首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
CLIMEX (Climate Change Experiment) is an integrated, whole-ecosystem research project that focuses on the response of forest ecosystems at the catchment scale to increased CO2 and temperature. KIM catchment (860 m2) is completely enclosed by a transparent greenhouse, receives deacidifed “clean” rain, and has elevated CO2 (560 ppmv) and elevated air temperature (3°–5°C above ambient). The uppermost 20% of the catchment is partitioned off, is not subject to changed CO2 or temperature, and serves as an untreated control. Fluxes of nitrate and ammonium in runoff from KIM catchment increased from 2 mmol m 2 y 1 each in the 3 years before treatment to 6 and 3 mmol m 2 y 1, respectively, in the 3 years after treatment (May 1994–April 1997), despite a 15 mmol m 2 y 1 decrease in N dry deposition due to the sealing of the walls to the enclosure. N flux in runoff from three reference catchments and the control section did not change. The net loss of inorganic N was thus about 20 mmol m 2 treated soil y 1. There were no changes in organic N or total organic carbon in runoff. The ecosystem switched from a net sink to a net source of inorganic nitrogen (N). The increased loss of N may be due to accelerated decomposition of soil organic matter induced by higher temperature. Due to many decades of N deposition from long-range transported pollutants, the ecosystem prior to treatment was N saturated. If global change induces persistent losses of inorganic N on a regional scale, the result may be a significant increase in nitrate concentrations in fresh waters and N loading to coastal marine ecosystems. In regions with acid sensitive waters, such as southern Norway, the increased nitrate release caused by global change may offset improvements achieved by reduced sulfur and N deposition. Received 15 October 1997; accepted 18 November 1997.  相似文献   

2.
Spruce budworm (Choristoneura fumiferana Clem.) is an important and recurrent disturbance throughout spruce (Picea sp.) and balsam fir (Abies balsamea L.) dominated forests of North America. Forest carbon (C) dynamics in these ecosystems are affected during insect outbreaks because millions of square kilometers of forest suffer growth loss and mortality. We tested the hypothesis that a spruce budworm outbreak similar to those in the past could switch a forest from a C sink to a source in the near future. We used a model of ecosystem C to integrate past spruce budworm impact sequences with current forest management data on 106,000 km2 of forest in eastern Québec. Spruce budworm-caused mortality decreased stand-level merchantable C stocks by 11–90% and decreased ecosystem C stocks by 2–10% by the end of the simulation. For the first 13 years (2011–2024), adding spruce budworm significantly reduced ecosystem C stock change for the landscape from a sink (4.6 ± 2.7 g C m−2 y−1 in 2018) to a source (−16.8 ± 3.0 g C m−2 y−1 in 2018). This result was mostly due to reduced net primary production. The ecosystem stock change was reduced on average by 2 Tg C y−1 for the entire simulated area. This study provides the first estimate that spruce budworm can significantly affect the C sink or source status of a large landscape. These results indicate that reducing spruce budworm impacts on timber may also provide an opportunity to mitigate a C source.  相似文献   

3.
Headwater streams are key sites of nutrient and organic matter processing and retention, but little is known about temporal variability in gross primary production (GPP) and ecosystem respiration (ER) rates as a result of the short duration of most metabolism measurements in lotic ecosystems. We examined temporal variability and controls on ecosystem metabolism by measuring daily rates continuously for 2 years in Walker Branch, a first-order deciduous forest stream. Four important scales of temporal variability in ecosystem metabolism rates were identified: (1) seasonal, (2) day-to-day, (3) episodic (storm-related), and (4) inter-annual. Seasonal patterns were largely controlled by the leaf phenology and productivity of the deciduous riparian forest. Walker Branch was strongly net heterotrophic throughout the year with the exception of the open-canopy spring when GPP and ER rates were co-equal. Day-to-day variability in weather conditions influenced light reaching the streambed, resulting in high day-to-day variability in GPP particularly during spring (daily light levels explained 84% of the variance in daily GPP in April). Episodic storms depressed GPP for several days in spring, but increased GPP in autumn by removing leaves shading the streambed. Storms depressed ER initially, but then stimulated ER to 2–3 times pre-storm levels for several days. Walker Branch was strongly net heterotrophic in both years of the study, with annual GPP being similar (488 and 519 g O2 m−2 y−1 or 183 and 195 g C m−2 y−1) but annual ER being higher in 2004 than 2005 (−1,645 vs. −1,292 g O2 m−2 y−1 or −617 and −485 g C m−2 y−1). Inter-annual variability in ecosystem metabolism (assessed by comparing 2004 and 2005 rates with previous measurements) was the result of the storm frequency and timing and the size of the spring macroalgal bloom. Changes in local climate can have substantial impacts on stream ecosystem metabolism rates and ultimately influence the carbon source and sink properties of these important ecosystems.  相似文献   

4.
Free air CO2 enrichment (FACE) experiments in aggrading temperate forests and plantations have been initiated to test whether temperate forest ecosystems act as sinks for anthropogenic emissions of CO2. These FACE experiments have demonstrated increases in net primary production and carbon (C) storage in forest vegetation due to increased atmospheric CO2 concentrations. However, the fate of this extra biomass in the forest floor or mineral soil is less clear. After 6 years of FACE treatment in a short-rotation poplar plantation, we observed an additional sink of 32 g C m−2 y−1 in the forest floor. Mineral soil C content increased equally under ambient and increased CO2 treatment during the 6-year experiment. However, during the first half of the experiment the increase in soil C was suppressed under FACE due to a priming effect, that is, the additional labile C increased the mineralization of older SOM, whereas during the second half of the experiment the increase in soil C was larger under FACE. An additional sink of 54 g C m−2 y−1 in the top 10 cm of the mineral soil was created under FACE during the second half of the experiment. Although, this FACE effect was not significant due to a combination of soil spatial variability and the low number of replicates that are inherent to the present generation of forest stand FACE experiments. Physical fractionation by wet sieving revealed an increase in the C and nitrogen (N) content of macro-aggregates due to FACE. Further fractionation by density showed that FACE increased C and N contents of the light iPOM and mineral associated intra-macro-aggregate fractions. Isolation of micro-aggregates from macro-aggregates and subsequent fractionation by density revealed that FACE increased C and N contents of the light iPOM, C content of the fine iPOM and C and N contents of the mineral associated intra-micro-aggregate fractions. From this we infer that the amount of stabilized C and N increased under FACE treatment. We compared our data with published results of other forest FACE experiments and infer that the type of vegetation and soil base saturation, as a proxy for bioturbation, are important factors related to the size of the additional C sinks of the forest floor–soil system under FACE. Author Contribution: MRH conceived of and designed the study, performed research, analyzed data, and wrote the paper; GES conceived of and designed the study and performed research.  相似文献   

5.
Anthropogenic nitrogen (N) loading has the potential to affect plant community structure and function, and the carbon dioxide (CO2) sink of peatlands. Our aim is to study how vegetation changes, induced by nutrient input, affect the CO2 exchange of a nutrient-limited bog. We conducted 9- and 4-year fertilization experiments at Mer Bleue bog, where we applied N addition levels of 1.6, 3.2, and 6.4 g N m−2 a−1, upon a background deposition of about 0.8 g N m−2 a−1, with or without phosphorus and potassium (PK). Only the treatments 3.2 and 6.4 g N m−2 a−1 with PK significantly affected CO2 fluxes. These treatments shifted the Sphagnum moss and dwarf shrub community to taller dwarf shrub thickets without moss, and the CO2 responses depended on the phase of vegetation transition. Overall, compared to the large observed changes in the vegetation, the changes in CO2 fluxes were small. Following Sphagnum loss after 5 years, maximum ecosystem photosynthesis (Pgmax) and net CO2 exchange (NEEmax) were lowered (−19 and −46%, respectively) in the highest NPK treatment. In the following years, while shrub height increased, the vascular foliar biomass did not fully compensate for the loss of moss biomass; yet, by year 8 there were no significant differences in Pgmax and NEEmax between the nutrient and the control treatments. At the same time, an increase (24–32%) in ecosystem respiration (ER) became evident. Trends in the N-only experiment resembled those in the older NPK experiment by the fourth year. The increasing ER with increasing vascular plant and decreasing Sphagnum moss biomass across the experimental plots suggest that high N deposition may lessen the CO2 sink of a bog.  相似文献   

6.
The response of decomposition of litter for the dominant tree species in disturbed (pine), rehabilitated (pine and broadleaf mixed) and mature (monsoon evergreen broadleaf) forests in subtropical China to simulated N deposition was studied to address the following hypothesis: (1) litter decomposition is faster in mature forest (high soil N availability) than in rehabilitated/disturbed forests (low soil N availability); (2) litter decomposition is stimulated by N addition in rehabilitated and disturbed forests due to their low soil N availability; (3) N addition has little effect on litter decomposition in mature forest due to its high soil N availability. The litterbag method (a total of 2880 litterbags) and N treatments: Control-no N addition, Low-N: −5 g N m−2 y−1, Medium-N: −10 g N m−2 y−1, and High-N: −15 g N m−2 y−1, were employed to evaluate decomposition. Results indicated that mature forest, which has likely been N saturated due to both long-term high N deposition in the region and the age of the ecosystem, had the highest litter decomposition rate, and exhibited no significant positive and even some negative response to nitrogen additions. However, both disturbed and rehabilitated forests, which are still N limited due to previous land use history, exhibited slower litter decomposition rates with significant positive effects from nitrogen additions. These results suggest that litter decomposition and its responses to N addition in subtropical forests of China vary depending on the nitrogen status of the ecosystem.  相似文献   

7.
Soil mineral weathering may serve as a sink for atmospheric carbon dioxide (CO2). Increased weathering of soil minerals induced by elevated CO2 concentration has been reported previously in temperate areas. However, this has not been well documented for the tropics and subtropics. We used model forest ecosystems in open-top chambers to study the effects of CO2 enrichment alone and together with nitrogen (N) addition on inorganic carbon (C) losses in the leachates. Three years of exposure to an atmospheric CO2 concentration of 700 ppm resulted in increased annual inorganic C export through leaching below the 70 cm soil profile. Compared to the control without any CO2 and N treatments, net biocarbonate C (HCO3 -C) loss increased by 42%, 74%, and 81% in the high CO2 concentration treatment in 2006, 2007, and 2008, respectively. Increased inorganic C export following the exposure to the elevated CO2 was related to both increased inorganic C concentrations in the leaching water and the greater amount of leaching water. Net annual inorganic C (HCO3 -C and carbonate C: CO3 2−-C) loss via the leaching water in the high CO2 concentration chambers reached 48.0, 49.5, and 114.0 kg ha−1 y−1 in 2006, 2007, and 2008, respectively, compared with 33.8, 28.4, and 62.8 kg ha−1 y−1 in the control chambers in the corresponding years. The N addition showed a negative effect on the mineral weathering. The decreased inorganic C concentration in the leaching water and the decreased leaching water amount induced by the high N treatment were the results of the adverse effect. Our results suggest that tropical forest soil systems may be able to compensate for a small part of the atmospheric CO2 increase through the accelerated processing of CO2 into HCO3 -C during soil mineral weathering, which might be transported in part into ground water or oceans on geological timescales.  相似文献   

8.
Characterizing the spatial variation in the CO2 flux at both large and small scales is essential for precise estimation of an ecosystem’s CO2 sink strength. However, little is known about small-scale CO2 flux variations in an ecosystem. We explored these variations in a Kobresia meadow ecosystem on the Qinghai-Tibetan plateau in relation to spatial variability in species composition and biomass. We established 14 points and measured net ecosystem production (NEP), gross primary production (GPP), and ecosystem respiration (Re) in relation to vegetation biomass, species richness, and environmental variables at each point, using an automated chamber system during the 2005 growing season. Mean light-saturated NEP and GPP were 30.3 and 40.5 μmol CO2 m−2 s−1 [coefficient of variation (CV), 42.7 and 29.4], respectively. Mean Re at 20°C soil temperature, Re20, was −10.9 μmol CO2 m−2 s−1 (CV, 27.3). Re20 was positively correlated with vegetation biomass. GPPmax was positively correlated with species richness, but 2 of the 14 points were outliers. Vegetation biomass was the main determinant of spatial variation of Re, whereas species richness mainly affected that of GPP, probably reflecting the complexity of canopy structure and light partitioning in this small grassland patch.  相似文献   

9.
Eddy covariance measurements of the surface energy balance and carbon dioxide exchange above high-elevation (3,480 m above sea level) alpine tundra located near Niwot Ridge, Colorado, were compared to simultaneous measurements made over an adjacent subalpine forest over two summers and one winter, from June 9, 2007 to July 3, 2008. The surface energy balance closure at the alpine site averaged 71 and 91%, winter and summer, respectively, due to the high wind speeds, short turbulent flux footprint, and relatively flat ridge-top location of the measurement site. Throughout the year, the alpine site was cooler with higher relative humidity, and had a higher horizontal wind speed, especially in winter, compared to the forest site. Wind direction was persistently downslope at the alpine site (summer and winter, day and night), whereas upslope winds were common at the forest site during summer daytime periods. The latent and sensible heat fluxes were consistently larger in magnitude at the forest site, with the largest differences during summer. The horizontal advective flux of CO2 at the alpine site averaged 6% of the net ecosystem exchange (NEE) during summer nights (5% during summer daytime), and was small in relation to the high wind speeds, relatively flat site, and weak sources of CO2 upwind of the site. The magnitudes and diurnal behavior of the alpine NEE calculated using three methods; eddy-covariance, friction velocity filter, and with advection and storage calculations, gave similar results. The period of net CO2 uptake (negative NEE) was 100 days at the alpine site with a net uptake of 16 g C m−2, compared to 208 days at the forest site with a net uptake of 108 g C m−2, with initiation of net uptake coinciding with air temperatures reaching +10°C. Winter respiration loss at the alpine site was 164 g C m−2 over 271 days, compared to 52 g C m−2 over 175 days at the forest site, with the initiation of net loss coinciding with air temperatures reaching −10°C at each site.  相似文献   

10.
Vegetation growth models are used with remotely sensed and meteorological data to monitor terrestrial carbon dynamics at a range of spatial and temporal scales. Many of these models are based on a light-use efficiency equation and two-component model of whole-plant growth and maintenance respiration that have been parameterized for distinct vegetation types and biomes. This study was designed to assess the robustness of these parameters for predicting interannual plant growth and carbon exchange, and more specifically to address inconsistencies that may arise during forest disturbances and the loss of canopy foliage. A model based on the MODIS MOD17 algorithm was parameterized for a mature upland hardwood forest by inverting CO2 flux tower observations during years when the canopy was not disturbed. This model was used to make predictions during a year when the canopy was 37% defoliated by forest tent caterpillars. Predictions improved after algorithms were modified to scale for the effects of diffuse radiation and loss of leaf area. Photosynthesis and respiration model parameters were found to be robust at daily and annual time scales regardless of canopy disturbance, and differences between modeled net ecosystem production and tower net ecosystem exchange were only approximately 2 g C m−2 d−1 and less than 23 g C m−2 y−1. Canopy disturbance events such as insect defoliations are common in temperate forests of North America, and failure to account for cyclical outbreaks of forest tent caterpillars in this stand could add an uncertainty of approximately 4–13% in long-term predictions of carbon sequestration.  相似文献   

11.
Large Greenhouse Gas Emissions from a Temperate Peatland Pasture   总被引:2,自引:0,他引:2  
Agricultural drainage is thought to alter greenhouse gas emissions from temperate peatlands, with CH4 emissions reduced in favor of greater CO2 losses. Attention has largely focussed on C trace gases, and less is known about the impacts of agricultural conversion on N2O or global warming potential. We report greenhouse gas fluxes (CH4, CO2, N2O) from a drained peatland in the Sacramento-San Joaquin River Delta, California, USA currently managed as a rangeland (that is, pasture). This ecosystem was a net source of CH4 (25.8 ± 1.4 mg CH4-C m−2 d−1) and N2O (6.4 ± 0.4 mg N2O-N m−2 d−1). Methane fluxes were comparable to those of other managed temperate peatlands, whereas N2O fluxes were very high; equivalent to fluxes from heavily fertilized agroecosystems and tropical forests. Ecosystem scale CH4 fluxes were driven by “hotspots” (drainage ditches) that accounted for less than 5% of the land area but more than 84% of emissions. Methane fluxes were unresponsive to seasonal fluctuations in climate and showed minimal temporal variability. Nitrous oxide fluxes were more homogeneously distributed throughout the landscape and responded to fluctuations in environmental variables, especially soil moisture. Elevated CH4 and N2O fluxes contributed to a high overall ecosystem global warming potential (531 g CO2-C equivalents m−2 y−1), with non-CO2 trace gas fluxes offsetting the atmospheric “cooling” effects of photoassimilation. These data suggest that managed Delta peatlands are potentially large regional sources of greenhouse gases, with spatial heterogeneity in soil moisture modulating the relative importance of each gas for ecosystem global warming potential.  相似文献   

12.
Biometric based carbon flux measurements were conducted over 5 years (1999–2003) in a temperate deciduous broad-leaved forest of the AsiaFlux network to estimate net ecosystem production (NEP). Biometric based NEP, as measured by the balance between net primary production (including NPP of canopy trees and of forest floor dwarf bamboo) and heterotrophic respiration (RH), clarified the contribution of various biological processes to the ecosystem carbon budget, and also showed where and how the forest is storing C. The mean NPP of the trees was 5.4 ± 1.07 t C ha−1 y−1, including biomass increment (0.3 ± 0.82 t C ha−1 y−1), tree mortality (1.0 ± 0.61 t C ha−1 y−1), aboveground detritus production (2.3 ± 0.39 t C ha−1 y−1) and belowground fine root production (1.8 ± 0.31 t C ha−1 y−1). Annual biomass increment was rather small because of high tree mortality during the 5 years. Total NPP at the site was 6.5 ± 1.07 t C ha−1 y−1, including the NPP of the forest floor community (1.1 ± 0.06 t C ha−1 y−1). The soil surface CO2 efflux (RS) was averaged across the 5 years of record using open-flow chambers. The mean estimated annual RS amounted to 7.1 ± 0.44 t C ha−1, and the decomposition of soil organic matter (SOM) was estimated at 3.9 ± 0.24 t C ha−1. RH was estimated at 4.4 ± 0.32 t C ha−1 y−1, which included decomposition of coarse woody debris. Biometric NEP in the forest was estimated at 2.1 ± 1.15 t C ha−1 y−1, which agreed well with the eddy-covariance based net ecosystem exchange (NEE). The contribution of woody increment (Δbiomass + mortality) of the canopy trees to NEP was rather small, and thus the SOM pool played an important role in carbon storage in the temperate forest. These results suggested that the dense forest floor of dwarf bamboo might have a critical role in soil carbon sequestration in temperate East Asian deciduous forests.  相似文献   

13.
Detailed information from the Swedish National Forest Inventory was used to simulate the carbon balance for Sweden by the process-based model Biome-BGC. A few shortcomings of the model were identified and solutions to those are proposed and also used in the simulations. The model was calibrated against CO2 flux data from 3 forests in central Sweden and then applied to the whole country divided into 30 districts and 4 age classes. Gross primary production (GPP) ranged over districts and age classes from 0.20 to 1.71 kg C m−2 y−1 and net ecosystem production (NEP) ranged from −0.01 to 0.44. The 10- to 30-year age class was the strongest carbon sink because of its relatively low respiration rates. When the simulation results were scaled up to the whole country, GPP and NEP were 175 and 29 Mton C y−1, respectively, for the 22.7 Mha of forests in Sweden. A climate change scenario was simulated by assuming a 4°C increase in temperature and a doubling of the CO2 concentration; GPP and NEP then increased to 253 and 48 Mton C y−1, respectively. A sensitivity analysis showed that at present CO2 concentrations NEP would peak at an increase of 5°C for the mean annual temperature. At higher CO2 levels NEP showed a logarithmic increase.  相似文献   

14.
Variability and future alterations in regional and global climate patterns may exert a strong control on the carbon dioxide (CO2) exchange of grassland ecosystems. We used 6 years of eddy-covariance measurements to evaluate the impacts of seasonal and inter-annual variations in environmental conditions on the net ecosystem CO2 exchange (NEE), gross ecosystem production (GEP), and ecosystem respiration (ER) of an intensively managed grassland in the humid temperate climate of southern Ireland. In all the years of the study period, considerable uptake of atmospheric CO2 occurred in this grassland with a narrow range in the annual NEE from −245 to −284 g C m−2 y−1, with the exception of 2008 in which the NEE reached −352 g C m−2 y−1. None of the measured environmental variables (air temperature (Ta), soil moisture, photosynthetically active radiation, vapor pressure deficit (VPD), precipitation (PPT), and so on) correlated with NEE on a seasonal or annual scale because of the equal responses from the component fluxes GEP and ER to variances in these variables. Pronounced reduction of summer PPT in two out of the six studied years correlated with decreases in both GEP and ER, but not with NEE. Thus, the stable annual NEE was primarily achieved through a strong coupling of ER and GEP on seasonal and annual scales. Limited inter-annual variations in Ta (±0.5°C) and generally sufficient soil moisture availability may have further favored a stable annual NEE. Monthly ecosystem carbon use efficiency (CUE; as the ratio of NEE:GEP) during the main growing season (April 1–September 30) was negatively correlated with temperature and VPD, but positively correlated with soil moisture, whereas the annual CUE correlated negatively with annual NEE. Thus, although drier and warmer summers may mildly reduce the uptake potential, the annual uptake of atmospheric CO2, in this intensively managed grassland, may be expected to continue even under predicted future climatic changes in the humid temperate climate region.  相似文献   

15.
The ecosystem carbon budget was estimated in a Japanese Zoysia japonica grassland. The green biomass started to grow in May and peaked from mid-July to September. Seasonal variations in soil CO2 flux and root respiration were mediated by changes in soil temperature. Annual soil CO2 flux was 1,121.4 and 1,213.6 g C m−2 and root respiration was 471.0 and 544.3 g C m−2 in 2007 and 2008, respectively. The root respiration contribution to soil CO2 flux ranged from 33% to 71%. During the growing season, net primary production (NPP) was 747.5 and 770.1 g C m−2 in 2007 and 2008, respectively. The biomass removed by livestock grazing (GL) was 122.1 and 102.7 g C m−2, and the livestock returned 28.2 and 25.6 g C m−2 as fecal input (FI) in 2007 and 2008, respectively. The decomposition of FI (DL, the dry weight loss due to decomposition) was very low, 1.5 and 1.4 g C m−2, in 2007 and 2008. Based on the values of annual NPP, soil CO2 flux, root respiration, GL, FI, and DL, the estimated carbon budget of the grassland was 1.7 and 22.3 g C m−2 in 2007 and 2008, respectively. Thus, the carbon budget of this Z. japonica grassland ecosystem remained in equilibrium with the atmosphere under current grazing conditions over the 2 years of the study.  相似文献   

16.
Wetlands are important sources of methane (CH4) and sinks of carbon dioxide (CO2). However, little is known about CH4 and CO2 fluxes and dynamics of seasonally flooded tropical forests of South America in relation to local carbon (C) balances and atmospheric exchange. We measured net ecosystem fluxes of CH4 and CO2 in the Pantanal over 2014–2017 using tower‐based eddy covariance along with C measurements in soil, biomass and water. Our data indicate that seasonally flooded tropical forests are potentially large sinks for CO2 but strong sources of CH4, particularly during inundation when reducing conditions in soils increase CH4 production and limit CO2 release. During inundation when soils were anaerobic, the flooded forest emitted 0.11 ± 0.002 g CH4‐C m?2 d?1 and absorbed 1.6 ± 0.2 g CO2‐C m?2 d?1 (mean ± 95% confidence interval for the entire study period). Following the recession of floodwaters, soils rapidly became aerobic and CH4 emissions decreased significantly (0.002 ± 0.001 g CH4‐C m?2 d?1) but remained a net source, while the net CO2 flux flipped from being a net sink during anaerobic periods to acting as a source during aerobic periods. CH4 fluxes were 50 times higher in the wet season; DOC was a minor component in the net ecosystem carbon balance. Daily fluxes of CO2 and CH4 were similar in all years for each season, but annual net fluxes varied primarily in relation to flood duration. While the ecosystem was a net C sink on an annual basis (absorbing 218 g C m?2 (as CH4‐C + CO2‐C) in anaerobic phases and emitting 76 g C m?2in aerobic phases), high CH4 effluxes during the anaerobic flooded phase and modest CH4 effluxes during the aerobic phase indicate that seasonally flooded tropical forests can be a net source of radiative forcings on an annual basis, thus acting as an amplifying feedback on global warming.  相似文献   

17.
Highly productive papyrus (Cyperus papyrus L.) wetlands dominate many permanently flooded areas of tropical East Africa; however, the cycling of carbon and water within these ecosystems is poorly understood. The objective of this study was to utilise Eddy Covariance (EC) techniques to measure the fluxes of carbon dioxide and water vapour between papyrus vegetation and the atmosphere in a wetland located near Jinja, Uganda on the Northern shore of Lake Victoria. Peak, midday rates of photosynthetic CO2 net assimilation were approximately 40 μmol CO2 m−2 s−1, while night time losses through respiration ranged between 10 and 20 μmol COm−2 s−1. Numerical integration of the flux data suggests that papyrus wetlands have the potential to sequester approximately 0.48 kg C m−2 y−1. The average daily water vapour flux from the papyrus vegetation through canopy evapotranspiration was approximately 4.75 kg H2O m−2 d−1, which is approximately 25% higher than water loss through evaporation from open water.  相似文献   

18.
The carbon (C) sink strength of arctic tundra is under pressure from increasing populations of arctic breeding geese. In this study we examined how CO2 and CH4 fluxes, plant biomass and soil C responded to the removal of vertebrate herbivores in a high arctic wet moss meadow that has been intensively used by barnacle geese (Branta leucopsis) for ca. 20 years. We used 4 and 9 years old grazing exclosures to investigate the potential for recovery of ecosystem function during the growing season (July 2007). The results show greater above- and below-ground vascular plant biomass within the grazing exclosures with graminoid biomass being most responsive to the removal of herbivory whilst moss biomass remained unchanged. The changes in biomass switched the system from net emission to net uptake of CO2 (0.47 and −0.77 μmol m−2 s−1 in grazed and exclosure plots, respectively) during the growing season and doubled the C storage in live biomass. In contrast, the treatment had no impact on the CH4 fluxes, the total litter C pool or the soil C concentration. The rapid recovery of the above ground biomass and CO2 fluxes demonstrates the plasticity of this high arctic ecosystem in terms of response to changing herbivore pressure.  相似文献   

19.
Permafrost soils are a significant global store of carbon (C) with the potential to become a large C source to the atmosphere. Climate change is causing permafrost to thaw, which can affect primary production and decomposition, therefore affecting ecosystem C balance. To understand future responses of permafrost soils to climate change, we inventoried current soil C stocks, investigated ∆14C, C:N, δ13C, and δ15N depth profiles, modeled soil C accumulation rates, and calculated decadal net ecosystem production (NEP) in subarctic tundra soils undergoing minimal, moderate, and extensive permafrost thaw near Eight Mile Lake (EML) in Healy, Alaska. We modeled decadal and millennial soil C inputs, decomposition constants, and C accumulation rates by plotting cumulative C inventories against C ages based on radiocarbon dating of surface and deep soils, respectively. Soil C stocks at EML were substantial, over 50 kg C m−2 in the top meter, and did not differ much among sites. Carbon to nitrogen ratio, δ13C, and δ15N depth profiles indicated most of the decomposition occurred within the organic soil horizon and practically ceased in deeper, frozen horizons. The average C accumulation rate for EML surface soils was 25.8 g C m−2 y−1 and the rate for the deep soil accumulation was 2.3 g C m−2 y−1, indicating these systems have been C sinks throughout the Holocene. Decadal net ecosystem production averaged 14.4 g C m−2 y−1. However, the shape of decadal C accumulation curves, combined with recent annual NEP measurements, indicates soil C accumulation has halted and the ecosystem may be becoming a C source. Thus, the net impact of climate warming on tundra ecosystem C balance includes not only becoming a C source but also the loss of C uptake capacity these systems have provided over the past ten thousand years.  相似文献   

20.
We used terrestrial ecosystem models to estimate spatial and temporal variability in and uncertainty of estimated soil carbon dioxide (CO2) efflux, or soil respiration, over the Japanese Archipelago. We compared five carbon-cycle models to assess inter-model variability: Biome-BGC, CASA, LPJ, SEIB, and VISIT. These models differ in approaches to soil carbon dynamics, root respiration estimation, and relationships between decomposition and environmental factors. We simulated the carbon budget of natural ecosystems over the archipelago for 2001–2006 at 1-day time steps and 2-min (latitude and longitude) spatial resolution. The models were calibrated using measured flux data to accurately represent net ecosystem CO2 exchange. Each model successfully reproduced seasonal changes and latitudinal gradients in soil respiration. The five-model average of estimated total soil respiration of Japanese ecosystems was 295 Tg C year−1, with individual model estimates ranging from 210 to 396 Tg C year−1 (1 Tg = 1012 g). The differences between modeled estimates were more evident in summer and in warmer years, implying that they were mainly attributable to differences in modeling the temperature dependence of soil respiration. There was a large discrepancy between models in the estimated contribution of roots to total soil respiration, ranging from 3.9 to 48.4%. Although model calibration reduced the uncertainty of flux estimates, substantial uncertainties still remained in estimates of underground processes from these terrestrial carbon-cycle models.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号