首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Synapse-associated protein 97 (SAP97) and postsynaptic density 95 (PSD-95) are closely related membrane-associated guanylate kinase homologs (Maguks) implicated in the synaptic targeting and anchoring of alpha-amino-5-methyl-3-hydroxy-4-isoxazolepropionic acid (AMPA)-selective glutamate receptors. Prompted by accumulating evidence for an oligomeric nature of Maguks, we examined the potential of SAP97 and PSD-95 to form heteromeric complexes. SAP97 and PSD-95 coimmunoprecipitated from rat brain detergent extracts and subsequent glutathione S-transferase pull-down and immunoprecipitation experiments showed that the interaction is mediated by binding of the N-terminal segment of SAP97 (SAP97(NTD)) to the Src homology 3 domain of PSD-95 (PSD-95(SH3)). In cultured hippocampal neurons, expression of green fluorescent protein-tagged PSD-95 triggered accumulation of SAP97 in synaptic spines, which was totally inhibited by coexpression of PSD-95(SH3). Furthermore, overexpression of green fluorescent protein-PSD-95 induced dendritic clustering of GluR-A subunit-containing AMPA receptors, which was strongly inhibited by cotransfection with SAP97(NTD) and PSD-95(SH3) constructs. Our results demonstrated a direct interaction between SAP97 and PSD-95 and suggested that this association may play a functional role in the trafficking and clustering of AMPA receptors.  相似文献   

2.
Interaction of actin from chicken gizzard and from rabbit skeletal muscle with rabbit skeletal muscle myosin was compared by measuring the rate of superprecipitation, the activation of the Mg-ATPase and inhibition of K-ATPase activity of myosin and heavy meromyosin, and determination of binding of heavy meromyosin in the absence of ATP. Both the rate of superprecipitation of the hybrid actomyosin and the activation of myosin ATPase by gizzard actin are lower than those obtained with skeletal muscle actin. The activation of myosin Mg-ATPase by the two actin species also shows different dependence on substrate concentration: with gizzard actin the substrate inhibition starts at lower ATP concentration. The double-reciprocal plots of the Mg-ATPase activity of heavy meromyosin versus actin concentration yield the same value of the extrapolated ATPase activity at infinite actin concentration (V) for the two actins and nearly double the actin concentration needed to produce half-maximal activation (Kapp) in the case of gizzard actin. A corresponding difference in the abilities of the two actin species to inhibit the K-ATPase activity of heavy meromyosin in the absence of divalent cations was also observed. The results are discussed in terms of the effect of substitutions in the amino acid sequence of gizzard and skeletal muscle actins on their interaction with myosin.  相似文献   

3.
Actin polymerization was investigated using fluorescence probe N-(1-pyrenyl)iodoacetamide, which was bound covalently to reactive sulfhydryl group, Cys-373. Labeled actin in the bulk was 0.5 to 1% of total actin concentration. Actin polymerization at concentration 12 mM was started by addition of 20 mM KCl and 2 mM MgCl2. The label fluorescence was excited at 365 nm and registered at 386 nm. Under actin polymerization the label fluorescence increased almost 10 times. Two main phases may be distinguished in the process of actin polymerization: 1) monomer activation and nucleus (trimer) formation, 2) growth of actin filaments on the nuclei. In our experimental conditions, both for pure actin and for that with added annexin VI, the 1st phase continued for about 3 min and after that the 2nd phase was perfectly approximated by exponential dependence. An analysis of the exponential curves showed that actin monomer lifetime increased from 327 s, at annexin absence, to about 373 s at 0.7 microM annexin and more. Calculation of rate constants at two ends of growing actin filament suggests that annexin VI binds with pointed ("slow") end so that at sufficient annexin concentration the filament grows only on barbed ("fast") end. Our results, together with data of other researchers showing that annexin VI binds with the inner membrane surface of smooth muscle cell through Ca2+, may indicate that, at Ca2+ entering the cell, this annexin binds actin filament pointed ends to cell surface making it ready for the act of contraction.  相似文献   

4.
Interaction of globular actin with myosin subfragments   总被引:9,自引:0,他引:9  
  相似文献   

5.
Ca2+ "free" actomyosin suspensions as well as actin heavy meromyosin (HMM) solutions in the presence of Ca2+ showed no contractile response (superprecipitation) and had low steady-state Mg2+-ATPase activity. Under the same experimental conditions both the enzymatic activity increased and contractile response was restored if the solubility of the proteins was depressed by the addition of polyethylene glycol 4000 (PEG-4000). The stability of the enzymatically active actomyosin or actin HMM complexes was 10 times lower in cleared solutions than in the insoluble actomyosin or actin HMM suspensions. It was concluded that soluble actomyosin or actin HMM solutions are inadequate test tube models for studying muscular contraction.  相似文献   

6.
Schlüter OM  Xu W  Malenka RC 《Neuron》2006,51(1):99-111
PSD-95 and SAP97 are scaffolding proteins that have been implicated in regulating AMPA receptor incorporation and function at synapses. Gain- and loss-of-function approaches, however, have generated conflicting results. To minimize adaptations during development and potential dominant-negative effects of overexpression, we have combined silencing of endogenous PSD-95 in mature neurons with heterologous expression of specific SAP97 or PSD-95 isoforms. We find that both PSD-95 and SAP97 contain alternative N termini expressing either double cysteines that normally are palmitoylated (alpha-isoforms) or an L27 domain (beta-isoforms). Whereas alpha-isoforms of PSD-95 and SAP97 influence AMPA receptor-mediated synaptic strength independent of activity, the effects of beta-isoforms are regulated by activity in a CaMKII-dependent manner. Importantly, the synaptic effects of the beta-isoforms are masked by the endogenous alpha-isoform of PSD-95. These results demonstrate that the different N termini of the predominant endogenous forms of PSD-95 (alpha-isoform) and SAP97 (beta-isoform) govern their role in regulating synaptic function.  相似文献   

7.
M Miki  T Hozumi 《Biochemistry》1991,30(22):5625-5630
A chemical modification of G-actin with (m-maleimidobenzoyl)-N-hydroxysuccinimide ester (MBS) impairs actin polymerization [Bettache, N., Bertrand, R., & Kassab, R. (1989) Proc. Natl. Acad. Sci. U.S.A. 86, 6028-6032]. MBS-actin recovers the ability to polymerize when a 2-fold molar excess of phalloidin is added in 30 mM KCl/2 mM MgCl2/20 mM Tris-HCl (pH 7.6). The resulting polymer (MBS-P-actin) is highly potentiated so that it activates the Mg(2+)-ATPase of S1 more strongly than native F-actin. The affinity of MBS-P-actin for S1 in the presence of ATP (KATPase) is about four times higher than that of native F-actin, although the maximum velocity at infinite actin concentration (Vmax) is almost the same. This high activation is not due to a cross-linking between MBS-P-actin and the S1 heavy chain, since no substantial amount of cross-linking was observed in SDS gel electrophoresis. Direct binding studies and ATPase measurements showed that the modification of actin with MBS impairs the binding of tropomyosin. Tropomyosin binding can be improved considerably by the addition of troponin. However, the regulation mechanism of the acto-S1 ATPase activity by troponin-tropomyosin is damaged. The addition of troponin-tropomyosin reduces the S1 ATPase activation by MBS-P-actin to the same level as that of native F-actin in 30 mM KCl/2.5 mM ATP/2 mM MgCl2, but there is no difference in the ATPase activation in the presence and absence of Ca2+.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

8.
Regulation of AMPA receptor trafficking by N-cadherin   总被引:1,自引:0,他引:1  
Dendritic spines are dynamically regulated, both morphologically and functionally, by neuronal activity. Morphological changes are mediated by a variety of synaptic proteins, whereas functional changes can be dramatically modulated by the regulation of alpha-amino-3-hydroxy-5-methylisoxazole-4-propionate (AMPA) receptor trafficking. Although these two forms of plasticity appear to be highly coordinated, the connections between them are not fully understood. In this study the synaptic cell adhesion molecule N-cadherin was found to associate with AMPA receptors and regulate AMPA receptor trafficking in neurons. N-cadherin and beta-catenin formed a protein complex with AMPA receptors in vivo, and this association was regulated by extracellular Ca2+. In addition, these proteins co-clustered at synapses in cultured neurons. In heterologous cells and in cultured neurons, overexpression of wild-type N-cadherin specifically increased the surface expression level of the AMPA receptor subunit glutamate receptor 1 (GluR1) and this effect was reversed by a dominant-negative form of N-cadherin. Finally, GluR1 increased the surface expression of N-cadherin in heterologous cells. Importantly, recent studies suggest that N-cadherin and beta-catenin play key roles in structural plasticity in neurons. Therefore, our data suggest that the association of N-cadherin with AMPA receptors may serve as a biochemical link between structural and functional plasticity of synapses.  相似文献   

9.
AMPA receptor trafficking and the control of synaptic transmission.   总被引:6,自引:0,他引:6  
M Sheng  S H Lee 《Cell》2001,105(7):825-828
  相似文献   

10.
Among a superfamily of myosin, class VI myosin moves actin filaments backwards. Here we show that myosin VI moves processively on actin filaments backwards with large ( approximately 36 nm) steps, nevertheless it has an extremely short neck domain. Myosin V also moves processively with large ( approximately 36 nm) steps and it is believed that myosin V strides along the actin helical repeat with its elongated neck domain that is critical for its processive movement with large steps. Myosin VI having a short neck cannot take this scenario. We found by electron microscopy that myosin VI cooperatively binds to an actin filament at approximately 36 nm intervals in the presence of ATP, raising a hypothesis that the binding of myosin VI evokes "hot spots" on actin filaments that attract myosin heads. Myosin VI may step on these "hot spots" on actin filaments in every helical pitch, thus producing processive movement with 36 nm steps.  相似文献   

11.
12.
The ability of myosin subfragment 1 to interact with monomeric actin complexed to sequestering proteins was tested by a number of different techniques such as affinity absorption, chemical cross-linking, fluorescence titration, and competition procedures. For affinity absorption, actin was attached to agarose immobilized DNase I. Both chymotryptic subfragment 1 isoforms (S1A1 and S1A2) were retained by this affinity matrix. Fluorescence titration employing pyrenyl-actin in complex with deoxyribonuclease I (DNase I) or thymosin beta4 demonstrated S1 binding to these actin complexes. A K(D) of 5 x 10(-8) M for S1A1 binding to the actin-DNase I complex was determined. Fluorescence titration did not indicate binding of S1 to actin in complex with gelsolin segment 1 (G1) or vitamin D-binding protein (DBP). However, fluorescence competition experiments and analysis of tryptic cleavage patterns of S1 indicated its interaction with actin in complex with DBP or G1. Formation of the ternary DNase I-acto-S1 complex was directly demonstrated by sucrose density sedimentation. S1 binding to G-actin was found to be sensitive to ATP and an increase in ionic strength. Actin fixed in its monomeric state by DNase I was unable to significantly stimulate the Mg2+-dependent S1-ATPase activity. Both wild-type and a mutant of Dictyostelium discoideum myosin II subfragment 1 containing 12 additional lysine residues within an insertion of 20 residues into loop 2 (K12/20-Q532E) were found to also interact with actin-DNase I complex. Binding of the K12/20-Q532E mutant to the actin-DNase I complex occurred with higher affinity than wild-type S1 and was less sensitive to mono- and divalent cations.  相似文献   

13.
Regulation of AMPA receptor trafficking and synaptic plasticity   总被引:1,自引:0,他引:1  
AMPA receptors (AMPARs) mediate the majority of fast excitatory synaptic transmission in the brain. Dynamic changes in neuronal synaptic efficacy, termed synaptic plasticity, are thought to underlie information coding and storage in learning and memory. One major mechanism that regulates synaptic strength involves the tightly regulated trafficking of AMPARs into and out of synapses. The life cycle of AMPARs from their biosynthesis, membrane trafficking, and synaptic targeting to their degradation are controlled by a series of orchestrated interactions with numerous intracellular regulatory proteins. Here we review recent progress made toward the understanding the regulation of AMPAR trafficking, focusing on the roles of several key intracellular AMPAR interacting proteins.  相似文献   

14.
In the mammalian central nervous system, the majority of fast excitatory synaptic transmission is mediated by glutamate acting on AMPA-type ionotropic glutamate receptors. The abundance of AMPA receptors at the synapse can be modulated through receptor trafficking, which dynamically regulates many fundamental brain functions, including learning and memory. Reversible posttranslational modifications, including phosphorylation, palmitoylation and ubiquitination of AMPA receptor subunits are important regulatory mechanisms for controlling synaptic AMPA receptor expression and function. In this review, we highlight recent advances in the study of AMPA receptor posttranslational modifications and discuss how these modifications regulate AMPA receptor trafficking and function at synapses.  相似文献   

15.
Synapse Associated Protein 97 (SAP97), a member of membrane-associated guanylate kinase (MAGUK) protein family, has been involved in the correct targeting and clustering of ionotropic glutamate receptors (iGluRs) at postsynaptic sites. Calcium/calmodulin kinase II (CaMKII) phosphorylates SAP97 on two major sites in vivo; one located in the N-terminal domain (Ser39) and the other in the first postsynaptic density disc large ZO1 (PDZ) domain (Ser232). CaMKII-mediated phosphorylation of SAP97-Ser39 is necessary and sufficient to drive SAP97 to the postsynaptic compartment in cultured hippocampal neurons. CaMKII-dependent phosphorylation of Ser232 disrupts SAP97 interaction with NR2A subunit, thereby regulating synaptic targeting of this NMDA receptor subunit. Here we show by means of phospho-specific antibodies that SAP97-Ser39 phosphorylation represents the driving force to release SAP97/NR2A complex from the endoplasmic reticulum. Ser39 phosphorylation does not interfere with SAP97 capability to bind NR2A. On the contrary, SAP97-Ser232 phosphorylation occurs within the postsynaptic compartment and is responsible for both the disruption of NR2A/SAP97 complex and, consequently, for NR2A insertion in the postsynaptic membrane. Thus, CaMKII-dependent phosphorylation of SAP97 in different time frames and locations within the neurons controls both NR2A trafficking and insertion.  相似文献   

16.
The interactions of caldesmon and S1 with the C-terminus of actin were examined in co-sedimentation experiments using proteolytically truncated actin. It is shown that removal of 6 residues from the C-terminus of actin reduces the binding of caldesmon by about 50% while improving the binding of S1 to actin. We also show that S1 protects actin's C-terminus from enzymatic cleavage. Both S1 and caldesmon binding to actin are decreased in the presence of an actin C-terminal peptide. These results emphasize the importance of the C-terminus of actin in binding to S1 and caldesmon.  相似文献   

17.
PICK1 is a calcium-sensor for NMDA-induced AMPA receptor trafficking   总被引:1,自引:0,他引:1  
Hanley JG  Henley JM 《The EMBO journal》2005,24(18):3266-3278
Regulation of AMPA receptor (AMPAR) trafficking results in changes in receptor number at the postsynaptic membrane, and hence modifications in synaptic strength, which are proposed to underlie learning and memory. NMDA receptor-mediated postsynaptic Ca2+ influx enhances AMPAR internalisation, but the molecular mechanisms that trigger such trafficking are not well understood. We investigated whether AMPAR-associated protein-protein interactions known to regulate receptor surface expression may be directly regulated by Ca2+. PICK1 binds the AMPAR GluR2 subunit and is involved in AMPAR internalisation and LTD. We show that PICK1 is a Ca2+-binding protein, and that PICK1-GluR2 interactions are enhanced by the presence of 15 muM Ca2+. Deletion of an N-terminal acidic domain in PICK1 reduces its ability to bind Ca2+, and renders the GluR2-PICK1 interaction insensitive to Ca2+. Overexpression of this Ca2+-insensitive mutant occludes NMDA-induced AMPAR internalisation in hippocampal neurons. This work reveals a novel postsynaptic Ca2+-binding protein that provides a direct mechanistic link between NMDAR-mediated Ca2+ influx and AMPAR endocytosis.  相似文献   

18.
Most excitatory transmission in the brain is mediated by alpha-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA)-type glutamate receptors (AMPA receptors). Therefore, the presence of these receptors at synapses has to be carefully regulated in order to ensure correct neuronal communication. Interestingly, AMPA receptors are not static components of synapses. On the contrary, they are continuously being delivered and removed in and out of synapses in response to neuronal activity. This dynamic behavior of AMPA receptors is an important mechanism to modify synaptic strength during brain development and also during experience-dependent plasticity. AMPA receptor trafficking involves an intricate network of protein-protein interactions that start with the biosynthesis of the receptors, continues with their transport along dendrites, and ends with their local insertion and removal from synapses. The molecular and cellular mechanisms that regulate each of these processes, and their importance for synaptic plasticity, are now starting to be unraveled.  相似文献   

19.
20.
Myosin VI is expressed in a variety of cell types and is thought to play a role in membrane trafficking and endocytosis, yet its motor function and regulation are not understood. The present study clarified mammalian myosin VI motor function and regulation at a molecular level. Myosin VI ATPase activity was highly activated by actin with K(actin) of 9 microm. A predominant amount of myosin VI bound to actin in the presence of ATP unlike conventional myosins. K(ATP) was much higher than those of other known myosins, suggesting that myosin VI has a weak affinity or slow binding for ATP. On the other hand, ADP markedly inhibited the actin-activated ATPase activity, suggesting a high affinity for ADP. These results suggested that myosin VI is predominantly in a strong actin binding state during the ATPase cycle. p21-activated kinase 3 phosphorylated myosin VI, and the site was identified as Thr(406). The phosphorylation of myosin VI significantly facilitated the actin-translocating activity of myosin VI. On the other hand, Ca(2+) diminished the actin-translocating activity of myosin VI although the actin-activated ATPase activity was not affected by Ca(2+). Calmodulin was not dissociated from the heavy chain at high Ca(2+), suggesting that a conformational change of calmodulin upon Ca(2+) binding, but not its physical dissociation, determines the inhibition of the motility activity. The present results revealed the dual regulation of myosin VI by phosphorylation and Ca(2+) binding to calmodulin light chain.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号