首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Groups of 10-week-old female CBA/J mice were exposed in whole body fashion to 0,5,50, and 500 rads and sacrificed in serial fashion 1,3,5,7,9,15, and 30 days after irradiation for morphologic evaluation of thymus, spleen, lymph node, and Peyer's patch, and assessment of the relative numbers of thymus-derived (T) and bone marrow-derived (B) cells in these tissues. The absolute and relative numbers of recirculating T and B cells mobilizable by thoracic duct cannulation were also determined and compared with similar determinations with respect to peripheral blood lymphocytes. B cell depletion occurred more quickly and was more pronounced in spleen and lymph node than T cell depletion at all three exposure doses. Depletion of T and B cells was roughly equal in peripheral blood and thoracic duct lymph. When present, regeneration of the T cell component occurred more rapidly than did B cell restoration. The latter often was incomplete at the time of the final sacrifice (day 30). PHA-responsive and Con A-responsive cells also appeared to differ with respect to the kinetics of cell death after whole body irradiation.  相似文献   

2.
The thoracic duct of Wistar strain rats was cannulated during 5 days for studying the effect of selective lymphocyte depletion on the lymphoid tissue. A technique for the continuous infusion of cell-free lymph, whole lymph of Eagle's medium to the rat with the thoracic duct fistula is described in detail. The prolonged drainage of lymph from rats was followed by lymphopenia, sever atrophy of lymphoid tissues and the depletion of small lymphocytes in the thymus-dependent areas of spleen and lymph nodes. The infusion of cell-free lymph into the drained rat resulted in the recovery of the weight of lymphoid tissues and in the massive proliferation and accumulation of large cells with prominent nucleoli and intensely pyroninophilic cytoplasm in the lymphocyte depleted areas of the peripheral lymphoid tissues and thymic cortex. There was histological evidence that the large pyroninophilic cells developed well in the spleen and tended to localize preferentially around the periarteriolar region through the marginal zone bridging channels to the red pulp. The infusion of Eagle's medium was found ineffective in restoring the weight of the lymphoid tissues and in bringing about the proliferation of lymphoid cells. The rats infused with whole lymph showed almost similar findings biologically and histologically to those of sham-operated rats.  相似文献   

3.
Circulating T and B lymphocytes of the mouse. I. Migratory properties   总被引:41,自引:0,他引:41  
Studies on the identity of thoracic duct lymphocytes (TDL4) from normal and T cell-depleted mice indicated that as many circulating B lymphocytes were produced by healthy T cell-depleted mice as normal mice. Proportions of T and B cells from the thoracic duct of CBA mice changed markedly during the first 4 days of drainage from 82% T cells and 16% B cells at 12 hr to approximately equal proportions of both classes after 3 days. In absolute terms, T cells were mobilized rapidly by thoracic duct drainage and B cells very slowly. Histologically, this was reflected in a rapid depletion of the T cell-dependent areas of the lymphoid organs. The B cell-dependent areas, in contrast, became depleted of lymphocytes only after drainage for a week or more.The homing properties of circulating lymphocytes were investigated using TDL from normal and T cell-depleted mice as relatively pure sources of T and B cells, respectively. Four hours after injection of 51Cr-labeled T and B cells, a large proportion of both cell classes were found in the spleen. By 24 hr, many T cells had left the spleen and appeared in the lymph nodes. Such redistribution by B cells, however, was minimal.Intravenously injected T and B cells, labeled with tritiated uridine (3HU), localized specifically in the T and B cell-dependent areas, respectively, of the lymphoid tissues.3HU-labeled T cells were found to recirculate rapidly from blood to lymph. Labeled B cells, in contrast, recirculated only very slowly.  相似文献   

4.
Antibody responses and histological changes in hepatic lymph nodes and spleen of gerbils (Meriones unguiculatus) during the course of experimental hepatic amebiasis (5-60 days), or in those injected with extracts of Entamoeba histolytica, are described. Lymph node and spleen responses in infected animals paralleled the proliferation of the amebic liver abscess. However, spleen follicle responses were similar in animals that received low or high doses of the amebic extract and differed histologically from those with amebic liver abscess. Liver abscesses, up to 30 days postinfection (pi), doubled in weight between 10 and 15 and between 20 and 30 days pi. Early changes (10 days pi) in the lymphoreticular tissues were characterized by increased size and weight of the organs, hyperplastic follicles, and blastogenesis in the T-dependent areas. At 20 and 30 days pi, the size of spleen follicles increased and there was depletion of lymphocytes from the periarterial area (PAA), as well as gross extension of the red pulp, accompanied by extramedullary erythropoiesis and megakaryocytosis. The paracortical areas (PCA) of lymph nodes were depleted of lymphocytes and histiocytosis throughout the organ, and there was intense plasma cell activity in the medulla. At 60 days pi, lymphocyte repopulation was noted in the PCA and PAA; germinal centers were depleted of blast cells and the spleen red pulp had contracted. Antiamebic antibody titers were low throughout the infection. Changes in the cellularity of the lymphoid organs are discussed in relation to the proliferation of the amebic liver abscesses in infected animals and in those which were injected with the amebic extract.  相似文献   

5.
The tissue localization of syngeneic thoracic duct lymphocytes was compared to that of allogeneic cells in four rat strain combinations differing at the Ag-B locus (HO → DA, DA → HO, AO → HO, HO → AO). Dual isotope labeling with [3H]uridine and [14C]uridine was applied in order so that the distribution of allogeneic and syngeneic cells could be followed in one recipient. During the first couple of hours after iv injection, allogeneic lymphocytes usually migrated as easily into the various tissues as did syngeneic cells. However, after 24 and 48 hr, a reduced amount of label associated with allogeneic cells was often measured in the tissues. This reduction differed in magnitude in the different strain combinations and was most pronounced in the lymph nodes. A reduced number of allogeneic cells also appeared in the thoracic duct. By contrast, no reduced localization of allogeneic lymphocytes was measured in the draining popliteal lymph nodes late after sc injection. In preimmunized animals allogeneic cells were rapidly removed from the blood and therefore failed to localize in the lymphoid tissues. Furthermore, the lymph node localization of allogeneic cells was more like that of syngeneic cells in splenectomized rats, as well as in irradiated recipients (when the irradiation was given shortly before cell transfer). It is concluded that transplantation antigens play no essential role in the interaction between recirculating lymphocytes and the venous endothelium at the sites where the large-scale physiological emigration of the cells takes place (the HEVS of the lymph nodes and the marginal zone vessels of the spleen). The elimination of allogeneic cells is found later; it probably takes place in the lymph nodes and spleen. Possible mechanisms responsible for this rapid removal of allogeneic lymphocytes in nonimmunized recipients are discussed.  相似文献   

6.
Large granular lymphocytes (LGL) and T cells were separated from blood by centrifugation on discontinuous gradients of Percoll, were labeled with [3H]uridine or [111In]oxine, and were injected i.v. into syngeneic euthymic or athymic nude rats. The tissue distribution of these labeled cells was monitored for up to 24 hr after transfer by scintillation counting of tissue homogenates and autoradiography of tissue sections. In normal euthymic rats, the main sites of LGL localization were the alveolar walls of the lungs and spleen red pulp; however, they were not detectable in the major traffic areas of T lymphocyte recirculation, the spleen white pulp, and lymph nodes. Furthermore, the density of labeled LGL was very low in the small intestine, thymus, kidney, and liver, although on a per-organ basis, about 10% of the injected radioactivity was found in the liver by 24 hr post-injection. When 111In-labeled LGL were injected i.v. into rats with an indwelling thoracic duct cannula, they completely failed to enter the thoracic duct lymphocyte (TDL) population over an observation period of 6 days. This finding was markedly different from the results obtained with T cells and was consistent with the lack of natural killer and antibody-dependent cellular cytotoxicity activity observed among TDL, even in rats pretreated with the biological response modifier, poly I:C. LGL in athymic nude rats also failed to recirculate between blood and lymph. However, in contrast to normal euthymic animals, a significant increase in the localization of radiolabeled LGL to lymph nodes was observed in nude rats between 30 min and 24 hr. Taken as a whole, these findings define the areas within the lungs and spleen in which blood LGL normally localize, and clearly demonstrate that LGL do not normally recirculate between blood and lymph.  相似文献   

7.
Thoracic duct lymphocytes labelled with 51Cr were injected into a primary recipient and then were transferred for a second time from the lymph nodes (cervical and/or mesenteric), spleen, lymph, or blood into a series of final recipients. Measurement of the organ distribution of labelled lymphocytes in the final recipients enabled three main conclusions to be drawn. (1) Lymphocytes that had localized in the spleen, mesenteric lymph nodes (LN), or cervical LN of the first recipient showed no tendency to return in increased numbers to the same organ in the final recipient. (2) Lymphocytes that had recently entered the spleen or LN were temporarily impaired in their ability to reenter LN. This capacity was recharged when the cells returned to the lymph and the blood. (3) Lymphocytes that had been passaged from blood to lymph and collected for up to 4 hr at room temperature entered the LN of a recipient much faster than did nonpassaged thoracic duct lymphocytes collected overnight at 0 degree C. Supplementary experiments indicated that the different migratory behavior of thoracic duct lymphocytes under these two circumstances was mainly a consequence of their handling in vitro during the collecting and the labelling procedures. This functional impairment was not associated with a diminished ability to enter the spleen and bone marrow or to survive in recipients for up to 24 hr.  相似文献   

8.
Populations of rat bone marrow lymphocytes (BML) consisting of approximately 90 percent, “tnull” cells were prepared by density gradient centrifugation, passage through a column of fine glass beads, and treatment with anti-T cell and anti-B cell serum plus complement. Antisera to these bone marrow lymphocytes were raised in rabbits. After absorption with RBC and peritoneal exudate cells, the anti-BML sera were found by immunofluorescence to react selectively with “null” cells in bone marrow, with cortical thymocytes, and with a cortisone-sensitive subset of T cells in blood and in spleen, possibly in red pulp. The antigen that is common to these cell types is designated the rat bone marrow lymphocyte antigen (RBMLA). Lymphocytes that are positive fur KBMLA are negative for another lymphocyte-specific heteroantigen, rat musked thymocyte antigen (RMTA). As shown previously, RMTA is present on medullary thymocytes and ou cortisone-resistant T cells in white pulp of spleen, paracortex of lymph node and thoracic duct lymph. It is postulated that two developmentally and functionally distinct lines of T cells exist in peripheral lymphoid tissues of the rat, one derived from cortical thymocytes and one derived from medullary thymocytes. It is further postulated that the “null” population of bone marrow lymphocytes contains the lymphopoietic stem cells from which these two lines of T cells originate.  相似文献   

9.
The kinetics of recirculation of naive lymphocytes in the body has important implications for the speed at which local infections are detected and controlled by immune responses. With a help of a novel mathematical model, we analyze experimental data on migration of 51Cr-labeled thoracic duct lymphocytes (TDLs) via major lymphoid and nonlymphoid tissues of rats in the absence of systemic antigenic stimulation. We show that at any point of time, 95% of lymphocytes in the blood travel via capillaries in the lung or sinusoids of the liver and only 5% migrate to secondary lymphoid tissues such as lymph nodes, Peyer''s patches, or the spleen. Interestingly, our analysis suggests that lymphocytes travel via lung capillaries and liver sinusoids at an extremely rapid rate with the average residence time in these tissues being less than 1 minute. The model also predicts a relatively short average residence time of TDLs in the spleen (2.5 hours) and a longer average residence time of TDLs in major lymph nodes and Peyer''s patches (10 hours). Surprisingly, we find that the average residence time of lymphocytes is similar in lymph nodes draining the skin (subcutaneous LNs) or the gut (mesenteric LNs) or in Peyer''s patches. Applying our model to an additional dataset on lymphocyte migration via resting and antigen-stimulated lymph nodes we find that enlargement of antigen-stimulated lymph nodes occurs mainly due to increased entrance rate of TDLs into the nodes and not due to decreased exit rate as has been suggested in some studies. Taken together, our analysis for the first time provides a comprehensive, systems view of recirculation kinetics of thoracic duct lymphocytes in the whole organism.  相似文献   

10.
Antibody responses and changes in the lymphoreticular tissues of gerbils with experimental cecal amebiasis were studied from 5 to 60 days PI. Changes in the cecum consisted of lymphoid follicle hyperplasia and depletion of lymphocytes, followed by follicle atrophy and histiocytosis. Mesenteric lymphadenopathy, and histologic alterations in the lymph nodes paralleled the progressive development of amebic cecal lesions. Early in the infection (5 to 10 days PI) mesenteric lymph nodes showed cortical follicle hyperplasia, blastogenesis in the paracortical areas (PCA) and intense lymphoblast and plasma cell activity in the medullary cords. At 20 to 30 days PI, the cortical follicles, the PCA and the medulla were depleted of lymphocytes and there was histiocytosis throughout the organ. At 60 days PI, lymphocyte repopulation took place in the PCA, and cortical follicles had active germinal centers. Spleen follicles did not increase in number as the infection progressed, but became hyperplastic. Antibody titers to ameba were low throughout the cecal infection but rose whenever amebic metastasis to the liver occurred. The results of this study indicate that lymphocytes from the submucosal lymphoid follicles and the draining lymph nodes may control the pathogenesis of the infection. Lymphoreticular tissue alterations could result from antigenic stimulation and migration of cells to the sites of infection.  相似文献   

11.
Although about 70% of rat thoracic duct small lymphocytes labeled readily in vitro with 3H-uridine, only 3–38% of peritoneal exudate lymphocytes labeled. Since exudate cells are mostly B lymphocytes, 3H-uridine in concentrations used were presumed to label the T lymphocyte. Percentages of small lymphocytes that labeled in cell suspensions from various tissues were consistent with other estimates of T cells in those sources: 74.7% in thoracic duct, 70.2% in blood and 65.6% in spleen. When lymphopenia was induced by polyethylene 32P strips applied to the spleen, a procedure that depletes mostly small recirculating lymphocytes, both labeled (T) and nonlabeled (B) cells were depleted in similar time sequence. Both cell types recovered at a similar rate after the spleen strips were removed. Induction of peritoneal inflammation by PPD in tubercle-bacilli immune rats caused an enhanced lymphocytic exudation but no increase in percentage of labeled (T) lymphocytes.The defect in 3H-uridine incorporation that characterizes the rat B lymphocyte seemed to be relatively specific for that RNA precurser; 3H-cytidine labeled the majority of lymphocytes in peritoneal exudate.  相似文献   

12.
The migration of lymphocytes from the blood into the splenic pulp and the release of lymphocytes from the spleen into the blood was studied by isolating the rat spleen and perfusing it with 15 ml of recirculating, oxygenated blood. When thoracic duct lymphocytes labelled with tritiated uridine were added to the initial perfusate the concentration of these cells fell exponentially for 2–3 hr and then rose to a flat secondary peak. From this pattern it was inferred that small lymphocytes entered the spleen at a rate proportional to their instantaneous concentration in the perfusate, traversed the splenic pulp and re-entered the perfusate with a minimum transit time of 2–3 hr. The rate of release of small lymphocytes from the spleen was not influenced by the prevailing concentration of small lymphocytes in the perfusate but probably reflected the rate of migration into the spleen over a period earlier than 2 hr before. The rate of exchange of small lymphocytes between the blood and the intact spleen in vivo was estimated to be about 84 × 106 cells/hr. The size of the intrasplenic pool of recirculating small lymphocytes was probably 400–500 × 106 cells. The rate of migration of small lymphocytes into the spleen was not affected by prior irradiation of the spleen donor. When either of two antigenic materials were added to the perfusate no inhibition of lymphocyte migration into the spleen was noted although the release of lymphocytes from the spleen was diminished by the addition of a large dose of sheep erythrocytes.  相似文献   

13.
In terms of certain immune functions and density of surface IgM, B cells from xid mice are often viewed as the equivalent of the immature (Lyb-5-) B cell subset of normal adult mice. In this paper we examine xid B cells with regard to certain physiologic functions, including homing to the lymphoid tissues, recirculation, and turnover. Xid mice were found to possess about one-third of the total number of B cells found in normal mice. This applied irrespective of whether one examined the spleen, lymph nodes, or outputs of B cells in thoracic duct lymph. In terms of migration to spleen, lymph nodes, and Peyer's patches, capacity to recirculate from blood to thoracic duct lymph, and turnover, xid B cells proved to be indistinguishable from normal spleen or thoracic duct B cells. Within these parameters, most xid B cells closely resemble the normal mature long-lived population of B cells residing in the recirculating pool of normal mice. Because xid B cells are functionally quite different from normal mature B cells, it seems reasonable to view xid B cells as an abnormal population not represented in normal mice.  相似文献   

14.
Previous studies have demonstrated that macrophage-like cells transporting antigen, e.g., human serum albumin (HSA) appear in thoracic duct lymph and blood shortly after antigen injection. The in vivo migration of these antigen-laden (Ag-L) cells from the blood stream was examined systematically by transferring Ag-L cells bearing 125I-labelled HSA into syngeneic rats. There was no evidence autoradiographically that Ag-L cells migrated into lymph nodes, but the localization in the spleen followed a defined pattern: within the first hours after transfer, a majority of radiolabelled cells were identified in the marginal zone; by 3 hr and up to 4 days later, 60–80% of labelled cells were resident in the red pulp; Ag-L cells failed to migrate into the white pulp in significant numbers. Ag-L cells which had localized to the spleen, when examined 3 and 18 hr after transfer using combined autoradiography and immunoperoxidase staining, did not express la determinants in situ. The ability of Ag-L cells to stimulate an adoptive secondary response was tested in splenectomized, irradiated recipients receiving HSA-specific memory cells. Removal of the spleen before transfer severely reduced the antibody response evoked by Ag-L cells transporting HSA, thus indicating the functional importance of antigen transport to the spleen. Since Ag-L cell migration was primarily into the red pulp, we have considered whether the red pulp may provide a relevant microenvironment for lymphocyte/ antigen interaction.  相似文献   

15.
The density of surface immunoglobulin on small lymphocytes in the bone marrow and other lymphoid tissues has been compared by radioautographic measurements of antiglobulin binding.Cell suspensions from CBA mice were exposed to 125I-labeled rabbit anti-mouse globulin in a wide range of concentrations for 30 min at 0 °C. With increasing concentration of antiglobulin-125I the percentage of labeled antiglobulin-binding small lymphocytes in spleen and lymph node suspensions reached well-defined plateau levels. Very few normal or cortisone-resistant thymus cells were labeled under identical conditions. Bone marrow small lymphocytes showed a linear increment in labeled cells throughout the antiglobulin-125I dose range, their labeling intensity varied widely, and approximately one half remained unlabeled at high antiglobulin-125I concentrations. In 6 wk-old congenitally athymic mice the bone marrow small lymphocyte labeling pattern resembled that in CBA mice, while nearly all (91–97%) small lymphocytes in lymph nodes, thoracic duct lymph and blood, and 75% of those in the spleen, became labeled under plateau conditions. Treatment of cells from 10 wk-old CBA mice with AKR anti-θ C3H serum and complement resulted in almost complete (93%) antiglobulin-labeling of residual small lymphocytes from the spleen but had little effect on bone marrow lymphocyte labeling. Under germfree conditions the proportion of antiglobulin-binding small lymphocytes was slightly elevated in all lymphoid tissues of CBA mice.The results demonstrate that many of the small lymphocytes in mouse bone marrow have readily detectable surface immunoglobulin molecules which vary considerably in density from cell to cell, while others neither have detectable surface immunoglobulin, nor are they θ-bearing, thymus-dependent or recirculating cells. The concept of bone marrow small lymphocytes as a maturing cell population is discussed.  相似文献   

16.
Radioactively labelled thoracic duct lymphocytes from syngeneic rat donors were injected iv into recipients which had been given a continuous iv infusion of prednisolone at 1 mg/hr for 15–18 hr previously. The tissue distribution and recirculation into lymph of the labelled lymphocytes were compared quantitatively in the prednisolone-treated and control recipients by scintillation counting and autoradiography. The most prominent effect of prednisolone was to retard recirculating lymphocytes within the tissues to which they are normally distributed by the blood, namely the bone marrow, the spleen, and the lymph nodes. Although lymphocyte traffic was almost completely frozen by prednisolone, recirculating lymphocytes were not killed. A second effect of prednisolone was to impair the influx of lymphocytes from the blood into lymph nodes. Different groups of lymph nodes varied in the extent to which prednisolone inhibited the entry of lymphocytes, and previous antigenic stimulation completely exempted lymph nodes from this inhibition. Lymphocytes took a longer time to cross the walls of high endothelial venules in the lymph nodes of prednisolone-treated rats. A third effect of prednisolone was to increase the rate at which lymphocytes entered the bone marrow from the blood by crossing sinusoidal endothelium.  相似文献   

17.
Adhesion of lymphocytes to high endothelial venule (HEV) cells is the first step in the migration of these cells from blood into lymph nodes and Peyer's patches (PP). In the present study, we isolated and cultured HEV cells from PP of the rat and assessed their capacity to interact with lymphocytes. Flow cytometric analysis with a rat HEV-specific mAb KJ-4 revealed that greater than 90% of the cultured cells were stained by the antibody. Furthermore, confluent monolayers of PP HEV cells retained the capacity to support the adhesion of lymphocytes from spleen, thoracic duct, and lymph nodes but not binding of immature cells from thymus and bone marrow, which are deficient in cells capable of binding to HEV in vivo. In addition, intraepithelial lymphocytes that preferentially migrated into mucosal lymphoid tissues were also enriched in cells that adhered to the endothelial monolayers. The binding process required energy, was calcium-dependent, and could be inhibited by cytochalasin D, trypsin, and mixed glycosidase. Interestingly, pretreatment of PP HEV cells with rTNF, IFN-gamma, or granulocyte-macrophage CSF significantly increased the endothelial adhesiveness for thoracic duct lymphocytes in a time- and dose-dependent manner. In contrast, stimulation of lymphocytes with phorbol ester or TNF resulted in the rapid modulation of the surface expression of the PP homing receptor and decrease in lymphocyte binding to normal or TNF-stimulated HEV cells. The adhesion of lymphocytes to normal or cytokine-stimulated HEV cells can be blocked by pretreatment of lymphocytes, but not HEV cells, with the PP homing receptor-specific 1B.2.6 antibody. Taken together, these experiments provide strong evidence that the interaction between lymphocytes and cultured HEV cells are mediated by adhesive mechanisms that regulate lymphocyte entry into PP in vivo and that cytokines can promote HEV adhesiveness for lymphocytes through increased expression of organ-specific ligands on HEV cells.  相似文献   

18.
High endothelial venules of the lymph nodes express Fas ligand.   总被引:1,自引:0,他引:1  
Fas (CD95, APO-1) is widely expressed on lymphatic cells, and by interacting with its natural ligand (Fas-L), Fas induces apoptosis through a complex caspase cascade. In this study we sought to survey Fas-L expression in vascular and sinusoidal structures of human reactive lymph nodes. Immunohistochemical Fas-L expression was present in all paracortical high endothelial venules (HEVs), in cells lining the marginal sinus wall, and in a few lymphocytes, but only occasionally in non-HEV vascular endothelium. In the paracortical zone over 60% of all vessels and all paracortical HEVs showed Fas-L expression, whereas in the medullary zone less than 10% of the blood vessels were stained with Fas-L. Normal vessels outside lymph nodes mostly showed no Fas-L expression. We show that in human reactive lymph nodes Fas-L expression is predominantly present in HEVs. Because the circulating lymphocytes gain entry to nodal parenchyma by transendothelial migration through HEVs, the suggested physiological importance of Fas-L expression in these vessels lies in the regulation of lymphocyte access to lymph node parenchyma by possibly inducing Fas/Fas-L mediated apoptosis of activated Fas-expressing lymphoid cells. The Fas-L expressing cells in the marginal sinus might have a similar function for cells accessing the node in afferent lymph.  相似文献   

19.
A monoclonal antibody specific for rat intestinal lymphocytes   总被引:4,自引:0,他引:4  
A monoclonal antibody, RGL-1, was produced by fusion of NSI myeloma cells with spleen cells of a mouse immunized with isolated rat intraepithelial lymphocytes (IEL). SDS-PAGE analysis revealed that RGL-1 precipitated two major noncovalently bound chains of about m.w. 100,000 and 125,000, and a minor component of m.w. 200,000. Examination of both tissue sections and isolated cells indicated that RGL-1 stained the majority of the lamina propria lymphocytes and IEL but only very few cells (less than 2%) in the lymphoid organs and small numbers of lymphocytes in other mucosae. In the small intestine, RGL-1 stained lymphocytes with the helper (W3/25) as well as the cytotoxic/suppressor (OX8) phenotype. The antibody reacted with 95% of the granular IEL but with less than 0.1% of the blood large granular lymphocytes. Although mature IgA plasma cells in the lamina propria were RGL-1-, some large IgA-containing cells were weakly positive. In the gut-associated lymphoid tissues (GALT), studies combining immunofluorescence and autoradiography indicated that 56 and 73% of rapidly dividing cells of mesenteric lymph nodes and of thoracic duct lymph (TDL) stained with RGL-1, respectively. In addition, 90 to 100% of the IgA-containing blasts of MLN and 75% of those of TDL were labeled by RGL-1. In contrast, rapidly dividing cells of spleen and of peripheral lymph nodes did not stain with RGL-1. Because RGL-1 can be demonstrated on both intestinal lymphocytes and their immediate precursors in the GALT, its expression may be related to the homing of lymphocytes into the gut mucosa.  相似文献   

20.
Summary Affinity of lymphoid cells for the microenvironment of germinal centers (GC), as detectable in transfer experiments by rapid homing in spleen GC from the blood, is a capacity expressed by only a subset of lymphoid cells, in particular by those constituting a GC. However, when introduced into the blood stream, these cells do not home into GC of lymph nodes and gut-associated lymphoid tissues. To investigate further this homing inability for high endothelial venule (HEV)-containing lymphoid tissues, GC cells isolated from donor rabbit appendix were labeled in vitro with 3H-leucine and injected into an afferent lymph vessel of recipient popliteal lymph nodes. Draining lymph nodes were removed 15 min to 24 h after cell administration and prepared for radioautography. For reference, the migration of cells isolated from Peyer's patches and thoracic duct lymph was also studied. By use of appendix GC cells, large numbers of labeled cells were found to migrate into GCs of the outer cortex centripetally, i.e., from the subcapsular sinus through the lymphocyte corona into the GC proper. The same was observed for cells from Peyer's patches, although in smaller numbers. Thoracic duct lymphocytes were only localized in the lymphocyte corona and the deep cortex. Thus, appendix GC cells and a subpopulation of cells from Peyer's patches can reach lymph node GC, but only when administered intralymphatically. We conclude that cells expressing affinity for the GC microenvironment do so for both spleen and lymph node GC, but do not have the capacity to interact with the wall of HEV; its implication for the understanding of the dynamics of a GC reaction is discussed.Abbreviations GC germinal center - GCC germinal-center cells - AGCC appendix germinal-center cells - GCPC germinal-center precursor cells - GCSC germinal-center seeking cells - HEV high endothelial venules - SRBC sheep red blood cells - PP Peyer's patch - TDL thoracic duct lymphocytes - NCS newborn calf serum - PBS phosphate-buffered saline - PNA peanut agglutinin - LN lymph node - LC lymphocyte corona - DC deep cortex unit  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号