首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 37 毫秒
1.
An endoglucanase from Bacillus akibai I-1 was successfully overexpressed in Bacillus subtilis 168 and the expression level of the recombinant enzyme was greatly enhanced by using the sucrose-inducible sacB promoter. The endoglucanase activity in the culture supernatant of recombinant B. subtilis by using itself promoter (HpaII) in plasmid pMA5 was 3U/ml. Interestingly, with the addition of sacB promoter at downstream from the HpaII promoter or the replacement of HpaII promoter by the sacB promoter, the endoglucanase activities reached 62 and 60U/ml, respectively, under the optimal culture conditions. These results demonstrated that the sacB promoter might be more efficient for the expression of the endoglucanase than the HpaII promoter. More interestingly, the purified native enzyme had broad pH stability, good thermostability and resistibility to various metal ions and chelating agents examined, while the recombinant enzyme had improved resistibility to SDS, which was stable in 0.2% (w/v) laundry detergent and thus showed great potential in detergents industry.  相似文献   

2.
A Bacillus subtilis strain BEC-1 demonstrating high carboxymethylcellulose-degrading activity was isolated from the forest soil sample. In order to characterize the biochemical specialty of its cellulase, the endoglucanase gene egl173 was cloned from this strain and was expressed in Escherichia coli. The gene encoded a protein of 499 amino acids with a molecular weight of 64 kDa. The purified Egl173 could hydrolyze both soluble and insoluble celluloses with distinct activities. This enzyme showed the highest enzyme activity at pH 4, maintained at least 85% activity in the pH range of 3–7, displayed maximum activity at 60°C and was highly stable between 30 and 60°C. It was found that this endoglucanase was increasedly active and retained its high stability after incubation with 5 M NaCl or 3 M KCl for 24 h. Furthermore, after incubation with 10 mM of dithiothreitol, the enzyme activity was significantly enhanced (125% of the control level). In the presence of diverse metal ions (except mercury and manganese cations), organic solvents, surfactants (except SDS) and chelating agent, this enzyme kept more than 85% active. This halo-tolerant, acidophilic and highly stable endoglucanase is prospectively to be exploited as the advanced enzymatic product for diverse industrial applications.  相似文献   

3.
The crystal structures of almost all the enzymes of arginine metabolism have been determined, but arginine decarboxylase’s structure is not resolved yet. In order to characterize and crystallize arginine decarboxylase, we overexpressed biosynthetic arginine decarboxylase (ADC; EC 4.1.1.19, encoded by the speA gene) from Escherichia coli in the T7 expression system as a cleavable poly-His-tagged fusion construct. The expressed recombinant His10-ADC (77.3 kDa) was first purified by Ni–NTA affinity chromatography, then proteolytically digested with Tobacco Etch Virus (TEV) protease to remove the poly-His fusion tag, and finally purified by anion exchange chromatography. The His10 tag removed recombinant ADC (74.1 kDa)’s typical yield was 90 mg from 1 l of culture medium with purity above 98%. The recombinant ADC was assayed for decarboxylase activity, showing decarboxylase activity of 2.8 U/mg, similar to the purified native E. coli ADC. The decarboxylase activity assay also showed that the purified recombinant ADC tolerated broad ranges of pH (pH 6–9) and temperature (20–80°C). Our research may facilitate further studies of ADC structure and function, including the determination of its crystal structure by X-ray diffraction.  相似文献   

4.
Chymosin as an important industrial enzyme widely used in cheese manufacture. The yeast Kluyveromyces lactis is a promising host strain for expression of the chymosin gene. However, low yields (80 U/ml in shake flask cultures) were obtained when the K. lactis strain GG799 was used to express chymosin. We hypothesized that the codon-usage bias of the host may have resulted in inefficient translation and chymosin production. To improve expression efficiency of recombinant calf chymosin in K. lactis strain GG799, we designed and synthesized a DNA sequence encoding calf prochymosin using optimized codons, while keeping the G + C content relatively low. We altered 333 nucleotides to optimize codons encoding 315 amino acids. In shaking flask culture, chymosin activity was 575 U/ml in the strain expressing the optimized gene, a sevenfold higher expression level compared with the non-optimized control. SDS–PAGE analysis revealed that the purified recombinant calf chymosin had a molecular mass of 35.6 kDa, the same as the molecular weight of native calf chymosin. Alpha-casein, beta-casein, and kappa-casein were incubated with the recombinant calf chymosin from K. lactis strain GG799 or chymosin from calf stomach and the breakdown products were analyzed by SDS–PAGE. Both the recombinant calf chymosin and the native calf chymosin specifically hydrolyzed kappa-casein. Our results show that codon optimization of the calf chymosin gene improves expression in K. lactis strain GG799. Genetic manipulation to optimize codon usage has important applications for industrial chymosin production.  相似文献   

5.
The enzymatic hydrolysis of cellulose has potential economical and environment-friendly applications. Therefore, discovery of new extremophilic cellulases is essential to meet the requirements of industry. Penicillium citrinum (MTCC 6489) that was previously isolated from soil in our laboratory, produced alkali tolerant and thermostable cellulases. Endoglucanase and filter paper activity hydrolase (FPAse) production of P. citrinum were studied using wheat bran substrate in solid state and submerged culture. Zymogram analysis of endoglucanase revealed the presence of two isoforms differing in molecular weight. One of them was 90 kDa and other one was 38 kDa. Partially purified endoglucanase showed two different peaks at pH 5.5 and 8.0, respectively, in its pH optima curve. But FPase showed only one peak (at pH 6.5) in its pH optima curve. Cellulase of P. citrinum is thermostable in nature. The present work reports for the first time, the alkali stable cellulase from alkali tolerant fungus Penicillium citrinum. Thermostable endoglucanase from P. citrinum may have potential effectiveness as additives to laundry detergents.  相似文献   

6.
Aims: To elucidate the roles of the β‐1,3‐endoglucanase EngA in autolysis of the filamentous fungus Aspergillus nidulans and to identify the common regulatory elements of autolytic hydrolases. Methods and Results: A β‐1,3‐endoglucanase was purified from carbon‐starving cultures of A. nidulans. This enzyme is found to be encoded by the engA gene (locus ID: AN0472.3). Functional and gene‐expression studies demonstrated that EngA is involved in the autolytic cell wall degradation resulting from carbon starvation of the fungus. Moreover, regulation of engA is found to be dependent on the FluG/BrlA asexual sporulation signalling pathway in submerged culture. The deletion of either engA or chiB (encoding an endochitinase) caused highly reduced production of hydrolases in general. Conclusions: The β‐1,3‐endoglucanase EngA plays a pivotal role in fungal autolysis, and activities of both EngA and ChiB are necessary to orchestrate the expression of autolytic hydrolases. The production of cell wall–degrading enzymes was coordinately controlled in a highly sophisticated and complex manner. Significance and Impact of the Study: No information was available on the autolytic glucanase(s) of the euascomycete A. nidulans. This study demonstrates that EngA is a key element in fungal autolysis, and normal activities of both EngA and ChiB are crucial for balanced production of hydrolases.  相似文献   

7.
Aldehyde dehydrogenase (ALDH) catalyzes the conversion of aldehydes to the corresponding acids by means of an NAD(P)+-dependent virtually irreversible reaction. In this investigation, the biophysical properties of a recombinant Bacillus licheniformis ALDH (BlALDH) were characterized in detail by analytical ultracentrifuge (AUC) and various spectroscopic techniques. The oligomeric state of BlALDH in solution was determined to be tetrameric by AUC. Far-UV circular dichroism analysis revealed that the secondary structures of BlALDH were not altered in the presence of acetone and ethanol, whereas SDS had a detrimental effect on the folding of the enzyme. Thermal unfolding of this enzyme was found to be highly irreversible. The native enzyme started to unfold beyond ~0.2 M guanidine hydrochloride (GdnHCl) and reached an unfolded intermediate, [GdnHCl]05, N-U, at 0.93 M. BlALDH was active at concentrations of urea below 2 M, but it experienced an irreversible unfolding under 8 M denaturant. Taken together, this study provides a foundation for the future structural investigation of BlALDH, a typical member of ALDH superfamily enzymes.  相似文献   

8.
d-Xylulose-forming d-arabitol dehydrogenase (aArDH) is a key enzyme in the bio-conversion of d-arabitol to xylitol. In this study, we cloned the NAD-dependent d-xylulose-forming d-arabitol dehydrogenase gene from an acetic acid bacterium, Acetobacter suboxydans sp. The enzyme was purified from A. suboxydans sp. and was heterogeneously expressed in Escherichia coli. The native or recombinant enzyme was preferred NAD(H) to NADP(H) as coenzyme. The active recombinant aArDH expressed in E. coli is a homodimer, whereas the native aArDH in A. suboxydans is a homotetramer. On SDS–PAGE, the recombinant and native aArDH give one protein band at the position corresponding to 28 kDa. The optimum pH of polyol oxidation and ketone reduction is found to be pH 8.5 and 5.5 respectively. The highest reaction rate is observed when d-arabitol is used as the substrate (K m = 4.5 mM) and the product is determined to be d-xylulose by HPLC analysis.  相似文献   

9.
Methyl parathion hydrolase (MPH) from a methyl parathion-degrading Burkholderia cepacia indigenous to Thailand was purified to apparent homogeneity by three steps of column chromatography using Resource S, Sephadex G100, and Octyl Sepharose 4FF columns. Its molecular mass was determined to be 35 kDa, and the pI to be 8.5. The recombinant plasmid pGT1, containing the MPH-encoding gene, mpdB, cloned into pGEX-4T-2 was over-expressed in Escherichia coli as GST-MPH fusion protein. The recombinant MPH was purified to homogeneity by a single step, using GSTPrep FF affinity column, with the molecular mass identical to that of the native enzyme. The purified enzyme had the specific activity of about 1,600 unit mg−1 protein and the yield of about 75%, a 39-fold increase in recovery compared to that of the native enzyme. The optimal temperature and pH were 25°C and 9.0, respectively. The MPH was stable, with its activity unchanged for 48 h at 4°C, and reduced to 50% after 5 h and to 45% after 48 h at 25°C. The enzyme activity remained 80–90% after 8–15 h at pH 6–7. Cd2+, Co2+, and Zn2+ ions at the concentration of 1 mM enhanced the activity; while sodium dodecyl sulfate (SDS), dithiothreitol (DTT) and ethylenediaminetetraacetate (EDTA) reduced it. The enzyme also showed cross reactivity with other insecticides within the organophosphate group, and the kinetic parameters for individual substrates were investigated. Since MPH from B. cepacia has wide potential applications in detoxification and detection of organophosphate compounds, this study provides important basis for its future use.  相似文献   

10.
The Amycolatopsis cihanbeyliensis Mut43, which is obtained by UV radiation, exhibited endoglucanase activity of 5.21?U/mL, which was ~2.3-fold higher than that of the wild strain (2.04?U/mL). The highest enzyme activity was obtained after 3 days of incubation at 32?°C, pH 7.0, 150?rpm, and 6% NaCl in a liquid medium containing 1.5% (w/v) wheat straw (0.25?mm of particle size) and 0.6% (w/v) yeast extract. Enzyme activity was eluted as a single peak (gel filtration chromatography), and Sodium dodecyl sulfate–polyacrylamide gel electrophoresis (SDS–PAGE) analysis of the corresponding peak revealed a molar mass of 30?kDa. Zymogram analysis confirmed the presence of a single active endoglucanase component. The enzyme was purified to ~21-fold, and the mean overall yield was ~6%. The purified endoglucanase was active up to 80?°C and showed a half-life of 214?min at 60?°C in the absence of substrate at pH 8.0. The apparent Km value for the purified endoglucanase was 0.70?mg/mL, while the Vmax value was 6.20 Units/μg. Endoglucanase activity was reduced (25%) by treatment with 30?U of proteinase K/mg. The addition of Mg+2 and Ca+2 (5?mM) enhanced endoglucanase activity. Additionally, endoglucanase activity in the presence of 5?mM SDS or organic solvents was 75 and 50% of maximum activity, respectively. The high levels of enzyme production from A. cihanbeyliensis Mut43 achieved under batch conditions, coupled with the temperature stability, activity over a broad pH range, relatively high stability (70–80%) in the presence of industrial laundry detergents and storage half-lives of 45 days at +4?°C and 75 days at ?20?°C signify the suitability of this enzyme for industrial applications as detergent additive.  相似文献   

11.
Endoglucanase is a part of cellulase which hydrolyzes cellulose into glucose. In this study, we cloned endoglucanase III (EG III) gene from Trichoderma viride strain AS 3.3711 using a PCR-based exon splicing method, and expressed EG III recombinant protein in both silkworm BmN cell line and silkworm larvae with an improved Bac-to-Bac/BmNPV mutant baculovirus expression system, which lacks the chiA and v-cath genes of Bombyx mori nucleopolyhedrovirus (BmNPV). The result showed that around 45 kDa protein was visualized in BmN cells at 48 h after the second generation recombinant mBacmid/BmNPV/EG III baculovirus infection. The enzymes from recombinant baculoviruses infected silkworms exhibited significant maximum enzyme activity at the environmental condition of pH 8.0 and temperature 50°C, and increased 20.94 and 19.13% compared with that from blank mBacmid/BmNPV baculoviruses infected silkworms and normal silkworms, respectively. It was stable at pH range from 5.0 to 9.0 and at temperature range from 40 to 60°C. It provided a possibility to generate transgenic silkworms expressing bio-active cellulase, which can catabolize dietary fibers more efficiently, and it might be of great significance for sericulture industry.  相似文献   

12.
A novel gene, EG encoding enzymes involved in carboxymethyl cellulose (CMC) degradation was isolated, sequenced from the filamentous fungus Rhizopus stolonifer var. reflexus TP-02, and expressed in Escherichia coli BL21. The results showed that the gene amplified from the cDNA of the strain could be classified as the family of endoglucanase. During the fermentation process, the maximum endoglucanase activity (i.e. 0.715 IU/ml) of the recombinant bacteria was obtained at 36 h. The SDS–PAGE analysis on purified samples showed that a band with apparent molecular weight of about 40 kDa was detected after staining with Coomassie brilliant blue.  相似文献   

13.
Microorganisms that colonize plants require a number of hydrolytic enzymes to help degrade the cell wall. The maize endophyte Acremonium zeae was surveyed for production of extracellular enzymes that hydrolyze cellulose and hemicellulose. The most prominent enzyme activity in cell-free culture medium from A. zeae NRRL 6415 was xylanase, with a specific activity of 60 U/mg from cultures grown on crude corn fiber. Zymogram analysis following SDS-PAGE indicated six functional xylanase polypeptides of the following masses: 51, 44, 34, 29, 23, and 20 kDa. Xylosidase (0.39 U/mg), arabinofuranosidase (1.2 U/mg), endoglucanase (2.3 U/mg), cellobiohydrolase (1.3 U/mg), and β-glucosidase (0.85 U/mg) activities were also detected. Although apparently possessing a full complement of hemicellulolytic activities, cell-free culture supernatants prepared from A. zeae required an exogenously added xylosidase to release more than 90% of the xylose and 80% of the arabinose from corn cob and wheat arabinoxylans. The hydrolytic enzymes from A. zeae may be suitable for application in the bioconversion of lignocellulosic biomass into fermentable sugars. Mention of a trade name or commercial products in this publication is solely for the purpose of providing specific information and does not imply recommendation or endorsement by the U.S. Department of Agriculture.  相似文献   

14.
In the present investigation, an attempt has been made to isolate and identify SDS-degrading bacteria from different detergent contaminated ponds situated in Varanasi city, UP, India. Initial survey of ponds indicated that these ponds were contaminated with detergents. Employing enrichment technique in minimal medium (PBM) with SDS as a sole carbon source, a total of 24 isolates were recovered from 7 detergent contaminated ponds. Studies on rates of SDS degradation indicated that the rate of SDS degradation varied from 97.2% to 19.6% after 12h incubation under identical conditions. An estimation of alkyl sulfatase activity indicated that the activity varied from 0.168 ± 0.004 to 0.024 ± 0.005 μmol SDS/mg protein/min. Molecular characterization of these isolates was performed on the basis of ARDRA and ERIC PCR, which indicated that these isolates were broadly divided in 8 groups. Some selected isolates were identified on the basis of 16S rDNA sequencing. It was found that these isolates belonged to Pseudomonas aeruginosa, Pseudomonas mendocina, Pseudomonas stutzeri, Pseudomonas alcaligenes, Pseudomonas pseudoalcaligenes, Pseudomonas putida and Pseudomonas otitidis respectively. Among these isolates P. aeruginosa, P. putida and P. otitidis have been previously shown to degrade and metabolize SDS, the rest of the isolates appear to be new.  相似文献   

15.
l-glutamine (Gln) is an important conditionally necessary amino acid in human body and potential demand in food or medicine industry is expected. High efficiency of l-Gln production by coupling genetic engineered bacterial glutamine synthetase (GS) with yeast alcoholic fermentation system has been developed. We report here first the application of small ubiquitin-related modifier (SUMO) fusion technology to the expression and purification of recombinant Bacillus subtilis GS. In order to obtain GS with high Gln-forming activity, safety and low cost for food and pharmaceutics industry, 0.1% (w/v) lactose was selected as inducer. The fusion protein was expressed in totally soluble form in E. coli, and expression was verified by SDS–PAGE and western blot analysis. The fusion protein was purified to 90% purity by nickel nitrilo-triacetic acid (Ni–NTA) resin chromatography with a yield of 625 mg per liter fermentation culture. After the SUMO/GS fusion protein was cleaved by the SUMO protease, the cleaved sample was reapplied to a Ni–NTA column. Finally, about 121 mg recombinant GS was obtained from 1 l fermentation culture with no less than 96% purity. The recombinant purified GS showed great transferase activity (23 U/mg), with 25 U recombinant GS in a 50 ml reaction system, a biosynthesis yield of 27.5 g/l l-Gln was detected by high pressure liquid chromatography (HPLC) or thin-layer chromatography. Thus, the application of SUMO technology to the expression and purification of GS potentially could be employed for the industrial production of l-Gln.  相似文献   

16.
Bacillus subtilis glutamine synthetase (GS) was highly expressed (about 86% of total protein) as soluble protein in Escherichia coli BL21(DE3) containing pET28a-glnA, which was induced by 0.4 mM IPTG in LB medium, and maximal theanine-forming activity of the recombinant GS induced in LB is 6.4 U/mg at a series concentration (0–100 mM) of Mn2+ at optimal pH 7.5. In order to get GS with high theanine-forming activity, safety, and low cost for food and pharmaceutics industry, M9-A (details are described in “Materials and methods”) and 0.1% (w/v) lactose were selected as culture medium and inducer respectively. Recombinant GS was also highly expressed (84% of total protein) and totally soluble in M9-A and the specific activity of the recombinant GS is 6.2 U/mg which is approximate to that (6.4 U/mg) induced in LB in the presence of 10 mM Mn2+ at optimal pH 7.5. The activity is markedly higher activated by Mn2+ than that by other nine bivalent cations. Furthermore, M9-B (5 μM Mn2+ was added into M9-A) was used to culture the recombinant strain and theanine-forming activity of the recombinant GS induced in M9-B was improved 20% (up to 7.6 U/mg). Finally, theanine production experiment coupled with yeast fermentation system was carried out in a 1.0 ml reaction system with 0.1 mg crude GS from M9-B or M9-A, and the yield of theanine were 15.3 and 13.1 g/L by paper chromatography and HPLC, respectively.  相似文献   

17.
An extracellular xylanase XynI of glycoside hydrolase family 11 from the dimorphic fungus Aureobasidium pullulans ATCC 20524 possesses an N-terminal extension of 34 amino acids (Ohta et al., J. Biosci. Bioeng. 92:262–270, 2001). The N-terminal extension includes three sites (Ala-X-Ala-X-Ala-X-Ala) that are potentially cleavable by signal peptidase I of Escherichia coli. The A. pullulans xynI signal sequence was fused in frame to the mature protein region of the equivalent xylanase gene xynA from the filamentous fungus Penicillium citrinum. The gene fusion xynI::A was inserted into the plasmid pET-26b(+) to yield pEXP401. An E. coli BL21(DE3) transformant harboring the pEXP401 exhibited xylanase activity (per ml of the culture) of 16.8 U in the fraction of culture supernatant as well as 4.29 U in the fraction of cell-free extract after 12 h of growth with isopropyl-β-d-thiogalactopyranoside at 30°C. N-terminal amino acid sequence analysis of the secreted recombinant proteins revealed cleavage at four distinct sites within the N-terminal extension of XynI, two of which conformed to the Ala-X-Ala motif prior to the cleavage site. The XynA proteins secreted into the culture medium showed high specific activities from 506 to 651 U/mg, which were twofold higher than that of the native enzyme.  相似文献   

18.
A novel alkylsulfatase gene, sdsAP, was cloned from a newly isolated bacterium Pseudomonas sp. S9. It encoded a protein of 675 amino acids with a calculated molecular mass of 74.9 kDa. The protein contained a typical N-terminal signal peptide of 41 amino acid residues, followed by a metallo-β-lactamase like domain at the N-terminus and a SCP-2-like domain at the C-terminus. This domain organization mode suggested that it belonged to the type III sulfatase. The mature alkylsulfatase was overexpressed in Escherichia coli. The optimal temperature and pH of the recombinant SdsAP were 70°C and 9.0, respectively. Notably, at optimal conditions, the purified recombinant SdsAP had a high specific activity of 23.25 μmol min−1 mg−1, a K m (app) of 264.3 μmol, and a V max (app) of 33.8 μmol min−1 mg−1 for SDS. Additionally, it still retained more than 90% activity after incubation at 65°C for 1 h, which was much different from other alkylsulfatases reported. The recombinant enzyme hydrolyzed the primary alkyl sulfate such as sodium octyl sulfate and sodium dodecyl sulfate (SDS). It was a Zn2+-containing and Ca2+ activated alkylsulfatase. This is the first report to explore the various characteristics of the heterologous recombinant alkylsulfatase in details. These favorable properties could make SdsAP attractive to be useful in the degradation of SDS-containing waste.  相似文献   

19.
Nine anaerobic promoters were cloned and constructed upstream of PHB synthesis genes phbCAB from Ralstonia eutropha for the micro- or anaerobic PHB production in recombinant Escherichia coli. Among the promoters, the one for alcohol dehydrogenase (P adhE ) was found most effective. Recombinant E. coli JM 109 (pWCY09) harboring P adhE and phbCAB achieved a 48% PHB accumulation in the cell dry weight after 48 h of static culture compared with only 30% PHB production under its native promoter. Sixty-seven percent PHB was produced in the dry weight (CDW) of an acetate pathway deleted (Δpta deletion) E. coli JW2294 harboring the vector pWCY09. In a batch process conducted in a 5.5-l NBS fermentor containing 3 l glucose LB medium, E. coli JW2294 (pWCY09) grew to 7.8 g/l CDW containing 64% PHB after 24 h of microaerobic incubation. In addition, molecular weight of PHB was observed to be much higher under microaerobic culture conditions. The high activity of P adhE appeared to be the reason for improved micro- or anaerobic cell growth and PHB production while high molecular weight contributed to the static culture condition.  相似文献   

20.
The processive endoglucanase Cel9A of the moderately thermophilic actinomycete Thermobifida fusca was functionally produced in Saccharomyces cerevisiae. Recombinant Cel9A displayed activity on both soluble (carboxymethylcellulose) and insoluble (Avicel) cellulose substrates confirming its processive endoglucanase activity. High-performance anionic exchange chromatography analyses of soluble sugars released from Avicel revealed a cellobiose/glucose ratio of 2.5 ± 0.1. Growth by the recombinant strain on amorphous cellulose was possible due to the sufficient amount of glucose cleaved from the cellulose chain. This is the first confirmed report of S. cerevisiae growing on a cellulosic substrate as sole carbohydrate source while only expressing one recombinant gene. To improve the cellulolytic capability of S. cerevisiae and to investigate the level of synergy among cellulases produced by a recombinant host, the cel9A gene was co-expressed with four cellulase-coding genes of Trichoderma reesei: two endoglucanases cel5A (egII) and cel7B (egI), and two cellobiohydrolases cel6A (cbhII) and cel7A (cbhI). Synergy, especially between the Cel9A and the two cellobiohydrolases, resulted in a higher cellulolytic capability of the recombinant host.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号