首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
4.
Chromatin assembly factor I (CAF-I) is a multisubunit protein complex purified from the nuclei of human cells and required for chromatin assembly during DNA replication in vitro. Purified CAF-I promotes chromatin assembly in a reaction that is dependent upon, and coupled with, DNA replication and is therefore likely to reflect events that occur during S phase in vivo. In order to investigate the regulation and mechanism of CAF-I and the replication-dependent chromatin assembly process, we have used the purified protein to raise monoclonal antibodies. In this report we describe the characterization of a panel of monoclonal antibodies which recognize different subunits of the CAF-I complex. We use immunoprecipitation analysis to show that CAF-I exists as a multiprotein complex in vivo and that some of the polypeptides are phosphorylated. In addition, immunocytochemistry demonstrates that CAF-I is localized to the nucleus of human cells. Finally, monoclonal antibodies directed against the individual subunits of CAF-I immunodeplete chromatin assembly activity from nuclear extracts, confirming that CAF-I is a multisubunit protein required for chromatin assembly in vitro.  相似文献   

5.
6.
7.
8.
9.
10.
11.
Stepwise assembly of chromatin during DNA replication in vitro.   总被引:23,自引:6,他引:23  
A cell free system that supports replication-dependent chromatin assembly has been used to determine the mechanism of histone deposition during DNA replication. CAF-I, a human cell nuclear factor, promotes chromatin assembly on replicating SV40 DNA in the presence of a crude cytosol replication extract. Biochemical fractionation of the cytosol extract has allowed separation of the chromatin assembly reaction into two steps. During the first step, CAF-I targets the deposition of newly synthesized histones H3 and H4 to the replicating DNA. This reaction is dependent upon and coupled with DNA replication, and utilizes the newly synthesized forms of histones H3 and H4, which unlike bulk histone found in chromatin, do not bind to DNA by themselves. The H3/H4-replicated DNA complex is a stable intermediate which exhibits a micrococcal nuclease resistant structure and can be isolated by sucrose gradient sedimentation. In the second step, this replicated precursor is converted to mature chromatin by the addition of histones H2A and H2B in a reaction that can occur after DNA replication. The requirement for CAF-I in at least the first step of the reaction suggests a level of cellular control for this fundamental process.  相似文献   

12.
13.
S Smith  B Stillman 《Cell》1989,58(1):15-25
The purification and characterization of a replication-dependent chromatin assembly factor (CAF-I) from the nuclei of human cells is described. CAF-I is a multisubunit protein that, when added to a crude cytosol replication extract, promotes chromatin assembly on replicating SV40 DNA. Chromatin assembly by CAF-I requires and is coupled with DNA replication. The minichromosomes assembled de novo by CAF-I consist of correctly spaced nucleosomes containing the four core histones H2A, H2B, H3, and H4, which are supplied in a soluble form by the cytosol replication extract. Thus, by several criteria, the CAF-I-dependent chromatin assembly reaction described herein reflects the process of chromatin formation during DNA replication in vivo.  相似文献   

14.
15.
16.
To date, the in vivo importance of chromatin assembly factors during development in vertebrates is unknown. Chromatin assembly factor 1 (CAF-1) represents the best biochemically characterized factor promoting chromatin assembly during DNA replication or repair in human cell-free systems. Here, we identify a Xenopus homologue of the largest subunit of CAF-1 (p150). Novel dimerization properties are found conserved in both Xenopus and human p150. A region of 36 amino acids required for p150 dimerization was identified. Deletion of this domain abolishes the ability of p150 to promote chromatin assembly in vitro. A dominant-negative interference based on these dimerization properties occurs both in vitro and in vivo. In the embryo, nuclear organization was severely affected and cell cycle progression was impaired during the rapid early cleaving stages of Xenopus development. We propose that the rapid proliferation at early developmental stages necessitates the unique properties of an assembly factor that can ensure a tight coupling between DNA replication or repair and chromatin assembly.  相似文献   

17.
18.
Specificity of transcription of chromatin in vitro   总被引:6,自引:0,他引:6  
  相似文献   

19.
20.
Genetic information embedded in DNA sequence and the epigenetic information marked by modifications on DNA and histones are essential for the life of eukaryotes. Cells have evolved mechanisms of DNA duplication and chromatin restoration to ensure the inheritance of genetic and epigenetic information during cell division and development. In this review, we focus on the maintenance of epigenetic landscape during chromatin dynamics which requires the orchestration of histones and their chaperones. We discuss how epigenetic marks are re-established in the assembly of new chromatin after DNA replication and repair, highlighting the roles of CAF-1 in the process of changing chromatin state. The functions of CAF-1 provide a link between chromatin assembly and epigenetic restoration.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号