathways. Co-immunoprecipitation (Co-IP) assays showed that MsTollecto (the ecto-domain of M. sexta Toll) could interact with MsSpz-C108 (the active C-terminal C108 domain of M. sexta Spz) but not with full-length MsSpz, and DmTollecto could interact with DmSpz-C106 but not DmSpz, suggesting that Toll receptor only binds to the active C-terminal domain of Spz. Co-expression of MsToll-MsSpz-C108, but not MsToll-MsSpz, could up-regulate expression of drosomycin gene in Drosophila S2 cells, indicating that MsToll-MsSpz-C108 complex can activate the Toll signaling pathway. In vivo assays showed that activation of AMP genes, including cecropin, attacin, moricin and lebocin, in M. sexta larvae by purified recombinant MsSpz-C108 could be blocked by pre-injection of antibody to MsToll, further confirming a Toll-Spz pathway in M. sexta, a lepidopteran insect.  相似文献   

8.
A growing body of evidence has shown that alcohol alters the activity of the innate immune system and that changes in innate immune system activity can influence alcohol‐related behaviors. Here, we show that the Toll innate immune signaling pathway modulates the level of alcohol resistance in Drosophila. In humans, a low level of response to alcohol is correlated with increased risk of developing an alcohol use disorder. The Toll signaling pathway was originally discovered in, and has been extensively studied in Drosophila. The Toll pathway is a major regulator of innate immunity in Drosophila, and mammalian Toll‐like receptor signaling has been implicated in alcohol responses. Here, we use Drosophila‐specific genetic tools to test eight genes in the Toll signaling pathway for effects on the level of response to ethanol. We show that increasing the activity of the pathway increases ethanol resistance whereas decreasing the pathway activity reduces ethanol resistance. Furthermore, we show that gene products known to be outputs of innate immune signaling are rapidly induced following ethanol exposure. The interaction between the Toll signaling pathway and ethanol is rooted in the natural history of Drosophila melanogaster.  相似文献   

9.
Friedman R  Hughes AL 《Immunogenetics》2002,53(10-11):964-974
The mechanisms of innate immunity in vertebrates show certain overall resemblances to immune mechanisms of insects. Two hypotheses have been proposed to explain these resemblances. (1) According to the evolutionary continuity hypothesis, innate immune mechanisms evolved in the common ancestor of vertebrates and insects and have been conserved since that time. (2) In the independent-evolution hypothesis, the mechanisms of innate immunity in vertebrates evolved independently from invertebrate immune mechanisms. Phylogenetic analysis of five gene families (Pelle, Rel, IkappaB, Toll, and TRAF) whose members are involved in NF-kappaB signaling in vertebrates and insects were used to decide between these hypotheses. The phylogenies of the Rel and TRAF families strongly supported independent evolution of immune functions in vertebrates and invertebrates, and, except for a possible case in the Pelle family, orthologous molecules having immune functions in both vertebrates and invertebrates were not found. The results suggest that NF-kappaB represents an ancient, generalized signaling system that has been co-opted for immune system roles independently in vertebrate and insect lineages.  相似文献   

10.
Though lacking adaptive immunity, insects possess a powerful innate immune system, a genome-encoded defence machinery used to confront infections. Studies in the fruit fly Drosophila melanogaster revealed a remarkable capacity of the innate immune system to differentiate between and subsequently respond to different bacteria and fungi. However, hematophagous compared to non-hematophagous insects encounter additional blood-borne infectious agents, such as parasites and viruses, during their lifetime. Anopheles mosquitoes become infected with the malaria parasite Plasmodium during feeding on infected human hosts and may then transmit the parasite to new hosts during subsequent bites. Whether Anopheles has developed mechanisms to confront these infections is the subject of this review. Initially, we review our current understanding of innate immune reactions and give an overview of the Anopheles immune system as revealed through comparative genomic analyses. Then, we examine and discuss the capacity of mosquitoes to recognize and respond to infections, especially to Plasmodium, and finally, we explore approaches to investigate and potentially utilize the vector immune competence to prevent pathogen transmission. Such approaches constitute a new challenge for insect immunity research, a challenge for global health.  相似文献   

11.
Iwona Wojda 《Insect Science》2017,24(3):342-357
Investigation of insect immune mechanisms provides important information concerning innate immunity, which in many aspects is conserved in animals. This is one of the reasons why insects serve as model organisms to study virulence mechanisms of human pathogens. From the evolutionary point of view, we also learn a lot about host–pathogen interaction and adaptation of organisms to conditions of life. Additionally, insect‐derived antibacterial and antifungal peptides and proteins are considered for their potential to be applied as alternatives to antibiotics. While Drosophila melanogaster is used to study the genetic aspect of insect immunity, Galleria mellonella serves as a good model for biochemical research. Given the size of the insect, it is possible to obtain easily hemolymph and other tissues as a source of many immune‐relevant polypeptides. This review article summarizes our knowledge concerning G. mellonella immunity. The best‐characterized immune‐related proteins and peptides are recalled and their short characteristic is given. Some other proteins identified at the mRNA level are also mentioned. The infectious routes used by Galleria natural pathogens such as Bacillus thuringiensis and Beauveria bassiana are also described in the context of host–pathogen interaction. Finally, the plasticity of G. mellonella immune response influenced by abiotic and biotic factors is described.  相似文献   

12.
Toll receptors are cell-surface receptors acting as pattern recognition receptors (PRRs) that are involved in the signaling pathway for innate immunity activation and are genetically conserved from insects to mammals. Tolls from penaeid shrimp are found in white leg shrimp Litopenaeus vannamei (lToll) and black tiger shrimp Penaeus monodon (PmToll). However, the molecular ligand-recognition patterns and identification of these penaeid Toll classes remain unknown. Here, we report cDNA cloning of a new type of Toll receptor gene (MjToll) from kuruma shrimp, Marsupenaeus japonicus, and the modulation of expression by immunostimulation. The full length cDNA of MjToll gene has 3095 nucleotides coding for a putative protein of 1009 amino acids. The MjToll gene is constitutively expressed in the gill, gut, lymphoid organ, heart, hematopoietic organ, hemocyte, ventral abdominal nerve cord, eyestalk neural ganglia and brain tissues. The MjToll gene expression was significantly increased (76-fold) as compared to a control in lymphoid organ stimulated with peptidoglycan at 12h, in vitro. lToll gene showed high similarity to PmToll gene with 96.9% identity; however, MjToll gene exhibited a percentage identity of 59% with that of penaeid Toll homologues. Therefore, this suggests that the identified MjToll gene belongs to the other class of Toll receptors in shrimp.  相似文献   

13.
鳞翅目昆虫种类繁多,对农业生产和人类生活产生重大影响,宿主昆虫与病毒相互关系的研究对于利用病毒杀虫剂进行害虫治理和益虫病毒性疾病的预防具有重要意义.因此,鳞翅目昆虫与病毒的互作研究显得尤为重要,宿主昆虫的免疫系统在抗病毒感染过程中发挥着关键作用,对病毒产生不同程度的免疫反应.本文综述了昆虫围食膜和中肠对病毒入侵的防御作用,病毒进入体腔后昆虫所产生的细胞免疫和体液免疫反应,以及RNAi、细胞的自噬与凋亡、Toll、Imd、JAK-STAT和STING信号通路等相关的抗病毒免疫途径,并对昆虫抗病毒免疫研究的制约因素和未来鳞翅目昆虫抗病毒免疫的研究重点进行了讨论,以期为害虫的生物防治和益虫疾病的防控提供理论依据.  相似文献   

14.
Insects transmit the causative agents for such debilitating diseases as malaria, lymphatic filariases, sleeping sickness, Chagas' disease, leishmaniasis, river blindness, Dengue, and yellow fever. The persistence of these diseases provides testimony to the genetic capacity of parasites to evolve strategies that ensure their successful development in two genetically diverse host species: insects and mammals. Current efforts to address the problems posed by insect-borne diseases benefit from a growing understanding of insect and mammalian immunity. Of considerable interest are recent genomic investigations that show several similarities in the innate immune effector responses and associated regulatory mechanisms manifested by insects and mammals. One notable exception, however, is the nearly universal presence of a brown-black pigment accompanying cellular innate immunity in insects. This response, which is unique to arthropods and certain other invertebrates, has focused attention on the elements involved in pigment synthesis as causing or contributing to the death of the parasite, and has even prompted speculation that the enzyme cascade mediating melanogenesis constitutes an ill-defined recognition mechanism. Experimental evidence defining the role of melanin and its precursors in insect innate immunity is severely lacking. A great deal of what is known about melanogenesis comes from studies of the process occurring in mammalian systems, where the pigment is synthesized by such diverse cells as those comprising portions of the skin, hair, inner ear, brain, and retinal epithelium. Fortunately, many of the components in the metabolic pathways leading to the formation of melanin have been found to be common to both insects and mammals. This review examines some of the factors that influence enzyme-mediated melanogenic responses, and how these responses likely contribute to blood cell-mediated, target-specific cytotoxicity in immune challenged insects.  相似文献   

15.
16.
The peptidoglycan recognition proteins (PGRPs)   总被引:1,自引:0,他引:1  
Peptidoglycan recognition proteins (PGRPs) are innate immunity molecules present in insects, mollusks, echinoderms, and vertebrates, but not in nematodes or plants. PGRPs have at least one carboxy-terminal PGRP domain (approximately 165 amino acids long), which is homologous to bacteriophage and bacterial type 2 amidases. Insects have up to 19 PGRPs, classified into short (S) and long (L) forms. The short forms are present in the hemolymph, cuticle, and fat-body cells, and sometimes in epidermal cells in the gut and hemocytes, whereas the long forms are mainly expressed in hemocytes. The expression of insect PGRPs is often upregulated by exposure to bacteria. Insect PGRPs activate the Toll or immune deficiency (Imd) signal transduction pathways or induce proteolytic cascades that generate antimicrobial products, induce phagocytosis, hydrolyze peptidoglycan, and protect insects against infections. Mammals have four PGRPs, which are secreted; it is not clear whether any are directly orthologous to the insect PGRPs. One mammalian PGRP, PGLYRP-2, is an N-acetylmuramoyl-L-alanine amidase that hydrolyzes bacterial peptidoglycan and reduces its proinflammatory activity; PGLYRP-2 is secreted from the liver into the blood and is also induced by bacteria in epithelial cells. The three remaining mammalian PGRPs are bactericidal proteins that are secreted as disulfide-linked homo- and hetero-dimers. PGLYRP-1 is expressed primarily in polymorphonuclear leukocyte granules and PGLYRP-3 and PGLYRP-4 are expressed in the skin, eyes, salivary glands, throat, tongue, esophagus, stomach, and intestine. These three proteins kill bacteria by interacting with cell wall peptidoglycan, rather than permeabilizing bacterial membranes as other antibacterial peptides do. Direct bactericidal activity of these PGRPs either evolved in the vertebrate (or mammalian) lineage or is yet to be discovered in insects.  相似文献   

17.
Iron is essential to life,but surprisingly little is known about how iron is managed in nonvertebrate animals.In mammals,the well-characterized transferrins bind iron and are involved in iron transport or immunity,whereas other members of the transferrin family do not have a role in iron homeostasis.In insects,the functions of transferrins are still poorly understood.The goals of this project were to identify the transferrin genes in a diverse set of insect species,resolve the evolutionary relationships among these genes,and predict which of the transferrins are likely to have a role in iron homeostasis.Our phylogenetic analysis of transferrins from 16 orders of insects and two orders of noninsect hexapods demonstrated that there are four orthologous groups of insect transferrins.Our analysis suggests that transferrin 2 arose prior to the origin of insects,and transferrins/,i,and 4 arose early in insect evolution.Primary sequence analysis of each of the insect transferrins was used to predict signal peptides,carboxyl-terminal transmembrane regions,GPI-anchors,and iron binding.Based on this analysis,we suggest that transferrins 2,and 4 are unlikely to play a major role in iron homeostasis.In contrast,the transferrin 1 orthologs are predicted to be secreted,soluble,iron-binding proteins.We conclude that transferrin 1 orthologs are the most likely to play an important role in iron homeostasis.Interestingly,it appears that the louse,aphid,and thrips lineages have lost the transferrin 1 gene and,thus,have evolved to manage iron without transferrins.  相似文献   

18.
Toll-like receptors (TLRs) are a group of evolutionary conserved proteins with diverse biological functions. In Drosophila melanogaster, Toll protein plays an important role in pattern formation in embryogenesis and in antimicrobial immunity in larvae and adults. In insects, Toll and two other related proteins, Tehao and 18-wheeler have been shown to participate in the activation of the innate immune responses to fungal and bacterial pathogens. In this paper we report the cloning and characterization of four TLR gene from malaria vector mosquito Anopheles gambiae, AgToll, AgToll6, AgTrex, and AgToll9, orthologues of DmToll, DmToll6, DmTollo (Toll8) and DmToll9 (CG5528) in Drosophila melanogaster. The expression profiles of these genes during development, in different adult tissues and after immune challenge were examined. As expected for the orthologue of Drosophila Toll, AgToll was found to be expressed highly in the ovary and may play a role in pattern formation during embryogenesis. AgToll9, surprisingly, was found to be highly expressed in the adult gut. The potential roles of these genes in development and immunity were discussed.  相似文献   

19.
20.
Extracellular nucleic acids play important roles in human immunity and hemostasis by inducing IFN production, entrapping pathogens in neutrophil extracellular traps, and providing procoagulant cofactor templates for induced contact activation during mammalian blood clotting. In this study, we investigated the functions of extracellular RNA and DNA in innate immunity and hemolymph coagulation in insects using the greater wax moth Galleria mellonella a reliable model host for many insect and human pathogens. We determined that coinjection of purified Galleria-derived nucleic acids with heat-killed bacteria synergistically increases systemic expression of antimicrobial peptides and leads to the depletion of immune-competent hemocytes indicating cellular immune stimulation. These activities were abolished when nucleic acids had been degraded by nucleic acid hydrolyzing enzymes prior to injection. Furthermore, we found that nucleic acids induce insect hemolymph coagulation in a similar way as LPS. Proteomic analyses revealed specific RNA-binding proteins in the hemolymph, including apolipoproteins, as potential mediators of the immune response and hemolymph clotting. Microscopic ex vivo analyses of Galleria hemolymph clotting reactions revealed that oenocytoids (5-10% of total hemocytes) represent a source of endogenously derived extracellular nucleic acids. Finally, using the entomopathogenic bacterium Photorhabdus luminescens as an infective agent and Galleria caterpillars as hosts, we demonstrated that injection of purified nucleic acids along with P. luminescens significantly prolongs survival of infected larvae. Our results lend some credit to our hypothesis that host-derived nucleic acids have independently been co-opted in innate immunity of both mammals and insects, but exert comparable roles in entrapping pathogens and enhancing innate immune responses.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号