首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
N. Yasue    A. Takasuka 《Journal of fish biology》2009,74(10):2250-2268
Seasonal variability in the growth of larval Japanese anchovy Engraulis japonicus was examined through otolith microstructure analysis based on the samples collected from the northern side (inner area, IA) and the southern side (outer area, OA) of the Kii Channel from April 2006 to March 2007. Growth trajectories (otolith backcalculated mean standard length of 5 day intervals from 5 days after hatch to 24 days) as well as the most recent 5 day mean growth rate of larvae before capture ( G 5) differed among months. Growth trajectories showed the same pattern as G 5. In IA, mean ± s.d. G 5 ranged from 0·31 ± 0·04 mm day−1 (January) to 0·73 ± 0·06 mm day−1 (October). In OA, mean ± s.d. G 5 ranged from 0·36 ± 0·05 mm day−1 (January) to 0·79 ± 0·11 mm day−1 (August). G 5 values declined from November to January and then started to increase. In general, the seasonal patterns of growth were similar between IA and OA, and a clear seasonal pattern in growth was identified. When the relationships among larval growth rate, sea temperature, zooplankton density and larval density were examined, growth rate was positively related with sea temperature in both areas and not related with the other factors. The similar pattern in growth observed between IA and OA was probably due to the low spatial variability in sea temperature compared to its seasonal variability.  相似文献   

2.
A low volume (8·4 l), rectangular (cross–section) respirometer modified from a Bläzka–type coaxial circuit, which provides rectilinear flow at speeds up to 0·36 m s–1, is described.  相似文献   

3.
1. Most theories of plant strategies assume the presence of certain 'trade-offs'. One such evolutionary trade-off assumes a decrease in growth rate with increasing investment in chemical defences in species adapted to different levels of habitat fertility.
2. To test this hypothesis, we grew 31 herbaceous species of Asteraceae under controlled conditions of temperature (25 °C), humidity (80%), light (500 μmol m–2 s–1) and photoperiod (16 h day–1) in a modified Hoagland hydroponic solution. The plants grew from seed for 35 days post-germination and were harvested at 14, 21, 28 and 35 days. Relative growth rate (RGR) was calculated as well as a general measure of potential phytochemical toxicity (LC50) using an alcohol extraction of secondary compounds followed by Brine Shrimp bioassay and an assay of total phenolics.
3. The interspecific correlation between RGR and the potential phytochemical toxicity was weak and non-significant ( r S = 0·12, P = 0·53). The correlation between RGR and total phenolics was weak, positive but significant ( r S = 0·40, P = 0·03).
4. These results suggest that such an evolutionary trade-off does not exist in this group of Asteraceae.  相似文献   

4.
Since bioenergetics models for 0+ fish have seldom been validated by field consumption estimates, field-based and indirectly estimated daily food rations were compared in larval perch Perca fluviatilis and zander Stizostedion lucioperca. Field-based estimates were calculated with linear and exponential evacuation rates based on gut fullness data during a 24-h cycle, with hourly field samplings instead of the normally recommended 3-h intervals. Indirect calculations used bioenergetics modelling with variable activity multipliers ( A ). Field-based estimates of daily rations ranged between 0·21 and 0·27 g g−1 day−1 in perch (mean L T 13·1 mm) and 0·31–0·40 g g−1 day−1 in zander (mean L T 10·6 mm). The higher values were calculated by using the exponential model. Daily rations calculated by bioenergetics modelling with A = 1 were only slightly higher than direct estimates in both species. However, if A values >1 were used, calculated daily rations were substantially higher than direct estimates. Estimates of daily ration based only on every third value ranged between 41 and 72% compared with 1-h intervals, mainly because of lower estimates of evacuation rate.  相似文献   

5.
Larval and early juvenile growth was backcalculated for individual Japanese sardines Sardinops melanostictus using the biological intercept method based on the allometric relationship between otolith radii and fish lengths. Sardines grew at 0·81 mm day−1 during the larval stage. In the early juvenile stage, they grew from 32·3 to 45·4 mm fork length ( L ) over a 20-day period (0·64mm day−1). Using the observed relationship between L and wet body weight ( W ), W = 0·00942 L 2.99, W of the sardine juveniles was calculated to increase from 306 to 832 mg during the 20-day period. The carbon (C) requirement to achieve this growth in weight was estimated to increase from 5·7 to 9·6 mg day−1. Stomach contents of the sardines were composed mostly of copepods (73%) and larvaceans (25%). Wet stomach content weight ( Ws ) was expressed by a power function of the W , Ws=0·731 W 0·658. Carbon and nitrogen constituted 41·7 ± 1·5 and 10·0 ± 0·4% of the dry Ws , respectively. Stomach C content increased from 2·0 to 3·9 mg during the 20-day period. Three to four cycles of the daily turnover of stomach contents during the 16 h of daytime, corresponding to a gastric evacuation rate of 0·2–0·3 h−1 under continuous feeding, met the C requirement to achieve the backcalculated growth in early juvenile sardines. The Kuroshio frontal waters seem to provide Japanese sardine juveniles with favourable growth conditions.  相似文献   

6.
 Predawn leaf water potential, stomatal conductance and microclimatic variables were measured on 13 sampling days from November 1995 through August 1996 to determine how environmental and physiological factors affect water use at the canopy scale in a plantation of mature clonal Eucalyptus grandis Hill ex-Maiden hybrids in the State of Espirito Santo, Brazil. The simple ”big leaf” Penman-Monteith model was used to estimate canopy transpiration. During the study period the predawn leaf water potential varied from –0.4 to –1.3 MPa, with the minimum values observed in the winter months (June and August 1996), while the average estimated values for canopy conductance and canopy transpiration fell from 17.3 to 5.8 mm s–1 and from 0.54 to 0.18 mm h–1, respectively. On the basis of all measurements, the average value of the decoupling coefficient was 0.25. During continuous soil water shortage a proportional reduction was observed in predawn leaf water potential and in daily maximum values of stomatal conductance, canopy transpiration and decoupling coefficient. The results showed that water vapour exchange in this canopy is strongly dominated by the regional vapour pressure deficit and that canopy transpiration is controlled mainly by stomatal conductance. On a seasonal basis, stomatal conductance and canopy transpiration were mainly related to predawn leaf water potential and, thus, to soil moisture and rainfall. Good results were obtained with a multiplicative empirical model that uses values of photosynthetically active radiation, vapour pressure deficit and predawn leaf water potential to estimate stomatal conductance. Received: 10 June 1998 / Accepted: 20 July 1998  相似文献   

7.
The metamorphosis of Solea senegalensis was studied in larvae reared at 20° C and fed four different feeding regimes. A, Artemia (4 nauplii ml−1); B, Artemia (2 nauplii ml−1); C, mixed diet (2 nauplii ml−1 and 3 mg ml−1 microencapsulated diet); and D, microencapsulated diet (3·7 mg ml−1). Rotifers were also supplied in all cases during the first days of feeding. These feeding regimes supported different growth rates during the pre-metamorphosis period (regime A, G=0·376 day−1; regime B, G=0·253 day−1; regime C, G=0·254 day−1; regime D, G=0·162 day−1). Larvae started metamorphosis 9 days after hatching (DAH) when fed the regime A, 13 DAH with regime B, 11 DAH with regime C and 15 DAH with regime D. A minimum 5·6–5·9 mm LT was required under all feeding regimes to initiate the metamorphosis. Eye translocation was completed when the larvae reached 8·6–8·7 mm LT (regimes A, B and C), but only 7·3 mm LT with regime D. 4·4–6·2 days were required to complete eye migration under the regimes A, B and C, and 18·3 days under the regime D. This transformation is concomitant with changes in body reserves, and with the pattern of some digestive enzymes.  相似文献   

8.
When acclaimated for two months at 26 C the social Mashona mole-rat Cryptomys hottentotus darlingi (±S.D.) resting metabolic rate (RMR) of 0·98±0.·14cm2O2g -1 h-1 ( n =21), within a thermal neutral zone (TNZ) of 28 31·5 C ambient temperature (Ta). The body temperature (Tb) of the mole-rat is very low. 33·3±0·5 C, and remained stable between 25 31·5 C ( n =28). Above 33 C. Tb increased to a mean of 34·±0· C (n=28) (Ta range 33 39 C). Below Ta 25 C. Tb showed strong poikilothermic tendencies, with Tb dropping to a mean of 26·8±1·16 C. whereas above Ta25 C. Tb varied in a typically endothermic pattern. The conductance is high 0·19±0·03 cm2 O2g1 C 1 (n=28) at the lower limit of thermoneutrality. The mean RMR at 18 C (the lowest Ta tested) was 2·63 ± 0·55 cm3 O2g 1 h 1 (n=7) which is 2·6 times that of the resting metabolic rate in the TNZ.  相似文献   

9.
1. A method for quantifying interstitial water velocity based on the dissolution rate of plaster of Paris standards was developed as part of a study of vertical, longitudinal (1–4 order sites) and seasonal variation in the biotic and physical characteristics of the shallow hyporheic zone (0–30 cm) of a headwater stream system in West Virginia, U.S.A.
2. A calibration model was developed using a water velocity simulation tank to relate mass loss of plaster standards to water velocity and temperature. The model was then used to calculate water velocity through artificial substrata embedded in the shallow hyporheic zone of four stream reaches based on in situ mass loss of plaster standards.
3. Water velocity in the hyporheic zone increased with stream order, was highest in early spring and winter during high stream base flows, and decreased with depth into the substratum. There was a strong interaction between depth and season: during periods of high stream discharge, water velocity through the upper level of the shallow hyporheic zone (0–10 cm into the substrate) increased disproportionately more than velocity at greater depths. Mean interstitial velocity in March ranged from 0 cm s–1 in the lowest level (20–30 cm) to 3.5 cm s–1 at the upper level (0–10 cm) at the first‐order site, and from 2.5 cm s–1 (20–30 cm) to 9.5 cm s–1 (0–10 cm s–1) at the fourth‐order site. Gradients in stream discharge and sediment permeability accounted for treatment effects.
4. Use of calibrated data improved the ability to resolve among‐season differences in interstitial water movement over the use of uncalibrated mass loss data. For some applications of the plaster standard method, empirical calibration may not be necessary.  相似文献   

10.
The growth rate of 1980 eel Anguilla anguilla from 15 sites in the Severn system varied between 16·4 and 27·9 mm year-1, density from 0·12 to 1·14 m-2 and biomass from 2·56 to 25·24 g m-2. There was no significant relationship between growth rate and density or biomass ( P > 0·05).  相似文献   

11.
Abstract. Flux densities of water vapour and carbon dioxide were measured for a Mediterranean macchia canopy. Results show good agreement between the measured available energy and the sum of latent sensible and heat flux densities determined with the eddy correlation technique. Joint evaluation of the Bowen ratio, aerodynamic resistance, canopy resistance and the 'omega factor' suggests that the macchia canopy is intermediate in aerodynamic roughness between coniferous and deciduous canopies. Maximum daytime carbon flux densities ranged from -14 to -22(μnol m−2 s−1 on a ground area basis. The ratio of transpiration to assimilation (E/A) was a function of incident photo-synthetic photon flux density below about 400 μmol m−2s−1 and above it was fairly constant at 272 mol mol−1 (H2O/CO2). The relationship between carbon influx and canopy conductance was linear. Results show promising applications of the eddy correlation technique for evaluating physiological features of canopies, treated as unitary functional systems.  相似文献   

12.
Routine oxygen consumption rates of bonnethead sharks, Sphyrna tiburo , increased from 141·3±29·7 mg O2 kg−1 h−1 during autumn to 218·6±64·2 mg O2 kg−1 h−1 during spring, and 329·7±38·3 mg O2 kg−1 h−1 during summer. The rate of routine oxygen consumption increased over the entire seasonal temperature range (20–30° C) at a Q 10=2·34.  相似文献   

13.
Dry weight (DW) and nitrogen (N) accumulation and allocation were measured in isolated plants of Danthonia richardsonii (Wallaby Grass) for 37 d following seed imbibition. Plants were grown at ≈ 365 or 735 μ L L–1 CO2 with N supply of 0·05, 0·2 or 0·5 mg N plant–1 d–1. Elevated CO2 increased DW accumulation by 28% (low-N) to 103% (high-N), following an initial stimulation of relative growth rate. Net assimilation rate and leaf nitrogen productivity were increased by elevated CO2, while N concentration was reduced. N uptake per unit root surface area was unaffected by CO2 enrichment. The ratio of leaf area to root surface area was decreased by CO2 enrichment. Allometric analysis revealed a decrease in the shoot-N to root-N ratio at elevated CO2, while the shoot-DW to root-DW ratio was unchanged. Allometric analysis showed leaf area was reduced, while root surface area was unchanged by elevated CO2, indicating a down-regulation of total plant capacity for carbon gain rather than a stimulation of mineral nutrient acquisition capacity. Overall, growth in elevated CO2 resulted in changes in plant morphology and nitrogen use, other than those associated simply with changing plant size and non-structural carbohydrate content.  相似文献   

14.
The tambaqui, Colossoma macropomum , is the most important fish landed at Manaus by the fishery in the Amazonas State, Brazil. Population parameters have been estimated for this stock, which are: L∞= 107·3 cm ( t.l. ), W∞=32 kg, AT=0·227 year-1, M=0·45 year-1. A yield per recruit analysis shows that the stock is underexploited for values of M bigger than 0·30 year-1.  相似文献   

15.
The growth rates of naturally sympatric juvenile pink Oncorhynchus gorbuscha and sockeye Oncorhynchus nerka salmon were compared in a common lacustrine environment in south‐west Alsaka, an unusual opportunity given the normal disparity in freshwater residence time of these two species. Fork length ( L F) frequency distributions of juvenile pink salmon caught in the lake during the summer in 1991 and 1999–2003 indicated a growth rate of 0·54 mm day−1, 54% greater than the estimated growth rate of juvenile sockeye salmon sampled from 1958 to 2003 (0·35 mm day−1). Examination of daily growth rings on otoliths indicated that pink salmon in Lake Aleknagik grew an average of 1·34 mm day−1 in 2003 but sockeye salmon grew only 0·63 mm day−1(average specific growth rates were 3·0 and 1·8% day−1, respectively). Pink salmon increased from c . 32 mm L F and 0·2 g at emergence to 78 mm L F and 3·0 g within 3–4 weeks. After experiencing these rapid growth rates, the pink salmon appeared to leave the lake by late July in most years. The diets of pink and sockeye salmon in the littoral zone of the lake were very similar; >80% of the stomach contents consisted of adult and pupal insects and the remainder was zooplankton. This high degree of diet overlap suggested that the observed differences in growth rate were not attributable to variation in prey composition.  相似文献   

16.
The von Bertalanffy growth parameters for common wolf–fish Anarhichas lupus in the North Sea were: male: L ∞=111·2 cm, t 0=–0·43 and K =0·12; and female: L ∞=115·1 cm, t 0=–0·39 and K =0·11, making this the fastest growing stock reported. Resting metabolic rates (RMR±S.E.) and maximum metabolic rates (MMR±S.E.) for six adult common wolf–fish (mean weight, 1·39 kg) at 5° C were 12·18±1·6 mg O2 kg–1 h–1 and 70·65±7·63 mg O2 kg–1 h–1 respectively, and at 10° C were 25·43±1·31 mg O2 kg–1 h–1 and 113·84±16·26 mg O2 kg–1 h–1. Absolute metabolic scope was 53% greater at 10° C than at 5° C. The diet was dominated by Decapoda (39% overall by relative occurrence), Bivalvia (20%) and Gastropoda (12%). Sea urchins, typically of low energy value, occupied only 7% of the diet. The fast growth probably resulted from summer temperatures approximating to the optimum for food processing and growth, but may have been influenced by diet, and reduced competition following high fishing intensity.  相似文献   

17.
1. Growth, density and δ13C of wood and leaf area were measured in two adjacent stands of 6 year-old Eucalyptus globulus growing in the 600–700 mm year–1 rainfall region of south-western Australia. Study sites were identical except for differences in the availability of water owing to physical properties of soil profiles and location of sites within the landscape.
2. Abundance of 13C (expressed as δ13C) in wood of trees growing on the drought-prone site (– 24·8‰±1·4) was greater than in other trees (– 25·8‰±1·2, P <0·001) throughout the 6 years and, with further development, the δ13C signatures of wood may become useful indices of drought-susceptibility in plantations within a few years of establishment. The seasonal pattern of δ13C of wood appeared to reflect seasonal variation in water availability and duration of cambial activity.
3. Basic density of wood of trees growing on the more drought-prone site (496±14·0 kg m–3) was reduced compared to other trees (554±5·3 kg m–3, P <0·001). δ13C of wood across boundaries of growth-rings suggested that drought stopped cambial activity resulting in less production of late wood and less dense wood.
4. The stand growing on the drought-prone site had reduced growth, wood yield and leaf area but identical specific leaf area. Annual growth was correlated with the previous season's rainfall. Together, these results suggested that within the same evaporative climate, drought reduces growth primarily by reducing leaf area and that there is a lag between onset of drought and reduced productivity.  相似文献   

18.
Juvenile (12–152 g) shortfinned eels Anguilla australis and longfinned eels A. dieffenbachia caught in New Zealand streams were fed squid mantle Nototodarus spp. 4 days per week in laboratory experiments. A linear multiple regression equation showed the amount of food eaten (0–2·7% w day−1) explained 77·7% of the variation in specific growth rates (–0·60 to +1·07% w day−1) among individual eels, while previous growth rates, water temperature (10·0–20·6°C), and eel weight (12–152 g) explained a further 5·6, 1·4 and 0·8%, respectively. Growth in length ranged from –0·3 to +0·9 mm day−1. Eels which were starved and then given high rations grew substantially faster than expected. Once growth rates were adjusted for differences in ration and other factors, there were no significant differences in growth rates between species or individual fish. Growth of shortfinned eels fed maximum rations of commercial eel food depended on fish size and water temperatures and ceased below 9·0°C. Growth rates in the wild were substantially less than the maximum possible, after seasonal changes in water temperatures were taken into account, indicating that food supplies and not low water temperatures were controlling growth rates in the wild.  相似文献   

19.
The effect of feeding level ( F L; 0·5 to 4% dry diet mass per wet fish body mass) and feeding frequency (once every 4 days to twice per day) on postprandial metabolic response was investigated in southern catfish Silurus meridionalis at 27·5° C. The results showed that there was no significant difference in the specific dynamic action (SDA) coefficient among the groups of different feeding levels ( P  > 0·05). The duration increased from 26·0 to 40·0 h and the peak metabolic rate increased from 207·8 to 378·8 mg O2 kg−1 h−1 when the feeding level was increased from 0·5 to 4%. The relationship between the peak metabolic rate ( R P, mg O2 kg−1 h−1) and F L could be described as: R P = 175·4 + 47·3 F L( r 2 = 0·943, n  = 40, P  < 0·001). The relationship between the SDA duration ( D , h) and F L could be described as D =30·97 F L0·248 ( r 2=0·729, n =40, P  < 0·001).  相似文献   

20.
Larval and juvenile herring Clupea harengus collected in the Polish part of the Vistula Lagoon in May-July 1997 had hatched between 17 April and 9 June and originated from three cohorts. The spawning season began on 1 March at 3·8° C and was completed on 3 June at 12·7° C. Mortality among larvae was high in the first 2 weeks of April, probably associated with significant temperature decrease at the beginning of the spawning season. The growth of 10–48 mm L S herring was linear, highest for larvae and juveniles from the first cohort (0·58 mm mm-1 day-1), slower for the second cohort (0·55 mm mm-1 day-1) and the slowest for the third cohort (0·45 mm mm day-1). Temperature effects on the growth were inconclusive and potentially unfavourable feeding conditions in June might have been responsible for the relatively slow growth of third cohort larvae and juveniles.
Relationships between otolith size (perimeter, length, width, area, and weight) and fish size ( L S) differed among the three cohorts, related mostly to the positive temperature effect on otolith growth, individuals growing in warmer water had larger otoliths. Although a negative growth rate effect was observed as well, it was less significant.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号