首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Most of anti-tumor factors are designed to kill selectively cancer cells; in most cases this action is related to the ability of the above substances to induce apoptosis. One of potent anti-apoptotic mechanisms is based on Hsp70 protein. Since the level of this protein is often higher in malignant tumors than in normal tissues, the aim of this study was to establish whether the elevated Hsp70 content may influence the process of apoptosis induced by anti-tumor drugs in cancer cells population. The increase of intracellular content of Hsp70 in human leukemia U-937 cells was attained by a mild heat stress or by transfection of cells with the human hsp70 gene. The elevation of Hsp70 quantity, irrespective of the way it was performed, leads to the inhibition of apoptosis in cells treated with two substances, etoposide or adriamycin. The inhibition of apoptosis was accompanied with the reducing of the share of cells with fragmented nuclei and with the delay in caspase activation. It is suggested that in addition to the previously discovered targets, whose activity is suppressed by the Hsp70 chaperone, this protein can inhibit the activity of caspase-3 and -7; this delays the onset of apoptosis in part of a cancer cell population.  相似文献   

2.
Hsp70 chaperone and the prospects of its application in anticancer therapy   总被引:1,自引:0,他引:1  
Major stress protein Hsp70 is known to possess two important properties: ATP-dependent activity and protective activity; these two are thought to play a significant role in anticancer therapy. Many malignant tumors contain high amounts of intracellular Hsp70. Moreover, many anticancer drugs themselves are able to elevate Hsp70 expression in tumor cells. Since Hsp70 was found to disturb many signal pathways of apoptosis in many points, the high chaperone expression may lead to an increased resistance of tumor cells to anticancer drugs. On the other hand, when overexpressed by a certain mechanism, Hsp70 is able to emerge at the cell surface by itself or together with tumor antigens and present these to immune cells T-lymphocytes and natural killers, in such a manner that makes cancer cell recognized and abolished. These properties make Hsp70 very promising instrument in designing some novel anticancer vaccines.  相似文献   

3.
Heat shock protein Hsp70 presents one of the most effective cell protective systems. Its protective activity is mostly due to the fact that Hsp70 is able to restore native conformation of newly synthesized or damaged proteins. Two other proteins. Hdj and Bag 1, are involved in the process, allowing Hsp70 to perform binding-release cyclec of target proteins. The aim of this study was to investigate interactions between cochaperones Hdj 1 and Bag 1, and the major cell chaperone Hsp in vitro. The accumulation of Hsp70 and Hdj 1 in human erythroleukemia K562 cells was stimulated by heat stress (43 degrees C, 60 min). Cells were collected at certain time periods after heat stress, and amounts of cell chaperones were measured using Western blotting and ELISA assay. The level of Hsp70 chaperone activity in cell extracts was estimated using original technique. The effects of exogenous cochaperones and of their parts on this activity were also investigated. The results of the study indicate that Hsp70 chaperone activity is regulated by the level of its cochaperones, especially Hdj 1. At the same time the amount of ATP appears to be critical for functional activity of Hsp70. Hdj 1 and Bag 1 peptides, which bind to Hsp70 with high affinity, are able to significally reduce its chaperone activity. This finding confirms the possibility of using peptide approach for regulation of Hsp70 function at the cellular and organismal levels.  相似文献   

4.
Heat shock protein (Hsp) 70B' is a human Hsp70 chaperone that is strictly inducible, having little or no basal expression levels in most cells. Using siRNAs to knockdown Hsp70B' and Hsp72 in HT-29, SW-480, and CRL-1807 human colon cell lines, we have found that the two are regulated coordinately in response to stress. We also have found that proteasome inhibition is a potent activator of Hsp70B'. Flow cytometry was used to assay Hsp70B' promoter activity in HT-29eGFP cells in this study. Knockdown of both Hsp70B'- and Hsp72-sensitized cells to heat stress and increasing concentrations of proteasome inhibitor. These data support the conclusion that Hsp72 is the primary Hsp70 family responder to increasing levels of proteotoxic stress, and Hsp70B' is a secondary responder. Interestingly ZnSO4 induces Hsp70B' and not Hsp72 in CRL-1807 cells, suggesting a stressor-specific primary role for Hsp70B'. Both Hsp70B' and Hsp72 are important for maintaining viability under conditions that increase the accumulation of damaged proteins in HT-29 cells. These findings are likely to be important in pathological conditions in which Hsp70B' contributes to cell survival.  相似文献   

5.
Tubocapsenolide A (TA), a novel withanolide-type steroid, exhibits potent cytotoxicity against several human cancer cell lines. In the present study, we observed that treatment of human breast cancer MDA-MB-231 cells with TA led to cell cycle arrest at G(1) phase and apoptosis. The actions of TA were correlated with proteasome-dependent degradation of Cdk4, cyclin D1, Raf-1, Akt, and mutant p53, which are heat shock protein 90 (Hsp90) client proteins. TA treatment induced a transient increase in reactive oxygen species and a decrease in the intracellular glutathione contents. Nonreducing SDS-PAGE revealed that TA rapidly and selectively induced thiol oxidation and aggregation of Hsp90 and Hsp70, both in intact cells and in cell-free systems using purified recombinant proteins. Furthermore, TA inhibited the chaperone activity of Hsp90-Hsp70 complex in the luciferase refolding assay. N-Acetylcysteine, a thiol antioxidant, prevented all of the TA-induced effects, including oxidation of heat shock proteins, degradation of Hsp90 client proteins, and apoptosis. In contrast, non-thiol antioxidants (trolox and vitamin C) were ineffective to prevent Hsp90 inhibition and cell death. Taken together, our results demonstrate that the TA inhibits the activity of Hsp90-Hsp70 chaperone complex, at least in part, by a direct thiol oxidation, which in turn leads to the destabilization and depletion of Hsp90 client proteins and thus causes cell cycle arrest and apoptosis in MDA-MB-231 cells. Therefore, TA can be considered as a new type of inhibitor of Hsp90-Hsp70 chaperone complex, which has the potential to be developed as a novel strategy for cancer treatment.  相似文献   

6.
Heat shock protein (Hsp) 70B' is a human Hsp70 chaperone that is strictly inducible, having little or no basal expression levels in most cells. Using siRNAs to knockdown Hsp70B' and Hsp72 in HT-29, SW-480, and CRL-1807 human colon cell lines, we have found that the two are regulated coordinately in response to stress. We also have found that proteasome inhibition is a potent activator of hsp70B'. Flow cytometry was used to assay hsp70B' promoter activity in HT-29eGFP cells in this study. Knockdown of both Hsp70B' and Hsp72 sensitized cells to heat stress and increasing concentrations of proteasome inhibitor. These data support the conclusion that Hsp72 is the primary Hsp70 family responder to increasing levels of proteotoxic stress, and Hsp70B' is a secondary responder. Interestingly ZnSO4 induces Hsp70B' and not Hsp72 in CRL-1807 cells, suggesting a stressor-specific primary role for Hsp70B'. Both Hsp70B' and Hsp72 are important for maintaining viability under conditions that increase the accumulation of damaged proteins in HT-29 cells. These findings are likely to be important in pathological conditions in which Hsp70B' contributes to cell survival.  相似文献   

7.
Plasmodium falciparum, the human pathogen responsible for the most dangerous malaria infection, survives and develops in mature erythrocytes through the export of proteins needed for remodelling of the host cell. Molecular chaperones of the heat shock protein (Hsp) family are prominent members of the exportome, including a number of Hsp40s and a Hsp70. PFA0660w, a type II Hsp40, has been shown to be exported and possibly form a complex with PfHsp70-x in the infected erythrocyte cytosol. However, the chaperone properties of PFA0660w and its interaction with human and parasite Hsp70s are yet to be investigated. Recombinant PFA0660w was found to exist as a monomer in solution, and was able to significantly stimulate the ATPase activity of PfHsp70-x but not that of a second plasmodial Hsp70 (PfHsp70-1) or a human Hsp70 (HSPA1A), indicating a potential specific functional partnership with PfHsp70-x. Protein binding studies in the presence and absence of ATP suggested that the interaction of PFA0660w with PfHsp70-x most likely represented a co-chaperone/chaperone interaction. Also, PFA0660w alone produced a concentration-dependent suppression of rhodanese aggregation, demonstrating its chaperone properties. Overall, we have provided the first biochemical evidence for the possible role of PFA0660w as a chaperone and as co-chaperone of PfHsp70-x. We propose that these chaperones boost the chaperone power of the infected erythrocyte, enabling successful protein trafficking and folding, and thereby making a fundamental contribution to the pathology of malaria.  相似文献   

8.
Heat shock protein 40s (Hsp40s) and heat shock protein 70s (Hsp70s) form chaperone partnerships that are key components of cellular chaperone networks involved in facilitating the correct folding of a broad range of client proteins. While the Hsp40 family of proteins is highly diverse with multiple forms occurring in any particular cell or compartment, all its members are characterized by a J domain that directs their interaction with a partner Hsp70. Specific Hsp40-Hsp70 chaperone partnerships have been identified that are dedicated to the correct folding of distinct subsets of client proteins. The elucidation of the mechanism by which these specific Hsp40-Hsp70 partnerships are formed will greatly enhance our understanding of the way in which chaperone pathways are integrated into finely regulated protein folding networks. From in silico analyses, domain swapping and rational protein engineering experiments, evidence has accumulated that indicates that J domains contain key specificity determinants. This review will critically discuss the current understanding of the structural features of J domains that determine the specificity of interaction between Hsp40 proteins and their partner Hsp70s. We also propose a model in which the J domain is able to integrate specificity and chaperone activity.  相似文献   

9.
Heat shock protein 70 (Hsp70) is thought to play a critical role in the thermotolerance of mammalian cells, presumably due to its chaperone activity. We examined the chaperone activity and cellular heat resistance of a clonal cell line in which overexpression of Hsp70 was transiently induced by means of the tetracycline-regulated gene expression system. This single-cell-line approach circumvents problems associated with clonal variation and indirect effects resulting from constitutive overexpression of Hsp70. The in vivo chaperone function of Hsp70 was quantitatively investigated by using firefly luciferase as a reporter protein. Chaperone activity was found to strictly correlate to the level of Hsp70 expression. In addition, we observed an Hsp70 concentration dependent increase in the cellular heat resistance. In order to study the contribution of the Hsp70 chaperone activity, heat resistance of cells that expressed tetracycline-regulated Hsp70 was compared to thermotolerant cells expressing the same level of Hsp70 plus all of the other heat shock proteins. Overexpression of Hsp70 alone was sufficient to induce a similar recovery of cytoplasmic luciferase activity, as does expression of all Hsps in thermotolerant cells. However, when the luciferase reporter protein was directed to the nucleus, expression of Hsp70 alone was not sufficient to yield the level of recovery observed in thermotolerant cells. In addition, cells expressing the same level of Hsp70 found in heat-induced thermotolerant cells containing additional Hsps showed increased resistance to thermal killing but were more sensitive than thermotolerant cells. These results suggest that the inducible form of Hsp70 contributes to the stress-tolerant state by increasing the chaperone activity in the cytoplasm. However, its expression alone is apparently insufficient for protection of other subcellular compartments to yield clonal heat resistance to the level observed in thermotolerant cells.  相似文献   

10.
《Journal of molecular biology》2019,431(11):2180-2196
Hsp104 is a yeast chaperone that rescues misfolded proteins from aggregates associated with proteotoxic stress and aging. Hsp104 consists of N-terminal domain, regulatory M-domain and two ATPase domains, assembled into a spiral-shaped hexamer. Protein disaggregation involves polypeptide extraction from an aggregate and its translocation through the central channel. This process relies on Hsp104 cooperation with the Hsp70 chaperone, which also plays important role in regulation of the disaggregase. Although Hsp104 protein-unfolding activity enables cells to survive stress, when uncontrolled, it becomes toxic to the cell.In this work, we investigated the significance of the interaction between Hsp70 and the M-domain of Hsp104 for functioning of the disaggregation system. We identified phenylalanine at position 508 in Hsp104 to be the key site of interaction with Hsp70. Disruption of this site makes Hsp104 unable to bind protein aggregates and to confer tolerance in yeast cells. The use of this Hsp104 variant demonstrates that Hsp70 allows successful initiation of disaggregation only as long as it is able to interact with the disaggregase. As reported previously, this interaction causes release of the M-domain-driven repression of Hsp104. Now we reveal that, apart from this allosteric effect, the interaction between the chaperone partners itself contributes to effective initiation of disaggregation and plays important role in cell protection against Hsp104-induced toxicity. Interaction with Hsp70 shifts Hsp104 substrate specificity from non-aggregated, disordered substrates toward protein aggregates. Accordingly, Hsp70-mediated sequestering of the Hsp104 unfoldase in aggregates makes it less toxic and more productive.  相似文献   

11.
Substrate transfer from the chaperone Hsp70 to Hsp90   总被引:5,自引:0,他引:5  
Hsp90 is an essential chaperone protein in the cytosol of eukaryotic cells. It cooperates with the chaperone Hsp70 in defined complexes mediated by the adaptor protein Hop (Sti1 in yeast). These Hsp70/Hsp90 chaperone complexes play a major role in the folding and maturation of key regulatory proteins in eukaryotes. Understanding how non-native client proteins are transferred from one chaperone to the other in these complexes is of central importance. Here, we analyzed the molecular mechanism of this reaction using luciferase as a substrate protein. Our experiments define a pathway for luciferase folding in the Hsp70/Hsp90 chaperone system. They demonstrate that Hsp70 is a potent capture device for unfolded protein while Hsp90 is not very efficient in this reaction. When Hsp90 is absent, in contrast to the in vivo situation, Hsp70 together with the two effector proteins Ydj1 and Sti1 exhibits chaperone activity towards luciferase. In the presence of the complete chaperone system, Hsp90 exhibits a specific positive effect only in the presence of Ydj1. If this factor is absent, the transferred luciferase is trapped on Hsp90 in an inactive conformation. Interestingly, identical results were observed for the yeast and the human chaperone systems although the regulatory function of human Hop is completely different from that of yeast Sti1.  相似文献   

12.
13.
Hsp90 is able to bind partially unfolded firefly luciferase and maintain it in a refoldable state; the subsequent successive action of the 20S proteasome activator PA28, Hsc70 and Hsp40 enables its refolding. Hsp90 possesses two chaperone sites in the N- and C-terminal domains that prevent the aggregation of denatured proteins. Here we show that both chaperone sites of Hsp90 are effective not only in capturing thermally denatured luciferase, but also in holding it in a state prerequisite for the successful refolding process mediated by PA28, Hsc70 and Hsp40. In contrast, the heat-induced activity of Hsp90 to bind chemically denature dihydrofolate reductase efficiently and prevent its rapid spontaneous refolding was detected in the N-terminal site of Hsp90 only, while the C-terminal site was without effect. Thus it is most likely that both the N- and C-terminal chaperone sites may contribute to Hsp90 function as holder chaperones, however, in a significantly distinct manner.  相似文献   

14.
Modulation of in vivo HSP70 chaperone activity by Hip and Bag-1   总被引:6,自引:0,他引:6  
The chaperone activity of Hsp70 is influenced by the activities of both positive and negative regulatory proteins. In this study, we provide first time evidence for the stimulating effect of the Hsp70-interacting protein Hip on the chaperone activity in the mammalian cytosol. Overexpressing Hip enhances the refolding of the heat-inactivated reporter enzyme luciferase expressed in hamster lung fibroblasts. Also, it protects luciferase from irreversible denaturation under conditions of ATP depletion. We demonstrate that these stimulating actions depend on both the presence of the central Hsp70-binding site and the amino-terminal homo-oligomerization domain of Hip. The carboxyl terminus (amino acids 257-368) comprising the 7 GGMP repeats (Hsc70-like domain) and the Sti1p-like domain are dispensable for the Hip-mediated stimulation of the cellular chaperone activity. Bag-1, which inhibits the Hsp70 chaperone activity both in vitro and in vivo, was found to compete with the stimulatory action of Hip. In cells overexpressing both Hip and Bag-1, the inhibitory effects of Bag-1 were found to be dominant. Our results reveal that in vivo a complex level of regulation of the cellular chaperone activity exists that not only depends on the concentration of Hsp70 but also on the concentration, affinity, and intracellular localization of positive and negative coregulators. As the Hsp70 chaperone machine is also protective in the absence of ATP, our data also demonstrate that cycling between an ATP/ADP-bound state is not absolutely required for the Hsp70 chaperone machine to be active in vivo.  相似文献   

15.
Studies of expression of molecular chaperones of the family of Heat Shock Proteins 70 kDa (HSP70) in the mouse and rat brain during sleep deprivation do not answer the question whether the HSP70 produce somnogenic effect. In the present work there are studied effects of exogenous Hsp70 that is known to be able to penetrate into living cells in vitro and to acquire properties of endogenous chaperone. Hsp70 was microinjected into the third brain ventricle of rats and pigeons at the beginning of the non-active 24-h phase when under natural conditions the sleep duration increases and the somato-visceral parameters decrease. Hsp70 has been established to enhance this natural process and to produce an additional increase of the total time of slow-wave sleep, a more pronounced inhibition of the muscle contractive activity, and a deeper decrease of the brain temperature. A similarity in effects of Hsp70 in rats and pigeons has been revealed. In both species the somnogenic Hsp70 action is realized by activation of mechanisms of maintenance of the longer episodes of the slow-wave sleep. The hypothermic Hsp70 effect seems to be associated with a decrease of the muscle contractive activity level, rather than with an enhancement of peripheral vasodilation and with an increase of heat loss. A hypothesis is put forward that the hyposedative/neuroleptic-like Hsp70 action that includes the somnogenic, myorelaxing, and hypothermic effects is mediated by activation of GABAA receptors of the main inhibitory brain system.  相似文献   

16.
Propagation of yeast prions requires normal abundance and activity of many protein chaperones. Central among them is Hsp70, a ubiquitous and essential chaperone involved in many diverse cellular processes that helps promote proper protein folding and acts as a critical component of several chaperone machines. Hsp70 is regulated by a large cohort of co-chaperones, whose effects on prions are likely mediated through Hsp70. Hsp104 is another chaperone, absent from mammalian cells, that resolubilizes proteins from aggregates. This activity, which minimally requires Hsp70 and its co-chaperone Hsp40, is essential for yeast prion replication. Although much is known about how yeast prions can be affected by altering protein chaperones, mechanistic explanations for these effects are uncertain. We discuss the variety of effects Hsp70 and its regulators have on different prions and how the effects might be due to the many ways chaperones interact with each other and with amyloid.Key words: Hsp70, Hsp40, chaperone, prion, yeast  相似文献   

17.
Protein aggregate reactivation in metazoans is accomplished by the combined activity of Hsp70, Hsp40 and Hsp110 chaperones. Hsp110s support the refolding of aggregated polypeptides acting as specialized nucleotide exchange factors of Hsp70. We have studied how Apg2, one of the three human Hsp110s, regulates the activity of Hsc70 (HspA8), the constitutive Hsp70 in our cells. Apg2 shows a biphasic behavior: at low concentration, it stimulates the ATPase cycle of Hsc70, binding of the chaperone to protein aggregates and the refolding activity of the system, while it inhibits these three processes at high concentration. When the acidic subdomain of Apg2, a characteristic sequence present in the substrate binding domain of all Hsp110s, is deleted, the detrimental effects occur at lower concentration and are more pronounced, which concurs with an increase in the affinity of the Apg2 mutant for Hsc70. Our data support a mechanism in which Apg2 arrests the chaperone cycle through an interaction with Hsc70(ATP) that might lead to premature ATP dissociation before hydrolysis. In this line, the acidic subdomain might serve as a conformational switch to support dissociation of the Hsc70:Apg2 complex.  相似文献   

18.
Intracellular pathogens like Toxoplasma gondii often target proteins and pathways critical for host cell survival and stress response. Molecular chaperones encoded by the evolutionary conserved Heat shock proteins (Hsps) maintain proteostasis and are vital to cell survival following exposure to any form of stress. A key protein of this family is Hsp70, an ATP-driven molecular chaperone, which is stress inducible and often indiscernible in normal cells. Role of this protein with respect to intracellular survival and multiplication of protozoan parasite like T. gondii remains to be examined. We find that T. gondii infection upregulates expression of host Hsp70. Hsp70 selective inhibitor 2-phenylethynesulfonamide (PES) attenuates intracellular T. gondii multiplication. Biotinylated PES confirms selective interaction of this small molecule inhibitor with Hsp70. We show that PES acts by disrupting Hsp70 chaperone function which leads to dysregulation of host autophagy. Silencing of host Hsp70 underscores its importance for intracellular multiplication of T. gondii, however, attenuation achieved using PES is not completely attributable to host Hsp70 indicating the presence of other intracellular targets of PES in infected host cells. We find that PES is also able to target T. gondii Hsp70 homologue which was shown using PES binding assay. Detailed molecular docking analysis substantiates PES targeting of TgHsp70 in addition to host Hsp70. While establishing the importance of protein quality control in infection, this study brings to the fore a unique opportunity of dual targeting of host and parasite Hsp70 demonstrating how structural conservation of these proteins may be exploited for therapeutic design.  相似文献   

19.
Mosser DD  Ho S  Glover JR 《Biochemistry》2004,43(25):8107-8115
Hsp104, the most potent thermotolerance factor in Saccharomyces cerevisiae, is an unusual molecular chaperone that is associated with the dispersal of aggregated, non-native proteins in vivo and in vitro. The close cooperation between Hsp100 oligomeric disaggregases and specific Hsp70 chaperone/cochaperone systems to refold and reactivate heat-damaged proteins has been dubbed a "bichaperone network". Interestingly, animal genomes do not encode a Hsp104 ortholog. To investigate the biochemical and biological consequences of introducing into human cells a stress tolerance factor that has protein refolding capabilities distinct from those already present, Hsp104 was expressed as a transgene in a human leukemic T-cell line (PEER). Hsp104 inhibited heat-shock-induced loss of viability in PEER cells, and this action correlated with reduced procaspase-3 cleavage but not with reduced c-Jun N-terminal kinase phosphorylation. Hsp104 cooperated with endogenous human Hsp70 and Hsc70 molecular chaperones and their J-domain-containing cochaperones Hdj1 and Hdj2 to produce a functional hybrid bichaperone network capable of refolding aggregated luciferase. We also established that Hsp104 shuttles across the nuclear envelope and enhances the chaperoning capacity of both the cytoplasm and nucleoplasm of intact cells. Our results establish the fundamental properties of protein disaggregase function in human cells with implications for the use of Hsp104 or related proteins as therapeutic agents in diseases associated with protein aggregation.  相似文献   

20.
Production of coagulation factor VIII (FVIII) by recombinant cell lines is limited by its failure to reach or maintain the native conformation in the endoplasmic reticulum. This results in significant cytoplasmic degradation and/or aggregation of the misfolded product. The molecular chaperone Hsp70 was overexpressed in an attempt to increase the recombinant FVIII (rFVIII) secretion. The characteristics of increased Hsp70 expression were investigated by comparing a clone of BHK-21 cells expressing rFVIII (rBHK-21(host)) to a chaperone clone derived by transfection of the host clone with human Hsp70 (rBHK-21(Hsp70)) in small-scale batch cell cultures. To aid this investigation a number of fluorescence based cellular apoptosis assays were developed and optimized. These assays demonstrated sub-populations of rBHK-21(host) cells that were apoptotic in nature and were identified prior to the loss in plasma membrane integrity. Dual staining for intracellular rFVIII and caspase-3 activation showed a reduction in intracellular rFVIII in rBHK-21(host) cells that correlated with a significant increase in active caspase-3, suggesting that apoptosis was a factor limiting rFVIII secretion. In sharp contrast there was more intracellular rFVIII and less active caspase-3 in rBHK-21(Hsp70) cell cultures. Moreover when grown in batch culture, rBHK-21(Hsp70) cells released rFVIII of higher specific activity (active FVIII protein/total FVIII protein), suggesting improved product quality. Thus, increased expression of HSP70 led to an increased yield of a secreted recombinant protein by inhibition of apoptosis and promoting proper conformational maturation of rFVIII in sub-optimal bioreactor conditions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号