首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Microbial communities found on the surface of overwintering plants may be exposed to low temperatures as well as multiple freeze-thaw events. To explore the adaptive mechanisms of these epiphytes, with the objective of identifying products for freeze-protection, enrichment libraries were made from frost-exposed leaves. Of 15 identified bacteria from 60 individual clones, approximately half had ice-association activities, with the great majority showing high freeze-thaw resistance. Isolates with ice nucleation activity and ice recrystallization inhibition activity were recovered. Of the latter, two (Erwinia billingiae J10, and Sphingobacterium kitahiroshimense Y2) showed culture and electron microscopic evidence of motility and/or biofilm production. Mass spectrometric characterization of the E. billingiae extracellular polymeric substance (EPS) identified the major proteins as 35 kDa outer membrane protein A and F, supporting its biofilm character. The addition of the EPS preparation increased the freeze-thaw survival of the more susceptible bacteria 1000-10000 times, and protection was at least partially dependent on the protein component.  相似文献   

2.
During bacterial vaginosis (BV), populations of lactobacilli which are generally dominant in the vagina of overtly healthy women are replaced by other facultative and anaerobic microorganisms. Some Lactobacillus strains produce hydrogen peroxide and all produce lactic acid; however, the antagonistic role of these metabolites in vivo remains controversial. Positive interactions among BV-associated organisms may contribute to the pathogenesis of BV and its sequelae.  相似文献   

3.
Zotz G  Mikona C 《Annals of botany》2003,91(3):353-359
Gas exchange of the understorey epiphyte Aspasia principissa was studied in fluctuating light conditions both in the laboratory and in the field, testing the hypothesis that vascular epiphytes differ from most terrestrial understorey plants in showing a higher priority for water conservation. Consequently, a slow response of stomatal conductance to sudden increases in incident photon flux density (PFD) was expected, as was a fast loss of induction after such a light fleck. Results were only partly consistent with these expectations. Full induction of photosynthesis was indeed very slow and was not reached before, respectively, 40 and 60 min of saturating PFD in the field and the laboratory. In contrast, kinetics of induction loss were comparable with those of most terrestrial species studied to date. The overall impact of light flecks on in situ carbon gain again fulfilled expectations, being rather limited: the observed carbon gain was only approx. 66% of the potential carbon gain estimated from a square-wave response model. It is concluded that in the drought-prone epiphytic habitat of a moist lowland forest, water conservation takes priority over carbon gain, which severely limits the use of light flecks for CO(2) fixation in vascular epiphytes.  相似文献   

4.
Antibodies were raised against the InaW protein, the product of the ice nucleation gene of Pseudomonas fluorescens MS1650, after protein isolation from an Escherichia coli clone. On Western blots (immunoblots), these antibodies recognized InaW protein and InaZ protein (the ice nucleation gene product of Pseudomonas syringae S203), produced by both E. coli clones and the source organisms. The InaZ protein appeared in P. syringae S203 during stationary phase; its appearance was correlated with the appearance of the ice nucleation-active phenotype. In contrast, the InaW protein occurred at relatively constant levels throughout the growth phases of P. fluorescens MS1650; the ice nucleation activity was also constant. Western analyses of membrane preparations of P. syringae PS31 and Erwinia herbicola MS3000 with this antibody revealed proteins which were synthesized with development of the nucleating phenotype. In these species the presence or absence of the nucleating phenotype was controlled by manipulation of culture conditions. In all nucleation-positive cultures examined, cross-reacting low-molecular-weight bands were observed; these bands appeared to be products of proteolytic degradation of ice nucleation proteins. The proteolysis pattern of InaZ protein seen on Western blots showed a periodic pattern of fragment sizes, suggesting a highly repetitive site for protease action. A periodic primary structure is predicted by the DNA sequence of the inaZ gene.  相似文献   

5.
Over 400 species of three genera of Rubiaceae and one genus of Myrsinaceae reportedly have bacterial leaf nodules. Light and/or electron microscope studies of a few species have shown that bacteria exist in spaces within buds filled with mucilage secreted by glands. These bacteria enter substomatal chambers (Rubiaceae) or marginal hydathodes (Myrsinaceae) and establish short-lived colonies, in intercellular spaces, that die out almost before full leaf expansion. Bacteria occur in seeds between endosperm and embryo, but only two studies have followed bacteria into flowers and ovules. Previous work on the physical relations of bacteria and host plants is discussed critically. Reviewing work done on isolation and identification of presumed endophytes leads to the conclusion that there is no agreement whether one or several bacterial taxa are the endophyte, and no unambiguous identifications, although four genera are suggested as possibilities. Nitrogen fixation was considered as the bacterial contribution until quite recently, but a review of such studies reveals that fixation has been detected almost exclusively in isolated presumed endophytes, whereas almost all studies involving the bacterium in intact leaves have failed to detect nitrogen fixation. Studies of particular substances (besides combined nitrogen) contributed by the endophyte have been inconclusive, although the most recent works suggest that cytokinins are involved. Host plants lacking the endophyte have been reportedly produced many times, either spontaneously or by seed treatment. Such “cripples”, used for several aspects of symbiosis study, frequently revert to a nodulated condition, and a more reliable method of producing them is needed. Tissue culture may offer the best potential, but this approach has not yet produced whole bacteria-free plants. A proposed scheme for the evolution of the symbiosis suggests that a variety of bacteria entered buds first, and only in rare instances were compatible with the host bud mucilage. In a few of these cases, specific bacteria, compatible with the microenvironment, contributed a useful substance to the host, and bud mucilage and those bacteria co-evolved until large numbers of bacteria thrived in the buds. Nodules may have resulted from accidental entry of bacteria into leaves, with the possibility that some host plant nodules are merely pathogenic responses, whereas in others the bacteria are beneficial and further selection has resulted in numerous, regularly produced nodules. This review deals with taxonomy of host plants and endophytes, morphology of the symbiosis, its physiology, and speculation on the evolution of the symbiosis.  相似文献   

6.
A diverse array of bacterial species, including several potential human pathogens, was isolated from edible crabs collected in cold waters. Crabs collected near Kodiak Island, Alaska, contained higher levels of bacteria than crabs collected away from regions of human habitation. The bacteria associated with the crabs collected near Kodiak included Yersinia enterocolitica, Klebsiella pneumoniae, and coagulase-negative Staphylococcus species; the pathogenicity of these isolates was demonstrated in mice. Although coliforms were not found, the bacterial species associated with the tissues of crabs collected near Kodiak indicate possible fecal contamination that may have occurred through contact with sewage. Compared with surrounding waters and sediments, the crab tissues contained much higher proportions of gram-positive cocci. As revealed by indirect plate counts and direct scanning electron microscopic observations, muscle and hemolymph tissues contained much lower levels of bacteria than shell and gill tissues. After the death of a crab, however, the numbers of bacteria associated with hemolymph and muscle tissues increased significantly. Microcosm studies showed that certain bacterial populations, e.g., Vibrio cholerae, can be bioaccumulated in crab gill tissues. The results of this study indicate the need for careful review of waste disposal practices where edible crabs may be contaminated with microorganisms that are potential human pathogens and the need for surveillance of shellfish for pathogenic microorganisms that naturally occur in marine ecosystems.  相似文献   

7.
To document and analyze the ecosystem response to acidification and possible concurrent heavy metal enrichment process, a detailed paleoecological study was conducted in Lake 817, a small, and sensitive, second order lake, in insular Newfoundland. The inferred pH history of the lake was recreated using the region-specific equation relating fossil diatom taxa to pH. The profile demonstrated a fairly stable pH history over the bottom 22 cm of the sediment core with an appreciable pH decline in the upper 5 cm. The decrease of inferred pH began in the 1930's (ca. 1931 to 1944) and the lowest inferred pH value (5.3) was observed in the surface stratum. The decreasing pH trend (0.4 unit; 5.7 to 5.3) between ca. 1931 and 1985 correlated well with changes in sediment chemistry. Major elements (P, Mg, Ca, Na, and K) showed significant decrease in deposition primarily in the upper 3 cm level (ca. 1944). The profiles of selected metals (Fe, Mn, Cr, Cu, Zn, Pb, Co, Hg, As, and Ni) indicated that the deposition of these elements increased noticeably, primarily in the upper 3 cm level. The enrichment of Pb began earlier, about 50 years ago (1931 to 1944). The stratigraphy of fossil pigments (chlorophyll derivatives and total carotenoids) demonstrated a general trend of increasing accumulation upwards in the core while the only significant decrease in pigments was observed in the recent strata (ca. between 1957 to 1985). The most dramatic decrease of primary production occurred during ca. 1957 to 1974 period and this phenomenon was associated with increased levels of heavy metals. It seems that primary production in oligotrophic, acidifying lakes in Newfoundland is controlled more by nutrients loading and the possible toxicological effects of heavy metals, than directly by water acidity.  相似文献   

8.
In a screening by multilocus sequence analysis of Pseudomonas strains isolated from diverse origins, 4 phylogenetically closely related strains (FBF58, FBF102T, FBF103, and FBF122) formed a well-defined cluster in the Pseudomonas syringae phylogenetic group. The strains were isolated from citrus orchards in northern Iran with disease symptoms in the leaves and stems and its pathogenicity against citrus plants was demonstrated. The whole genome of the type strain of the proposed new species (FBF102T = CECT 9164T = CCUG 69273T) was sequenced and characterized. Comparative genomics with the 14 known Pseudomonas species type strains of the P. syringae phylogenetic group demonstrated that this strain belonged to a new genomic species, different from the species described thus far. Genome analysis detected genes predicted to be involved in pathogenesis, such as an atypical type 3 secretion system and two type 6 secretion systems, together with effectors and virulence factors. A polyphasic taxonomic characterization demonstrated that the 4 plant pathogenic strains represented a new species, for which the name Pseudomonas caspiana sp. nov. is proposed.  相似文献   

9.
The recently discovered ubiquity of the plant pathogen Pseudomonas syringae in headwaters and alpine ecosystems worldwide elicits new questions about the ecology of this bacterium and subsequent consequences for disease epidemiology. Because of the major contribution of snow to river run-off during crop growth, we evaluated the population dynamics of P.syringae in snowpack and the underlying leaf litter during two years in the Southern French Alps. High population densities of P.syringae were found on alpine grasses, and leaf litter was identified as the main source of populations of P.syringae in snowpack, contributing more than the populations arriving with the snowfall. The insulating properties of snow foster survival of P.syringae throughout the winter in the 10 cm layer of snow closest to the soil. Litter and snowpack harboured populations of P.syringae that were very diverse in terms of phenotypes and genotypes. Neither substrate nor sampling site had a marked effect on the structure of P.syringae populations, and snow and litter had genotypes in common with other non-agricultural habitats and with crops. These results contribute to the mounting evidence that a highly diverse P.syringae metapopulation is disseminated throughout drainage basins between cultivated and non-cultivated zones.  相似文献   

10.
Pseudomonas syringae pv. actinidiae is the causal agent of bacterial canker of green-fleshed kiwifruit (Actinidia deliciosa) and yellow-fleshed kiwifruit (A. chinensis). A recent, sudden, re-emerging wave of this disease has occurred, almost contemporaneously, in all of the main areas of kiwifruit production in the world, suggesting that it can be considered as a pandemic disease. Recent in-depth genetic studies performed on P. syringae pv. actinidiae strains have revealed that this pathovar is composed of four genetically different populations which, to different extents, can infect crops of the genus Actinidia worldwide. Genome comparisons of these strains have revealed that this pathovar can gain and lose the phaseolotoxin gene cluster, as well as mobile genetic elements, such as plasmids and putative prophages, and that it can modify the repertoire of the effector gene arrays. In addition, the strains currently causing worldwide severe economic losses display an extensive set of genes related to the ecological fitness of the bacterium in planta, such as copper and antibiotic resistance genes, multiple siderophore genes and genes involved in the degradation of lignin derivatives and other phenolics. This pathogen can therefore easily colonize hosts throughout the year. TAXONOMY: Bacteria; Proteobacteria, gamma subdivision; Order Pseudomonadales; Family Pseudomonadaceae; Genus Pseudomonas; Pseudomonas syringae species complex, genomospecies 8; Pathovar actinidiae. MICROBIOLOGICAL PROPERTIES: Gram-negative, aerobic, motile, rod-shaped, polar flagella, oxidase-negative, arginine dihydrolase-negative, DNA 58.5-58.8 mol.% GC, elicits the hypersensitive response on tobacco leaves. HOST RANGE: Primarily studied as the causal agent of bacterial canker of green-fleshed kiwifruit (Actinidia deliciosa), it has also been isolated from yellow-fleshed kiwifruit (A. chinensis). In both species, it causes severe economic losses worldwide. It has also been isolated from wild A. arguta and A. kolomikta. DISEASE SYMPTOMS: In green-fleshed and yellow-fleshed kiwifruits, the symptoms include brown-black leaf spots often surrounded by a chlorotic margin, blossom necrosis, extensive twig die-back, reddening of the lenticels, extensive cankers along the main trunk and leader, and bleeding cankers on the trunk and the leader with a whitish to orange ooze. EPIDEMIOLOGY: Pseudomonas syringae pv. actinidiae can effectively colonize its host plants throughout the year. Bacterial exudates can disperse a large amount of inoculum within and between orchards. In the spring, temperatures ranging from 12 to 18 °C, together with humid conditions, can greatly favour the multiplication of the bacterium, allowing it to systemically move from the leaf to the young shoots. During the summer, very high temperatures can reduce the multiplication and dispersal of the bacterium. Some agronomical techniques, as well as frost, wind, rain and hail storms, can contribute to further spreading. DISEASE CONTROL: An integrated approach that takes into consideration precise scheduled spray treatments with effective and environmentally friendly bactericides and equilibrated plant nutrition, coupled with preventive measures aimed at drastically reducing the bacterial inoculum, currently seems to be the possible best solution for coexistence with the disease. The development of resistant cultivars and pollinators, effective biocontrol agents, including bacteriophages, and compounds that induce the systemic activation of plant defence mechanisms is in progress. USEFUL WEBSITES: Up-to-date information on bacterial canker research progress and on the spread of the disease in New Zealand can be found at: http://www.kvh.org.nz. Daily information on the spread of the disease and on the research being performed worldwide can be found at: http://www.freshplaza.it.  相似文献   

11.
The lifeform and the biological production of pure stands ofEichhornia azurea Kunth in three lakes in tropical Brazil were studied. The lifeform ofE. azurea is termed ‘semi-emergent’, because the plant has well developed trailing stems just under the water, and the aerial lamina emerges with the thick petiole. The density of shoot apices was 9.9, 17.2 and 17.1 m−2 in Lake Dom Helvecio, Lake Jacaré and Lake Carioca, respectively. The mean daily increment of the apical shoot biomass was between 1.8 and 4.8 g m−2 day−1. The mean leaf life-span in Lake Dom Helvecio, Lake Jacaré and Lake Carioca was estimated to be 78, 49 and 64 days in the wet season and 73, 70 and 73 days in the dry season, respectively. The stem life-span was estimated to be about 28 months. Starch content in the current years' stem ranged from 24 to 118 mg g−1 dry matter with fluctuations, the amplitude of which decreased with age. The differences for most of the growth parameters, such as density of shoot apices, daily increment of biomass and leaf life-span, between dry and wet season are smaller than those among the three lakes. Both the decrease in daily dry matter production and the increase in leaf life-span occurred in order from Lake Dom Helvecio to Lake Jacaré and Lake Carioca. The low productivity ofE. azurea is considered to be related to a low leaf area index, a long time interval for the emergence of new leaves, long leaf life-span and a low capacity for branching.  相似文献   

12.
Distribution of Pseudomonas aeruginosa in a riverine ecosystem.   总被引:4,自引:3,他引:1       下载免费PDF全文
The distribution of Pseudomonas aeruginosa in navigation pool 8 of the upper Mississippi River was investigated by acetamide broth enrichment of water, sediment, and swab (solid-water interface) samples. Among the 152 P. aeruginosa isolates, serological type 1 was most prevalent (34.2%), and a small number (13.2%) showed carbenicillin resistance. Pigmentation was variable, with only 44.7% elaborating typical blue-green pigment. P. aeruginosa was most commonly isolated from sediment, with solid-water interfaces (aufwuchs samples) also exhibiting high frequencies of isolation. Current velocity, oxygen and nutrient availability, surface tension, desiccation, and negative phototropism were important factors in the riverine distribution of this epibacterium.  相似文献   

13.
Stranglers must undergo a transformation in growth form from epiphyte to tree to become reproductive mature and thus require developmental and/or physiological plasticity to cope with radical changes in their rooting environment. Differences in leaf structure and water relations between epiphytic-phase and free-standing individuals were marked in the five Ficus species examined. Epiphytic Ficus had several-fold higher specific leaf area (cm2 g?1) and 2- to 4-fold lower stomatal densities than conspecific trees. Osmotic potentials at full saturation were, on average, 0-6 MPa higher (less negative) and the bulk modulus of elasticity approximately 50% lower in epiphytic plants than in conspecific trees. This resulted in leaves of epiphytic and tree individuals losing turgor at approximately the same relative water content, hut at a substantially higher leaf water potential in the epiphytic plants. In contrast, differences in leaf structure and water relations between epiphytes and trees of Clusia minor and Coussapoa villosa were small. In greenhouse experiments, alteration of the water and nutrient supply to epiphytic F. tuerckheimmii plants did not lead to significant changes in leaf structure.  相似文献   

14.
The effect of simultaneous treatment with heat-killed and live bacteria on the responses of two pea cultivars, Early Onward and Hurst Green Shaft, to inoculation with two races, 1 and 2, of Pseudomonas syringae pv. pisi was investigated. Simultaneous application induced resistance in pea to the bacterial pathogen. The level of resistance response elicited in the host increased with increasing number of heat-killed cells in the inoculum. Heat-killed cells of neither race elicited the hypersensitive reaction. No symptoms were induced in plants of either cultivar from treatment of control plants with sterile distilled water or from treatment with heat-killed bacterial cells only. Simultaneous treatment with heat-killed and inoculation with live bacteria did not have any apparent effect on the trend of bacterial multiplication in vivo.  相似文献   

15.
16.
The extremely large number of leaves produced by terrestrial and aquatic plants provide habitats for colonization by a diversity of microorganisms. This review focuses on the bacterial component of leaf microbial communities, with emphasis on Pseudomonas syringae—a species that participates in leaf ecosystems as a pathogen, ice nucleus, and epiphyte. Among the diversity of bacteria that colonize leaves, none has received wider attention than P. syringae, as it gained notoriety for being the first recombinant organism (Ice P. syringae) to be deliberately introduced into the environment. We focus on P. syringae to illustrate the attractiveness and somewhat unique opportunities provided by leaf ecosystems for addressing fundamental questions of microbial population dynamics and mechanisms of plant-bacterium interactions. Leaf ecosystems are dynamic and ephemeral. The physical environment surrounding phyllosphere microbes changes continuously with daily cycles in temperature, radiation, relative humidity, wind velocity, and leaf wetness. Slightly longer-term changes occur as weather systems pass. Seasonal climatic changes impose still a longer cycle. The physical and physiological characteristics of leaves change as they expand, mature, and senesce and as host phenology changes. Many of these factors influence the development of populations of P. syringae upon populations of leaves. P. syringae was first studied for its ability to cause disease on plants. However, disease causation is but one aspect of its life strategy. The bacterium can be found in association with healthy leaves, growing and surviving for many generations on the surfaces of leaves as an epiphyte. A number of genes and traits have been identified that contribute to the fitness of P. syringae in the phyllosphere. While still in their infancy, such research efforts demonstrate that the P. syringae-leaf ecosystem is a particularly attractive system with which to bridge the gap between what is known about the molecular biology of genes linked to pathogenicity and the ecology and epidemiology of associated diseases as they occur in natural settings, the field.  相似文献   

17.
Comparative in planta studies with Pseudomonas syringae pv. syringae have established optimum conditions for disease expression in lilac in terms of inoculum concentration, host age and post-inoculation conditions (temperature and day-length). Reproducible disease reactions required an inoculum concentration exceeding the ED50, 5 × 106 cfu/ml, and a temperature for post-inoculation incubation not exceeding 19°C. A revised host range of P. syringae pv. syringae, proposed on the basis of confirmation of pathogenicity of strains to lilac, comprises 44 species from monocotyledonous and dicotyledonous plants. Nine new hosts Abelmoschus esculentus, Bromus willdenowii, Camellia sinensis, Centrosema pubescens, Citrullus lanatus, Cotoneaster sp., Cucumis melo, Populus×euramericana and Triticum aestivum, are recorded. A comparative laboratory study was made of strains of P. syringae pv. syringae using more than 30 selected biochemical and nutritional tests. The pathovar could be characterised on the basis of 11 of these which may prove to be useful determinative tests.  相似文献   

18.
1. Invaders can influence freshwater systems at the individual, population, community and ecosystem levels. Some of these impacts may be subtle or not easily predicted but they may be critical to understanding more obvious changes. Despite this, studies of impacts of freshwater invaders at several levels of ecological organisation are rare. Most commonly reported are changes in the distribution or abundance of populations after invasion, whereas documentation of impacts on ecosystem functioning, such as energy and nutrient flux, is rare. 2. Unlike most invaders, salmonids have been studied at multiple ecological levels. These fish can cause trophic cascades that result in increased algal biomass and production and are responsible for changes to energy and nutrient flux in both streams and lakes. The mechanisms behind these changes are different in the two systems and only become evident when information at the individual and population levels are considered. In streams, salmonids can alter invertebrate behaviour that suppresses grazing of periphyton. In lakes, salmonid feeding behaviour can stimulate phytoplankton by shunting nutrients from the littoral to the pelagic zone. 3. Simultaneous study at several ecological levels should yield a fuller understanding of the mechanisms underlying impacts of invading animals and plants, providing a sounder basis for predicting the impacts of freshwater invasive species. Species traits of the invaders that may be associated with particularly profound impacts include: a method of resource acquisition formerly lacking in the invaded system, a broad feeding niche that links previously unlinked ecosystem compartments, a feeding relationship with negative consequences for native strong interactors, physiological traits that enhance resource transformation and lead to high biomass, and behavioural or demographic traits that provide high resistance or resilience in the face of natural disturbances.  相似文献   

19.
Aims: To study the antagonic affect of probiotic Pseudomonas M174 on the fish pathogen Flavobacterium psychrophilum. Methods and Results: The ability of Pseudomonas M174 to inhibit the growth of Fl. psychrophilum was examined in iron‐sufficient and ‐deficient media. Possible siderophore production was also investigated. Antagonistic activity was confirmed in disease challenge experiments using a rainbow trout (Oncorhynchus mykiss) model. Adhesion of Pseudomonas M174 to fish surfaces and its ability to stimulate innate immunity was also investigated in vivo. Pseudomonas M174 antagonized Fl. psychrophilum and produced siderophores in vitro. In challenge experiments with Fl. psychrophilum, fish fed with Pseudomonas M174 had lower levels of mortalities than the controls. It was possible to find Pseudomonas M174 in the intestinal content of these fish after feeding and bathing with the probiotic, but probiotic was obtained from the gills only after feeding. Respiratory burst activity was also found to be enhanced in the M174 fed fish. Conclusions: These results suggest that M174 is a potential probiotic against Fl. psychrophilum and has several modes of action. Significance and Impact of the Study: Probiotics are a promising alternative to the use of antibiotics in aquaculture and could be a more sustainable disease control method.  相似文献   

20.
This study evaluates the bottom-up and top-down controls on epiphyte loads under low nutrient additions. Nutrients and gastropod grazers were manipulated in a field experiment conducted within a Thalassia testudinum meadow in Florida Bay, FL, USA. The effect of seagrass leaf turnover rate on epiphyte loading was also evaluated using novel seagrass short-shoot mimics that “grow,” allowing for the manipulation of leaf turnover rates. During the summer growing season and over the course of one seagrass leaf turnover period, low-level water column nutrient additions increased total epiphyte load, epiphyte chlorophyll a, and epiphyte autotrophic index. T. testudinum leaf nutrients (N and P) and leaf productivity also increased. Epiphyte loading and T. testudinum shoot biomass and productivity did not respond to a 60% mean increase in gastropod abundance. Manipulations of seagrass leaf turnover rates at minimum wintertime and maximum summertime rates resulted in a 20% difference in epiphyte loading. Despite elevated grazer abundances and increased leaf turnover rates, epiphyte loads increased with nutrient addition. These results emphasize the sensitivity of T. testudinum and associated epiphytes to low-level nutrient addition in a nutrient-limited environment such as Florida Bay.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号