首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Cell cycle phase in Dictyostelium is correlated with a different preference for either spore or stalk differentiation. Cells which start development early in the cell cycle (E cells) exhibit a strong tendency to sort to the prestalk region of slugs, while late cell cycle cells (L cells) sort to the prespore region. We investigated the expression of the cAMP chemotactic system during development of synchronized E and L cells and found that E cells exhibit cAMP-binding activity, cell surface cAMP-phosphodiesterase (mPDE) activity, and the ability to relay cAMP signals at least 2 hr earlier and to higher levels than L cells. We hypothesize that E cells are prestalk sorters because they are the first to initiate aggregation centers and respond most effectively with chemotaxis and signal relay.  相似文献   

3.
We describe rblA, the Dictyostelium ortholog of the retinoblastoma susceptibility gene Rb. In the growth phase, rblA expression is correlated with several factors that lead to 'preference' for the spore pathway. During multicellular development, expression increases 200-fold in differentiating spores. rblA-null strains differentiate stalk cells and spores normally, but in chimeras with wild type, the mutant shows a strong preference for the stalk pathway. rblA-null cells are hypersensitive to the stalk morphogen DIF, suggesting that rblA normally suppresses the DIF response in cells destined for the spore pathway. rblA overexpression during growth leads to G1 arrest, but as growing Dictyostelium are overwhelmingly in G2 phase, rblA does not seem to be important in the normal cell cycle. rblA-null cells show reduced cell size and a premature growth-development transition; the latter appears anomalous but may reflect selection pressures acting on social ameba.  相似文献   

4.
5.
Bestatin methyl ester (BME) is an inhibitor of Zn(2+)-binding aminopeptidases that inhibits cell proliferation and induces apoptosis in normal and cancer cells. We have used Dictyostelium as a model organism to study the effects of BME. Only two Zn(2+)-binding aminopeptidases have been identified in Dictyostelium to date, puromycin-sensitive aminopeptidase A and B (PsaA and PsaB). PSA from other organisms is known to regulate cell division and differentiation. Here we show that PsaA is differentially expressed throughout growth and development of Dictyostelium, and its expression is regulated by developmental morphogens. We present evidence that BME specifically interacts with PsaA and inhibits its aminopeptidase activity. Treatment of cells with BME inhibited the rate of cell growth and the frequency of cell division in growing cells and inhibited spore cell differentiation during late development. Overexpression of PsaA-GFP (where GFP is green fluorescent protein) also inhibited spore cell differentiation but did not affect growth. Using chimeras, we have identified that nuclear versus cytoplasmic localization of PsaA affects the choice between stalk or spore cell differentiation pathway. Cells that overexpressed PsaA-GFP (primarily nuclear) differentiated into stalk cells, while cells that overexpressed PsaAΔNLS2-GFP (cytoplasmic) differentiated into spores. In conclusion, we have identified that BME inhibits cell growth, division, and differentiation in Dictyostelium likely through inhibition of PsaA.  相似文献   

6.
Abstract Sporogenous mutants of Dictyostelium discoideum strain V12M2 were used to determine whether the intracellular levels of cyclic AMP or other second messengers regulate differentiation. Increasing external concentrations of cyclic AMP promoted spore formation. Caffeine and progesterone, which lower intracellular cyclic AMP levels by different mechanisms, blocked spore formation and favored stalk cell formation. In contrast, differentiation of both spore and stalk cells occurred normally in the presence of agents that disrupt calcium/calmodulin or protein kinase C-based second messenger systems. The data are in accord with the view that (1) intracellular cyclic AMP is essential for terminal differentiation of both cell types, and (2) higher levels are required for formation of spores than for stalk cells.  相似文献   

7.
Jang W  Gomer RH 《Eukaryotic cell》2011,10(2):150-155
Much remains to be understood about how a group of cells break symmetry and differentiate into distinct cell types. The simple eukaryote Dictyostelium discoideum is an excellent model system for studying questions such as cell type differentiation. Dictyostelium cells grow as single cells. When the cells starve, they aggregate to develop into a multicellular structure with only two main cell types: spore and stalk. There has been a longstanding controversy as to how a cell makes the initial choice of becoming a spore or stalk cell. In this review, we describe how the controversy arose and how a consensus developed around a model in which initial cell type choice in Dictyostelium is dependent on the cell cycle phase that a cell happens to be in at the time that it starves.  相似文献   

8.
Pre-starvation amoebae of Dictyostelium discoideum exhibit random movements. Starved cells aggregate by directed movements (chemotaxis) towards cyclic AMP and differentiate into live spores or dead stalk cells. Many differences between presumptive spore and stalk cells precede differentiation. We have examined whether cell motility-related factors are also among them. Cell speeds and localisation of motility-related signalling molecules were monitored by live cell imaging and immunostaining (a) in nutrient medium during growth, (b) immediately following transfer to starvation medium and (c) in nutrient medium that was re-introduced after a brief period of starvation. Cells moved randomly under all three conditions but mean speeds increased following transfer from nutrient medium to starvation medium; the transition occurred within 15 min. The distribution of speeds in starvation medium was bimodal: about 20% of the cells moved significantly faster than the remaining 80%. The motility-related molecules F-actin, PTEN and PI3 kinase were distributed differently in slow and fast cells. Among starved cells, the calcium content of slower cells was lower than that of the faster cells. All differences reverted within 15 min after restoration of the nutrient medium. The slow/fast distinction was missing in Polysphondylium pallidum, a cellular slime mould that lacks the presumptive stalk and spore cell classes, and in the trishanku (triA(-)) mutant of D. discoideum, in which the classes exist but are unstable. The transition from growth to starvation triggers a spontaneous and reversible switch in the distribution of D. discoideum cell speeds. Cells whose calcium content is relatively low (known to be presumptive spore cells) move slower than those whose calcium levels are higher (known to be presumptive stalk cells). Slow and fast cells show different distributions of motility-related proteins. The switch is indicative of a bistable mechanism underlying cell motility.  相似文献   

9.
The dependence of gamma-radiation-induced neoplastic transformation frequency on position in the cell cycle was measured for a human hybrid cell line (HeLa X skin fibroblast). The end point used was the induction of a tumor-associated antigen which in these cells correlates with tumorigenicity. Induction was measured in cells at G2, M, and mid-G1 phases and compared with the frequency induced in asynchronous cells. For studies of cells in G2 phase, the cells of an asynchronous population were collected for 3 h post-irradiation using the mitotic shake-off technique. For studies of cells in M and mid-G1 phases, cells were collected by mitotic harvest and then treated at the appropriate time. The data show that cells in G2 and M phase are very radiosensitive in terms of both cell killing and induction of neoplastic transformation compared to cells in mid-G1 or asynchronous populations. At a dose of 1 Gy, the transformation frequency was 10- to 20-fold higher for cells in M and G2 phase than for cells in mid-G1 or for asynchronous cells. However, the data indicate that the transformation frequencies were similar in the different phases of the cell cycle when correlated with surviving fraction. The results indicate that transformation frequency is more sensitive to changes in dose than is cell survival.  相似文献   

10.
Dictyopyrones A and B (DpnA and B), whose function(s) is not known, were isolated from fruiting bodies of Dictyostelium discoideum. In the present study, to assess their function(s), we examined the effects of Dpns on in vitro cell differentiation in D. discoideum monolayer cultures with cAMP. Dpns at 1-20 microM promoted stalk cell formation to some extent in the wild-type strain V12M2. Although Dpns by themselves could hardly induce stalk cell formation in a differentiation-inducing factor (DIF)-deficient strain HM44, both of them dose-dependently promoted DIF-1-dependent stalk cell formation in the strain. In the sporogenous strain HM18, Dpns at 1-20 microM suppressed spore formation and promoted stalk cell formation in a dose-dependent manner. Analogs of Dpns were less effective in affecting cell differentiation in both HM44 and HM18 cells, indicating that the activity of Dpns should be chemical structure specific. It was also shown that DpnA at 2-20 microM dose-dependently suppressed spore formation induced with 8-bromo cAMP and promoted stalk cell formation in V12M2 cells. Interestingly, it was shown by the use of RT-PCR that DpnA at 10 microM slightly promoted both prespore- and prestalk-specific gene expressions in an early phase of V12M2 and HM18 in vitro differentiation. The present results suggest that Dpns may have functions (1) to promote both prespore and prestalk cell differentiation in an early stage of development and (2) to suppress spore formation and promote stalk cell formation in a later stage of development in D. discoideum.  相似文献   

11.
By utilizing ultra-microtechniques, trehalase activity was followed in specific cell types during the differentiation cycle of Dictyostelium discoideum. When whole organisms were assayed, trehalase activity was found to be high in the early stages of differentiation, decreased to its lowest point at 14 h, and then increased at the end of the cycle. By microdissection of freeze-dried individuals, the activity of trehalase could be followed during the migration of pre-stalk and pre-spore cells. No activity was observed at any stage of spore cell development, whereas stalk cells showed a rapid increase in activity upon maturation. An increasing gradient of activity was found from the apex of the stalk toward the base. This localization of trehalase in stalk cells resolves some contradictory results in the literature concerning the role of the enzyme during differentiation.  相似文献   

12.
We have used two-dimensional gel electrophoresis to identify over 30 proteins which are specific to one or other of the two cell types of Dictyostelium discoideum, either at the slug stage or in mature fruiting bodies. Our results support the idea that there is a continuous developmental program that begins in prespore cells at the hemispherical mound stage (10-12 hr) and results in spore differentiation (24 hr). Prestalk differentiation, on the other hand, appeared largely unrelated to stalk differentiation, which was first detectable at the onset of culmination (18 hr). We have also used this approach to study the differentiation of stalk-only mutants and have found that the cells can switch from spore to stalk differentiation as late as 2 hr before the end of the wild-type developmental program.  相似文献   

13.
We have identified a novel gene, trishanku (triA), by random insertional mutagenesis of Dictyostelium discoideum. TriA is a Broad complex Tramtrack bric-a-brac domain-containing protein that is expressed strongly during the late G2 phase of cell cycle and in presumptive spore (prespore (psp)) cells. Disrupting triA destabilizes cell fate and reduces aggregate size; the fruiting body has a thick stalk, a lowered spore: stalk ratio, a sub-terminal spore mass and small, rounded spores. These changes revert when the wild-type triA gene is re-expressed under a constitutive or a psp-specific promoter. By using short- and long-lived reporter proteins, we show that in triA(-) slugs the prestalk (pst)/psp proportion is normal, but that there is inappropriate transdifferentiation between the two cell types. During culmination, regardless of their current fate, all cells with a history of pst gene expression contribute to the stalk, which could account for the altered cell-type proportion in the mutant.  相似文献   

14.
Chen G  Kuspa A 《Eukaryotic cell》2005,4(10):1755-1764
By generating a population of Dictyostelium cells that are in the G1 phase of the cell cycle we have examined the influence of cell cycle status on cell fate specification, cell type proportioning and its regulation, and terminal differentiation. The lack of observable mitosis during the development of these cells and the quantification of their cellular DNA content suggests that they remain in G1 throughout development. Furthermore, chromosomal DNA synthesis was not detectable these cells, indicating that no synthesis phase had occurred, although substantial mitochondrial DNA synthesis did occur in prespore cells. The G1-phase cells underwent normal morphological development and sporulation but displayed an elevated prespore/prestalk ratio of 5.7 compared to the 3.0 (or 3:1) ratio normally observed in populations dominated by G2-phase cells. When migrating slugs produced by G1-phase cells were bisected, each half could reestablish the 5.7 (or 5.7:1) prespore/prestalk ratio. These results demonstrate that Dictyostelium cells can carry out the entire developmental cycle in the G1 phase of the cell cycle and that passage from G2 into G1 phase is not required for sporulation. Our results also suggest that the population asymmetry provided by the distribution of cells around the cell cycle at the time of starvation is not strictly required for cell type proportioning. Finally, when developed together with G2-phase cells, G1-phase cells preferentially become prespore cells and exclude G2-phase cells from the prespore-spore cell population, suggesting that G1-phase cells have an advantage over G2-phase cells in executing the spore cell differentiation pathway.  相似文献   

15.
It has been previously demonstrated that the expression of an activated rasD gene in wild-type Dictyostelium cells results in formation of aggregates with multitips, instead of the normal single tips, and a block in further development. In an attempt to better understand the role of activated RasD development, we examined cell-type-specific gene expression in a strain stably expressing high levels of RasD[G12T]. We found that the expression of prestalk cell-specific genes ecmA and tagB was markedly enhanced, whereas the expression of the prespore cell-specific gene cotC was reduced to very low levels. When the fate of cells in the multitipped aggregate was monitored with an ecmA/lacZ fusion, it appeared that most of the cells eventually adopted prestalk gene expression characteristics. When mixtures of the [G12T]rasD cells and Ax3 cells were induced to differentiate, chimeric pseudoplasmodia were not formed. Thus, although the [G12T]rasD transformant had a marked propensity to form prestalk cells, it could not supply the prestalk cell population when mixed with wild-type cells. Both stalk and spore cell formation occurred in low cell density monolayers of the [G12T]rasD strain, suggesting that at least part of the inhibition of stalk and spore formation during multicellular development involved inhibitory cell interactions within the cell mass. Models for the possible role of rasD in development are discussed.  相似文献   

16.
17.
Summary During development and differentiation of the cellular slime mould Dictyostelium discoideum there appears to be a relationship between the cell cycle and cell fate: amoebae halted in G2 phase during early development differentiate into spores whereas stalk cells are formed from amoebae halted in GI phase. It is proposed that this is because a major effect of the cell cycle is to generate heterogeneity in the cell surface properties of the developing amoebae.  相似文献   

18.
Rapidly developing (rde) mutants of Dictyostelium discoideum, in which cells precociously differentiated into stalk and spore cells without normal morphogenesis, were investigated genetically and biochemically. Genetic complementation tests demonstrated that the 16 rde mutants isolated could be classified into at least two groups (groups A and C) and that the first described rde mutant FR17 (D. R. Sonneborn, G. J. White, and M. Sussman, 1963, Dev. Biol. 7, 79-93) belongs to group A. Morphological studies revealed several differences in development and final morphology between group A and group C mutants. In group A mutants, the time required for cell differentiation from vegetative cells to aggregation competent cells is reduced, whereas the time required for spore and stalk cell differentiation following the completion of aggregation is shortened in group C mutants. This suggests that group C mutants represent a new class of rde mutants and that there exist at least two mechanisms involved in regulating the timing of development in D. discoideum. Measurements of cell-associated and extracellular phosphodiesterase activities, and intracellular and total cAMP levels revealed that cAMP metabolism in both groups is significantly altered during development. Group A mutants showed precocious and excessive production of phosphodiesterase and cAMP during the entire course of development; intracellular cAMP levels in group C mutants were extremely low, and spore and stalk cell differentiation occurred without an apparent increase in these levels. Thus, while cAMP metabolism is abnormal in all the rde mutants studied, there exist several distinct types of derangement, not necessarily involving the overproduction of cAMP.  相似文献   

19.
One of theDictyostelium rasgenes,rasD,is expressed preferentially in prestalk cells at the slug stage of development and overexpression of this gene containing a G12T activating mutation causes the formation of aberrant multitipped aggregates that are blocked from further development (Reymondet al.,1986,Nature,323, 340–343). The ability of theDictyostelium rap1gene to suppress this abnormal developmental phenotype was investigated. Therap1gene and G12V activated and G10V negative mutant forms of therap1gene were independently linked to therasDpromoter and each construct used to transform M1, aDictyosteliumcell line expressing RasD[G12T]. Transformants of M1 that expressed Rap1 or Rap1[G12V] protein still formed multitipped aggregates, but most tips were able to complete development and form fruiting bodies. Cell lines showing this modified phenotype were designated ME (multitipped escape). Therap1[G10V] construct did not modify the M1 phenotype. These data suggest that overexpression of RasD[G12T] has two effects, the formation of a multitipped aggregate and a block in subsequent differentiation and that the expression of Rap1 or Rap1[G12V] reverses only the latter. Differentiation of ME cells in low density monolayers showed the identical low level of stalk and spore cell formation seen for M1 cells under the same conditions. Thus the cell autonomous defect in monolayer differentiation induced in the M1 strain was not corrected in the ME strain. Cell type-specific gene expression during the development of M1 cells is dramatically altered: prestalk cell-specific gene expression is greatly enhanced, whereas prespore-specific gene expression is almost suppressed (Louiset al.,1997,Mol. Biol. Cell,8, 303–312). During the development of ME cells,ecmA mRNA levels were restored to those seen for Ax3, andtagB mRNA levels were also markedly reduced, although not to Ax3 levels.cotCexpression in ME cells was enhanced severalfold relative to M1, although levels were still lower than those observed during the development of Ax3. The low expression ofcar1mRNA during early development of the M1 strain remained low during the development of ME cells. These data are consistent with the idea that the expression of RasD[G12T] affects two independent and temporally separated events and that only the later defect is reversed byrap1.  相似文献   

20.
Cyclic AMP and DIF-1 (1-(3,5-dichloro-2,6-dihydroxy-4-methoxyphenyl)-1-hexanone) together induce stalk cell differentiation in vitro in Dictyostelium discoideum strain V12M2. The induction can proceed in two stages: in the first, cyclic AMP brings cells to a DIF-responsive state; in the second, DIF-1 alone can induce stalk cell formation. We report here that during the DIF-1-dependent stage, cyclic AMP is a potent inhibitor of stalk cell differentiation. Addition of cyclic AMP at this stage to V12M2 cells appreciably delays, but does not prevent, stalk cell formation. In contrast, stalk cell differentiation in the more common strain NC4 is completely suppressed by the continued presence of cyclic AMP. This fact explains earlier failures to induce stalk cells in vitro in NC4. We now consistently obtain efficient stalk cell induction in NC4 by removing cyclic AMP in the DIF-1-dependent stage. Cyclic AMP also inhibits the production of a stalk-specific protein (ST310) in both NC4 and a V12M2 derivative. Adenosine, a known antagonist of cyclic AMP action, does not relieve this inhibition by cyclic AMP and does not itself promote stalk cell formation. Finally, stalk cell differentiation of NC4 cells at low density appears to require factors in addition to cyclic AMP and DIF-1, but their nature is not yet known. The inhibition of stalk cell differentiation by cyclic AMP may be important in establishing the prestalk/prespore pattern during normal development, and in preventing the maturation of prestalk into stalk cells until culmination.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号