首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Farnesol, a quorum sensing (QS) signal, is produced by Candida albicans during high density growth and has been found to inhibit morphogenesis. This QS auto-inducing signal was discovered to increase amino acid incorporation by C. albicans when concentrations of farnesol increased to 10 microg/mL in yeast nitrogen broth. Farnesol concentrations greater than 10 microg/mL abolished the enhanced incorporation, and the magnitude of the increased incorporation was dependent on cell-surface hydrophobicity.  相似文献   

2.
Mitogen activated protein kinase (MAPK) cascades are signal transduction mechanisms present in eukaryotic cells that allow adaptation to environmental changes. MAPK activity is mainly regulated by dual phosphorylation in a TXY motif present in the kinase subdomain VIII as well as dephosphorylation by specific phosphatases. The Cek1 MAPK is involved in filamentous growth in Candida albicans and is an important determinant of virulence in this microorganism; its activation is controlled by the Sho1 adaptor protein. Here we show that Cek1 phosphorylation is regulated by quorum sensing (QS). Cek1 phosphorylation is prevented by farnesol, a compound that also regulates the dimorphic transition in this fungus. Farnesol also induced the activation of Mkc1, the MAPK of the cell integrity pathway. The role of farnesol in Cek1 phosphorylation is independent of the Chk1 histidine kinase, a putative QS sensor, as revealed by genetic analysis. In addition, Cek1, not Hog1, is degraded by proteasome, as revealed by the use of a conditional lethal protein degradation mutant. Our data therefore describe two different mechanisms (QS and protein degradation) that control a MAPK pathway that regulates virulence in a fungal pathogen.  相似文献   

3.
4.
The dimorphic fungus Candida albicans secretes farnesol, which acts as a quorum-sensing molecule and prevents the yeast to mycelium conversion. In this study we examined the effect of farnesol in the filamentous fungus Aspergillus nidulans. We show that externally added farnesol has no effect on hyphal morphogenesis; instead, it triggers morphological features characteristic of apoptosis. Additional experiments suggest that mitochondria and reactive oxygen species (ROS) participate in farnesol-induced apoptosis. Moreover, the effects of farnesol appear to be mediated by the FadA heterotrimeric G protein complex. Because A. nidulans does not secrete detectable amounts of farnesol, we propose that it responds to farnesol produced by other fungi. In agreement with this notion, growth and development were impaired in a farnesol-dependent manner when A. nidulans was co-cultivated with C. albicans. Taken together, our data suggest that farnesol, in addition to its quorum-sensing function that regulates morphogenesis, is also employed by C. albicans to reduce competition from other microbes.  相似文献   

5.
6.
Candida albicans is a diploid fungus that undergoes a morphological transition between budding yeast, hyphal, and pseudohyphal forms. The morphological transition is strongly correlated with virulence and is regulated in part by quorum sensing. Candida albicans produces and secretes farnesol that regulates the yeast to mycelia morphological transition. Mutants that fail to synthesize or respond to farnesol could be locked in the filamentous mode. To test this hypothesis, a collection of C. albicans mutants were isolated that have altered colony morphologies indicative of the presence of hyphal cells under environmental conditions where C. albicans normally grows only as yeasts. All mutants were characterized for their ability to respond to farnesol. Of these, 95.9% fully or partially reverted to wild-type morphology on yeast malt (YM) agar plates supplemented with farnesol. All mutants that respond to farnesol regained their hyphal morphology when restreaked on YM plates without farnesol. The observation that farnesol remedial mutants are so common (95.9%) relative to mutants that fail to respond to farnesol (4.1%) suggests that farnesol activates and (or) induces a pathway that can override many of the morphogenesis defects in these mutants. Additionally, 9 mutants chosen at random were screened for farnesol production. Two mutants failed to produce detectable levels of farnesol.  相似文献   

7.
Effect of farnesol on Candida dubliniensis morphogenesis   总被引:1,自引:0,他引:1  
AIMS: Cell-cell signalling in Candida albicans is a known phenomenon and farnesol was identified as a quorum sensing molecule determining the yeast morphology. The aim of this work was to verify if farnesol had a similar effect on Candida dubliniensis, highlighting the effect of farnesol on Candida spp. morphogenesis. METHODS AND RESULTS: Two different strains of C. dubliniensis and one of C. albicans were grown both in RPMI 1640 and in serum in the presence of absence of farnesol. At 150 micromol l(-1) farnesol the growth rate of both Candida species was not affected. On the contrary, farnesol inhibited hyphae and pseudohyphae formation in C. dubliniensis. CONCLUSION: Farnesol seems to mediate cell morphology in both Candida species. SIGNIFICANCE AND IMPACT OF THE STUDY: The effect of farnesol on C. dubliniensis morphology was not reported previously.  相似文献   

8.
9.
Living as a commensal, Candida albicans must adapt and respond to environmental cues generated by the mammalian host and by microbes comprising the natural flora. These signals have opposing effects on C. albicans, with host cues promoting the yeast-to-hyphal transition and bacteria-derived quorum-sensing molecules inhibiting hyphal development. Hyphal development is regulated through modulation of the cyclic AMP (cAMP)/protein kinase A (PKA) signaling pathway, and it has been postulated that quorum-sensing molecules can affect filamentation by inhibiting the cAMP pathway. Here, we show that both farnesol and 3-oxo-C(12)-homoserine lactone, a quorum-sensing molecule secreted by Pseudomonas aeruginosa, block hyphal development by affecting cAMP signaling; they both directly inhibited the activity of the Candida adenylyl cyclase, Cyr1p. In contrast, the 12-carbon alcohol dodecanol appeared to modulate hyphal development and the cAMP signaling pathway without directly affecting the activity of Cyr1p. Instead, we show that dodecanol exerted its effects through a mechanism involving the C. albicans hyphal repressor, Sfl1p. Deletion of SFL1 did not affect the response to farnesol but did interfere with the response to dodecanol. Therefore, quorum sensing in C. albicans is mediated via multiple mechanisms of action. Interestingly, our experiments raise the possibility that the Burkholderia cenocepacia diffusible signal factor, BDSF, also mediates its effects via Sfl1p, suggesting that dodecanol's mode of action, but not farnesol or 3-oxo-C(12)-homoserine lactone, may be used by other quorum-sensing molecules.  相似文献   

10.
Two-component signal transduction in human fungal pathogens   总被引:3,自引:0,他引:3  
Signal transduction pathways provide mechanisms for adaptation to stress conditions. One of the most studied of these pathways is the HOG1 MAP kinase pathway that in Saccharomyces cerevisiae is used to adapt cells to osmostress. The HOG1 MAPK has also been studied in Candida albicans, and more recently observations on the Hog1p functions have been described in two other human pathogens, Aspergillus fumigatus and Cryptococcus neoformans. The important, but not surprising, concept is that this pathway is used for different yet similar functions in each of these fungi, given their need to adapt to different environmental signals. Current studies of C. albicans focus upon the identification of two-component signal proteins that, in both C. albicans and S. cerevisiae, regulate the HOG1 MAPK. In C. albicans, these proteins regulate cell wall biosynthesis (and, therefore, adherence to host cells), osmotic and oxidant adaptation, white-opaque switching, morphogenesis, and virulence of the organism.  相似文献   

11.
12.
The regulation of morphogenesis in the human fungal pathogen Candida albicans is under investigation to better understand how the switch between budding and hyphal growth is linked to virulence. Therefore, in this study we examined the ability of C. albicans to undergo a distinct type of morphogenesis to form large thick-walled chlamydospores whose role in infection is unclear, but they act as a resting form in other species. During chlamydospore morphogenesis, cells switch to filamentous growth and then develop elongated suspensor cells that give rise to chlamydospores. These filamentous cells were distinct from true hyphae in that they were wider and were not inhibited by the quorum-sensing factor farnesol. Instead, farnesol increased chlamydospore production, indicating that quorum sensing can also have a positive role. Nuclear division did not occur across the necks of chlamydospores, as it does in budding. Interestingly, nuclei divided within the suspensor cells, and then one daughter nucleus subsequently migrated into the chlamydospore. Septins were not detected near mitotic nuclei but were localized at chlamydospore necks. At later stages, septins localized throughout the chlamydospore plasma membrane and appeared to form long filamentous structures. Deletion of the CDC10 or CDC11 septins caused greater curvature of cells growing in a filamentous manner and morphological defects in suspensor cells and chlamydospores. These studies identify aspects of chlamydospore morphogenesis that are distinct from bud and hyphal morphogenesis.  相似文献   

13.
The yeast Debaryomyces hansenii was investigated for its production of alcohol-based quorum sensing (QS) molecules including the aromatic alcohols phenylethanol, tyrosol, tryptophol and the aliphatic alcohol farnesol. Debaryomyces hansenii produced phenylethanol and tyrosol, which were primarily detected from the end of exponential phase indicating that they are potential QS molecules in D.?hansenii as previously shown for other yeast species. Yields of phenylethanol and tyrosol produced by D.?hansenii were, however, lower than those produced by Candida albicans and Saccharomyces cerevisiae and varied with growth conditions such as the availability of aromatic amino acids, ammonium sulphate, NaCl, pH and temperature. Tryptophol was only produced in the presence of tryptophane, whereas farnesol in general was not detectable. Especially, the type strain of D.?hansenii (CBS767) had good adhesion and sliding motility abilities, which seemed to be related to a higher hydrophobicity of the cell surface of D.?hansenii (CBS767) rather than the ability to form pseudomycelium. Addition of phenylethanol, tyrosol, tryptophol and farnesol was found to influence both adhesion and sliding motility of D.?hansenii.  相似文献   

14.
Many Ras GTPases localize to membranes via C-terminal farnesylation and palmitoylation, and localization regulates function. In Candida albicans, a fungal pathogen of humans, Ras1 links environmental cues to morphogenesis. Here, we report the localization and membrane dynamics of Ras1, and we characterize the roles of conserved C-terminal cysteine residues, C287 and C288, which are predicted sites of palmitoylation and farnesylation, respectively. GFP-Ras1 is localized uniformly to plasma membranes in both yeast and hyphae, yet Ras1 plasma membrane mobility was reduced in hyphae compared to that in yeast. Ras1-C288S was mislocalized to the cytoplasm and could not support hyphal development. Ras1-C287S was present primarily on endomembranes, and strains expressing ras1-C287S were delayed or defective in hyphal induction depending on the medium used. Cells bearing constitutively activated Ras1-C287S or Ras1-C288S, due to a G13V substitution, showed increased filamentation, suggesting that lipid modifications are differentially important for Ras1 activation and effector interactions. The C. albicans autoregulatory molecule, farnesol, inhibits Ras1 signaling through adenylate cyclase and bears structural similarities to the farnesyl molecule that modifies Ras1. At lower concentrations of farnesol, hyphal growth was inhibited but Ras1 plasma membrane association was not altered; higher concentrations of farnesol led to mislocalization of Ras1 and another G protein, Rac1. Furthermore, farnesol inhibited hyphal growth mediated by cytosolic Ras1-C288SG13V, suggesting that farnesol does not act through mechanisms that depend on Ras1 farnesylation. Our findings imply that Ras1 is farnesylated and palmitoylated, and that the Ras1 stimulation of adenylate cyclase-dependent phenotypes can occur in the absence of these lipid modifications.  相似文献   

15.
16.
The pathogenic yeast Candida albicans, a member of the mucosal microbiota, is responsible for a large spectrum of infections, ranging from benign thrush and vulvovaginitis in both healthy and immunocompromised individuals to severe, life-threatening infections in immunocompromised patients. A striking feature of C. albicans is its ability to grow as budding yeast and as filamentous forms, including hyphae and pseudohyphae. The yeast-to-hypha transition contributes to the overall virulence of C. albicans and may even constitute a target for the development of antifungal drugs. Indeed, impairing morphogenesis in C. albicans has been shown to be a means to treat candidiasis. Additionally, a large number of small molecules such as farnesol, fatty acids, rapamycin, geldanamycin, histone deacetylase inhibitors, and cell cycle inhibitors have been reported to modulate the yeast-to-hypha transition in C. albicans. In this minireview, we take a look at molecules that modulate morphogenesis in this pathogenic yeast. When possible, we address experimental findings regarding their mechanisms of action and their therapeutic potential. We discuss whether or not modulating morphogenesis constitutes a strategy to treat Candida infections.  相似文献   

17.
Candida albicans undergoes a dramatic morphological transition in response to various growth conditions. This ability to switch from a yeast form to a hyphal form is required for its pathogenicity. The intractability of Candida to traditional genetic approaches has hampered the study of the molecular mechanism governing this developmental switch. Our approach is to use the more genetically tractable yeast Saccharomyces cerevisiae to yield clues about the molecular control of filamentation for further studies in Candida. G1 cyclins Cln1 and Cln2 have been implicated in the control of morphogenesis in S. cerevisiae. We show that C. albicans CLN1 (CaCLN1) has the same cell cycle-specific expression pattern as CLN1 and CLN2 of S. cerevisiae. To investigate whether G1 cyclins are similarly involved in the regulation of cell morphogenesis during the yeast-to-hypha transition of C. albicans, we mutated CaCLN1. Cacln1/Cacln1 cells were found to be slower than wild-type cells in cell cycle progression. The Cacln1/Cacln1 mutants were also defective in hyphal colony formation on several solid media. Furthermore, while mutant strains developed germ tubes under several hypha-inducing conditions, they were unable to maintain the hyphal growth mode in a synthetic hypha-inducing liquid medium and were deficient in the expression of hypha-specific genes in this medium. Our results suggest that CaCln1 may coordinately regulate hyphal development with signal transduction pathways in response to various environmental cues.  相似文献   

18.
19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号