首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 546 毫秒
1.
The effects of cysteine as an antioxidant nutrient on change in protein modification and myofibrillar proteolysis in chick myotubes by induction of oxidative stress by H2O2 treatment were investigated. Myotubes were treated for 1 h with H2O2 (1 mM). After this treatment, the H2O2 was removed and the cells were cultured in cysteine (0.1 and 1 mM) containing serum-free medium for 24 h. Protein carbonyl content as an index of protein modification and Nτ-methylhistidine release as an index of myofibrillar proteolysis were increased at 24 h after H2O2 treatment, and the increment was reduced by cysteine. Calpain, proteasome and cathepsin (B+L and D) activities were increased at 24 h after H2O2 treatment, and the increment was also reduced by cysteine. These results indicate that cysteine suppresses protein modification by oxidative stress, resulting in a decrease of protease acitivities, finally resulting in a decrease in myofibrillar proteolysis in chick myotubes.  相似文献   

2.
We previously reported that serum deprivation stimulates myofibrillar proteolysis in chick myotubes. In the present study, we examined the effect of serum deprivation on expression of the proteolytic-related genes (ubiquitin, proteasome, calpains, and cathepsin B) by real-time PCR of cDNA in chick myotubes. Myotubes were incubated with serum-free medium for 24 h. Ubiquitin and proteasome subunits (C1 and C2) and calpains (m-, mu-, and p94/calpain-3) but not cathepsin B mRNA expression were increased by serum deprivation. These results indicate that serum deprivation stimulates ubiquitin-proteasome and calpain proteolytic pathways, resulting in an increase in myofibrillar proteolysis in chick myotubes.  相似文献   

3.
We examined the effects of serum deprivation on myofibrillar proteolysis in chick myotubes. Myotubes were incubated with serum-free medium for 24 hours. N(tau)-methylhistidine release, as an index of myofibrillar proteolysis, as well as protease activities such as calpain, proteasome, and cathepsins (B+L and D) activities were increased by serum deprivation. These results indicate that serum deprivation induces calpain, proteasome, and cathepsins activities, resulting in an increase in myofibrillar proteolysis in chick myotubes.  相似文献   

4.
5.
This study was done to examine the effects of corticosterone, a glucocorticoid, on Ca2+ uptake, proteolysis, and Ca2+ channels in primary cultures of chick muscle cells, to clarify the mechanism of glucocorticoid action on muscle proteolysis. Chick muscle cells were incubated for 24 h in a medium containing corticosterone (30 ng/ml) when the cells were confluent (6 days). To examine the contribution of Ca2+ channels, nifedipine, a Ca2+ channels antagonist, was used. Ca2+ uptake measured with 45CaCl2 was increased three-fold by corticosterone, with a peak at 12 h after the treatment started. The growth of the cells estimated from the protein content and creatine kinase activity was not affected by corticosterone. Proteolysis, evaluated with [3H]tyrosine as a label of the protein and Ntau-methylhistidine release, was unchanged by corticosterone. However, the amount of easily releasable myofilament as a measure of myofibrillar disassembly in the muscle cells was increased by corticosterone, and prevented by nifedipine. These results show that corticosterone increases Ca2+ uptake and starts myofibrillar protein breakdown.  相似文献   

6.
Pseudomonas aeruginosa is a ubiquitous pathogen most typically associated with wound infections, but also the main cause of mortality in patients suffering from cystic fibrosis (CF). The ability to adapt to oxidative stress associated with host immune defense may be one mechanism by which P. aeruginosa establishes infection in the cystic fibrosis lung and eventually out-competes other pathogenic bacteria to persist into chronic infection. We utilized a proteomics approach to identify the proteins associated with the oxidative stress response of P. aeruginosa PAO1 to hydrogen peroxide and superoxide-inducing paraquat. 2-DE and MS allowed for the identification of 59 and 58 protein spots that were statistically significantly altered following H(2) O(2) and paraquat treatment, respectively. We observed a unique mass and pI pattern for alkylhydroperoxide reductase C (AhpC) that was replicated by hypothetical protein PA3529 following treatment with 10?mM H(2) O(2) . AhpC belongs to the 2-Cys peroxiredoxin family and is a redox enzyme responsible for removing peroxides in bacterial cells. MS analysis showed that PA3529 was altered by the formation of a dimer via a disulfide bond in a manner analogous to that known for AhpC, and by cysteine overoxidation to Cys-sulfonic acid (SO(3) H) postoxidative stress. PA3529 is therefore a functional AhpC paralog expressed under H(2) O(2) stress. Following paraquat-induced oxidative stress, we also observed the overabundance and likely oxidative modification of a second hypothetical antioxidant protein (PA3450) that shares sequence similarity with 1-Cys peroxiredoxins. Other induced proteins included known oxidative stress proteins (superoxide dismutase and catalase), as well as those involved in iron acquisition (siderophore biosynthesis and receptor proteins FpvA and FptA) and hypothetical proteins, including others predicted to be antioxidants (PA0848). These data suggest that P. aeruginosa contains a plethora of novel antioxidant proteins that contribute to its increased resistance against oxidative stress.  相似文献   

7.
The 20S proteasome and the 26S proteasome are major components of the cytosolic and nuclear proteasomal proteolytic systems. Since proteins are known to be highly susceptible targets for reactive oxygen species, the effect of H(2)O(2) treatment of K562 human hematopoietic cells toward the activities of 20S and 26S proteasomes was investigated. While the ATP-independent degradation of the fluorogenic peptide suc-LLVY-MCA was not affected by H(2)O(2) concentrations of up to 5 mM, the ATP-stimulated degradation of suc-LLVY-MCA by the 26S proteasome began to decline at 400 microM and was completely abolished at 1 mM oxidant treatment. A combination of nondenaturing electrophoresis and Western blotting let us believe that the high oxidant susceptibility of the 26S proteasome is due to oxidation of essential amino acids in the proteasome activator PA 700 which mediates the ATP-dependent proteolysis of the 26S-proteasome. The activity of the 26S-proteasome could be recovered within 24 h after exposure of cells to 1 mM H(2)O(2) but not after 2 mM H(2)O(2). In view of the specific functions of the 26S proteasome in cell cycle control and other important physiological functions, the consequences of the higher susceptibility of this protease toward oxidative stress needs to be considered.  相似文献   

8.
Thyroid cells fall into the type of cells functioning during continuous production of high H(2)O(2) concentrations. We studied the effect of H(2)O(2)-induced oxidative stress (0.1, 1.0 and 10.0 mM) on the activities of the key steps of iodide metabolism (uptake, oxidation and organification) in thyrocytes cultivated in an organ culture. After 60 min cultivation of cells in a medium containing H(2)O(2) at concentrations of 1.0 and 10.0 mM iodide (I(-)) uptake, thyroperoxidase (TPO) activity and I(-) organification were completely inhibited. No restoration of the parameters studied was observed within the subsequent 24 h of cultivation. The inhibitory effect of 0.1 mM H(2)O(2) was reversible. Activation of I(-) uptake in the cultivated tissue and a 520-880% increase of the total I(-) content were observed after 8 and 24 h. The concentration of I(-) protein-bound fraction was raised by 220% after 24 h. A biphasic effect of 0.1 mM H(2)O(2) on TPO was observed: 76.2% and 72.2% inhibitions were seen after 2 and 8 h, respectively, whereas 40.0% enzyme activation was after 5 h. TPO activity was partially restored after 24 h and amounted to 65% of the initial value. The significant increase in the concentration of iodide protein-bound fraction, which was observed simultaneously with TPO inhibition, could be due to thyroglobulin non-enzymic iodination under H(2)O(2)-generated oxidative stress. The data obtained indicate that iodide oxidation, as a step in the biosynthesis of thyroid hormones, was most sensitive to oxidative stress activation. The impaired iodide uptake and its organification during oxidative stress can play a pathogenetic role in disturbed functions of thyroid cells.  相似文献   

9.
Muscle mass is determined between protein synthesis and protein degradation. Reduction of muscle mass leads to bedridden condition and attenuation of resistance to diseases. Moreover, bedridden condition leads to additional muscle loss due to disuse muscle atrophy. In our previous study (Sato et al. 2013), we showed that administered lysine (Lys), one of essential amino acid, suppressed protein degradation in skeletal muscle. In this study, we investigated that the mechanism of the suppressive effects of Lys on skeletal muscle proteolysis in C2C12 cell line. C2C12 myotubes were incubated in the serum-free medium containing 10 mM Lys or 20 mM Lys, and myofibrillar protein degradation was determined by the rates of 3-methylhistidine (MeHis) release from the cells. The mammalian target of rapamycin (mTOR) activity from the phosphorylation levels of p70-ribosormal protein S6 kinase 1 and eIF4E-binding protein 1 and the autophagic–lysosomal system activity from the ratio of LC3-II/I in C2C12 myotubes stimulated by 10 mM Lys for 0–3 h were measured. The rates of MeHis release were markedly reduced by addition of Lys. The autophagic–lysosomal system activity was inhibited upon 30 min of Lys supplementation. The activity of mTOR was significantly increased upon 30 min of Lys supplementation. The suppressive effect of Lys on the proteolysis by the autophagic–lysosomal system was maintained partially when mTOR activity was inhibited by 100 nM rapamycin, suggesting that some regulator other than mTOR signaling, for example, Akt, might also suppress the autophagic–lysosomal system. From these results, we suggested that Lys suppressed the activity of the autophagic–lysosomal system in part through activation of mTOR and reduced myofibrillar protein degradation in C2C12 myotubes.  相似文献   

10.
Addition of the synthetic glucocorticoid, dexamethasone (Dex) to serum-deprived C(2)C(12) myotubes elicited time- and concentration-dependent changes in N(tau)-methylhistidine (3-MH), a marker of myofibrillar protein degradation. Within 24 h, 100 nM Dex significantly decreased the cell content of 3-MH and increased release into the medium. Both of these responses had increased in magnitude by 48 h and then declined toward basal values by 72 h. The increase in the release of 3-MH closely paralleled its loss from the cell protein. Furthermore, Dex also decreased the 3-MH:total cell protein ratio, suggesting that myofibrillar proteins were being preferentially degraded. Incubation of myotubes with the peptide aldehyde, MG-132, an inhibitor of proteolysis by the (ATP)-ubiquitin (Ub)-dependent proteasome, prevented both the basal release of 3-MH (>95%) and the increased release of 3-MH into the medium in response to Dex (>95%). Northern hybridization studies demonstrated that Dex also elicited similar time- and concentration-dependent increases in the expression of mRNA encoding two components (14 kDa E(2) Ub-conjugating enzyme and Ub) of the ATP-Ub-dependent pathway. The data demonstrate that Dex stimulates preferential hydrolysis of myofibrillar proteins in C(2)C(12) myotubes and suggests that the ATP-Ub-dependent pathway is involved in this response.  相似文献   

11.
AimsApoptotic signaling proteins were evaluated in postmitotic skeletal myotubes to test the hypothesis that oxidative stress induced by H2O2 activates both caspase-dependent and caspase-independent apoptotic proteins in differentiated C2C12 myotubes. We hypothesized that oxidative stress would decrease anti-apoptotic protein levels in C2C12 myotubes.Main methodsApoptotic regulatory factors and apoptosis-associated proteins including Bcl-2, Bax, Apaf-1, XIAP, ARC, cleaved PARP, p53, p21Cip1/Waf1, c-Myc, HSP70, CuZnSOD, and MnSOD protein content were measured by immunoblots.Key findingsH2O2 induced apoptosis in myotubes as shown by DNA laddering and an elevation of apoptotic DNA fragmentation. Cell death ELISA showed increase in the extent of apoptotic DNA fragmentation following treatment with H2O2. Treatment with 4 mM of H2O2 for 24 or 96 h caused increase in Bax (56%, 227%), cytochrome c (282%, 701%), Smac/DIABLO (155%, 260%), caspase-3 protease activity (51%, 141%), and nuclear and cytosolic p53 (719%, 1581%) levels in the myotubes. As an estimate of the mitochondrial AIF release to the cytosol, AIF protein content measured in the mitochondria-free cytosolic fraction was elevated by 65% after 96 h treatment with 4 mM of H2O2. AIF measured in the nuclear protein fraction increased by 74% and 352% following treatment with 4 mM of H2O2 for 24 and 96 h, respectively. Bcl-2 declined in myotubes by 61% and 69% after 24 or 96 h of treatment in 4 mM H2O2, respectively.SignificanceThese findings indicate that both caspase-dependent and caspase-independent mechanisms are involved in coordinating the activation of apoptosis induced by H2O2 in differentiated myotubes.  相似文献   

12.
Nitric oxide (*NO) is a reactive nitrogen species known to be involved in cytotoxic processes. Cells respond to cytotoxic injury by stress response induction leading to the development of cellular resistance. This report describes an *NO-induced stress response in Chinese hamster fibroblasts (HA1), which leads to glutathione synthesis-dependent resistance to H2O2-mediated oxidative stress. The development of resistance to H2O2 was completely abolished by the inhibition of glutamate cysteine ligase (GCL) during the first 8 h of recovery after *NO exposure. Altered thiol metabolism was observed immediately after *NO exposure as demonstrated by up to 75% decrease in intracellular thiol pools (glutathione, gamma-glutamylcysteine, and cysteine), which then reaccumulated during the *NO-mediated development of resistance. Immunoreactive protein and activity associated with GCL decreased immediately after exposure to *NO and then reaccumulated during the development of resistance to H2O2 challenge. Moreover, compared to N2 controls the activity levels of GCL in *NO-exposed cells increased approximately twofold 24 h after H2O2 challenge. These results demonstrate that *NO exposure is capable of inducing an adaptive response to H2O2-mediated oxidative stress in mammalian cells, which involves alterations in thiol metabolism and is dependent upon glutathione synthesis and increased GCL activity.  相似文献   

13.
To study the influence of oxidative stress on energy metabolism and lipid peroxidation in erythrocytes, cells were incubated with increasing concentrations (0.5-10 mM) of hydrogen peroxide for 1 h at 37 degrees C and the main substances of energy metabolism (ATP, AMP, GTP and IMP) and one index of lipid peroxidation (malondialdehyde) were determined by HPLC on cell extracts. Using the same incubation conditions, the activity of AMP-deaminase was also determined. Under nonhaemolysing conditions (at up to 4 mM H2O2), oxidative stress produced, starting from 1 mM H2O2, progressive ATP depletion and a net decrease in the intracellular sum of adenine nucleotides (ATP + ADP + AMP), which were not paralleled by AMP formation. Concomitantly, the IMP level increased by up to 20-fold with respect to the value determined in control erythrocytes, when cells were challenged with the highest nonhaemolysing H2O2 concentration (4 mM). Efflux of inosine, hypoxanthine, xanthine and uric acid towards the extracellular medium was observed. The metabolic imbalance of erythrocytes following oxidative stress was due to a dramatic and unexpected activation of AMP-deaminase (a twofold increase of activity with respect to controls) that was already evident at the lowest dose of H2O2 used; this enzymatic activity increased with increasing H2O2 in the medium, and reached its maximum at 4 mM H2O2-treated erythrocytes (10-fold higher activity than controls). Generation of malondialdehyde was strictly related to the dose of H2O2, being detectable at the lowest H2O2 concentration and increasing without appreciable haemolysis up to 4 mM H2O2. Besides demonstrating a close relationship between lipid peroxidation and haemolysis, these data suggest that glycolytic enzymes are moderately affected by oxygen radical action and strongly indicate, in the change of AMP-deaminase activity, a highly sensitive enzymatic site responsible for a profound modification of erythrocyte energy metabolism during oxidative stress.  相似文献   

14.
Summary. We previously reported that L-leucine suppresses myofibrillar proteolysis in chick skeletal muscles. In the current study, we compared the effects of L- and D-enantiomers of leucine on myofibrillar proteolysis in skeletal muscle of chicks. We also assessed whether leucine itself or its metabolite, α-ketoisocaproate (α-KIC), mediates the effects of leucine. Food-deprived (24 h) chicks were orally administered 225 mg/100 g body weight L-leucine, D-leucine or α-KIC and were sacrificed after 2 h. L-Leucine administration had an obvious inhibitory effect on myofibrillar proteolysis (plasma Nτ-methylhistidine concentration) in chicks while D-leucine and α-KIC were much more effective. We also examined the expression of the proteolytic-related genes (ubiquitin, proteasome, m-calpain and cathepsin B) by real-time PCR of cDNA in chick skeletal muscles. Ubiquitin mRNA expression was decreased by D-leucine and α-KIC but not L-leucine. Proteasome and m-calpain mRNA expressions as well as cathepsin B mRNA expression were likewise decreased by L-leucine, D-leucine and α-KIC. These results indicate that D-leucine and α-KIC suppress proteolytic-related genes, resulting in an decrease in myofibrillar proteolysis while L-leucine is much less effective in skeletal muscle of chicks, may be explain by conversion of D-leucine to α-KIC.  相似文献   

15.
The high-resolution two-dimensional protein gel electrophoresis technique combined with matrix-assisted laser desorption ionization time-of-flight mass spectrometry (MALDI-TOF MS) was used to analyse the oxidative stress response in Staphylococcus aureus COL. Exponentially growing cells were supplemented with 100 mM H2O2 leading to a growth arrest lasting 30 min. The comparison of the two-dimensional pattern of cytoplasmic protein extracts of stressed and unstressed cells revealed only a few changes in the protein synthesis profile. However, the isoelectric points of Gap (glyceraldehyde-3-phosphate dehydrogenase), AhpC (alkylhydroperoxide reductase) and MvaS (HMG-CoA-synthase) changed strikingly. For analysis of the modification of Gap, tandem hybrid mass spectrometry (Q-Star) was used. The observed pI shift resulted from the oxidation to sulphonic acid of cysteine 151, which is crucial for catalytic activity. A drop in ATP and a complete inactivation of Gap was accompanied by the growth arrest. About 30 min after the addition of H2O2, the damaged Gap was still present, but a new protein spot at the original location became visible, representing the newly synthesized enzyme that is active again. This is accompanied by the restoration of Gap enzyme activity, ATP levels and recovery of growth. There is a strong correlation between growth, ATP level and Gap activity under oxidative stress conditions, indicating that the H2O2-triggered Gap inactivation might be one reason for growth arrest under these conditions. Our data indicate that the damaged Gap protein was not repaired.  相似文献   

16.
We examined the effects of orally administered glycine on myofibrillar proteolysis in food-deprived chicks. Food-deprived (24 h) chicks were orally administered 57, 113, and 225 mg glycine/100 g body weight and killed after 2 h. The plasma N(tau)-methylhistidine concentration, used as myofibrillar proteolysis, was decreased by glycine. We also examined the expression of proteolytic-related genes by real-time PCR of cDNA from chick skeletal muscles. The mRNA expression of atrogin-1/MAFbx, proteasome C2 subunit, m-calpain large subunit, and cathepsin B was decreased by glycine in a dose-dependent manner. The plasma corticosterone concentration was also decreased by glycine, but the plasma insulin concentration was unaffected. These results indicate that orally administered glycine suppresses myofibrillar proteolysis and expression of proteolytic-related genes of skeletal muscle by decreasing the plasma corticosterone concentration in chicks.  相似文献   

17.
Increasing the K+ from 5.4 mM to 12 mM in the culture medium of developing chick myotubes causes an immediate cessation of spontaneous contractions and leads to an inhibition of myosin accumulation. The synthesis of myosin continues at the same rate in 12 mM K+ as in 5.4 mM K+ as measured by [3H]leucine incorporation into myosin corrected for differences in pool specific activity. Total protein synthesis and total protein accumulation are unaffected by growth in 12 mM K+. In addition, growth in 12 mM K+ did not alter the type of myosin heavy- chain isoform expression nor did it alter the pattern of myosin light- chain synthesis. However, the rate of myosin turnover increased threefold in cultures grown in 12 mM K+ compared to cultures grown in 5.4 mM K+, while total protein turnover was only marginally increased. We conclude that suppressed electrical or contractile activity of myotubes leads to an increased rate of myofibrillar protein turnover and that spontaneous mechanical and or electrical activity is required for continued myotube maturation in culture.  相似文献   

18.
19.
For improvement of tolerance to oxidative stress in Bifidobacterium longum 105-A, we introduced the Bacillus subtilis catalase gene (katE) into it. The transformant showed catalase activity (39 U/mg crude protein) in the intracellular fraction, which increased survival by ~100-fold after a 1-h exposure to 4.4 mM H(2)O(2), decreased de novo H(2)O(2) accumulation, and increased survival in aerated cultures by 10(5)-fold at 24 h. The protection level was better than that conferred by exogenously added catalase.  相似文献   

20.
In Bacillus subtilis most peroxide-inducible oxidative stress genes are regulated by a metal-dependent repressor, PerR. PerR is a dimeric, Zn2+-containing metalloprotein with a regulatory metal-binding site that binds Fe2+ (PerR:Zn,Fe) or Mn2+ (PerR: Zn,Mn). Reaction of PerR:Zn,Fe with low levels of hydrogen peroxide (H2O2) leads to oxidation of two His residues thereby leading to derepression. When bound to Mn2+, the resulting PerR:Zn,Mn is much less sensitive to oxidative inactivation. Here we demonstrate that the structural Zn2+ is coordinated in a highly stable, intrasubunit Cys4:Zn2+ site. Oxidation of this Cys4:Zn2+ site by H2O2 leads to the formation of intrasubunit disulfide bonds. The rate of oxidation is too slow to account for induction of the peroxide stress response by micromolar levels of H2O2 but could contribute to induction under severe oxidative stress conditions. In vivo studies demonstrated that inactivation of PerR:Zn,Mn required 10 mM H2O2, a level at least 1000 times greater than that needed for inactivation of PerR:Zn,Fe. Surprisingly even under these severe oxidation conditions there was little if any detectable oxidation of cysteine residues in vivo: derepression was correlated with oxidation of the regulatory site. Because oxidation at this site required bound Fe2+ in vitro, we suggest that treatment of cells with 10 mM H2O2 released sufficient Fe2+ into the cytosol to effect a transition of PerR from the PerR:Zn,Mn form to the peroxide-sensitive PerR: Zn,Fe form. This model is supported by metal ion affinity measurements demonstrating that PerR bound Fe2+ with higher affinity than Mn2+.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号