首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 672 毫秒
1.
The possible role of sophorolipids from Torulopsis bombicola was investigated in alkane fermentation. Sophorolipids and related model compounds specifically stimulated the growth of strains of Torulopsis yeasts on insoluble alkanes and may act as a specific growth factor. There may be more than one way for a yeast to be stimulated to incorporate alkanes for growth.  相似文献   

2.
The nonpathogenic yeast Candida bombicola synthesizes sophorolipids. These biosurfactants are composed of the disaccharide sophorose linked to a long-chain hydroxy fatty acid and have potential applications in the food, pharmaceutical, cosmetic and cleaning industries. In order to expand the range of application, a shift of the fatty acid moiety towards medium-chain lengths would be recommendable. However, the synthesis of medium-chain sophorolipids by C. bombicola is a challenging objective. First of all, these sophorolipids can only be obtained by fermentations on unconventional carbon sources, which often have a toxic effect on the cells. Furthermore, medium-chain substrates are partially metabolized in the β-oxidation pathway. In order to redirect unconventional substrates towards sophorolipid synthesis, the β-oxidation pathway was blocked on the genome level by knocking out the multifunctional enzyme type 2 (MFE-2) gene. The total gene sequence of the C. bombicola MFE-2 (6033 bp) was cloned (GenBank accession number EU371724 ), and the obtained nucleotide sequence was used to construct a knock-out cassette. Several knock-out mutants with the correct geno- and phenotype were evaluated in a fermentation on 1-dodecanol. All mutants showed a 1.7–2.9 times higher production of sophorolipids, indicating that in those strains the substrate is redirected towards the sophorolipid synthesis.  相似文献   

3.
An ultra-fast liquid chromatographic method combined with atmospheric pressure chemical ionization mass detection (UHPLC/APCI-MS) has been developed for the separation and quantification of sophorolipid analogs produced by the yeast Candida bombicola. The sophorolipid mixture was produced by growing the yeast in the presence of glucose and oleic acid under higher aeration. It was found that more than 95% of the analogs are lactonic sophorolipids and all the produced sophorolipids produced were either mono- or di-acetylated. Also observed was a sophorolipid analog with a tri-unsaturated fatty acid, which has not been reported previously.  相似文献   

4.
The naturally occurring sophorolipids synthesized by Candida bombicola possess--despite their overall heterogeneity--little variation in the length of the lipid tail. The range is limited to C16-C18 fatty acids and is governed by the specificity of a cytochrome P450 monooxygenase. However, incorporation of fatty acids differing from the conventional C16-C18 range could broaden up the application potential of sophorolipids. The incorporation of medium-chain fatty acids should render the molecules more hydrophilic and consequently improve their water solubility. Two strategies to circumvent this C16-C18 preference are described in this paper. The first one skips the controlling action of the cytochrome P450 enzyme by supplying the yeast with already hydroxylated substrates, while the other method is based on the deception of the enzyme by presenting it substrates structurally resembling stearic acid. This later strategy can be applied to create very specific tailor-made sophorolipids when combined with post-fermentive modification.  相似文献   

5.
Candida bombicola was grown using a variety of lipophilic carbon substrates. Most of the hydrocarbon and carboxylic acid substrates resulted in a mixture of sophorolipids consisting of free acids and the more desirable lactones. The ratio of diacylated lactone to free acid in these mixtures was a maximum when produced using hexadecane and heptadecane. All of the other lipophilic substrates resulted in significant amounts of free acids being produced. These lactone products were unique in that they precipitated as crystals, which were easily separated from the culture medium. All of the other products were isolated as oils as is usually reported in the literature. Finally, the amounts of these crystals recovered were significantly higher than those observed for any of the oily products. It was possible to determine the degree of direct incorporation of the lipophilic substrates into the sophorolipids for a homologous series of alkanes. The amount of direct incorporation increased with increasing chain length to a maximum for pentadecane, hexadecane and heptadecane. As the length of the alkane substrate increased further, the amount of direct incorporation then decreased until there was no apparent incorporation for eicosane.  相似文献   

6.
Candida bombicola ATCC 22214 is applied commercially for the production of sophorolipids from renewable resources such as vegetable oils or waste streams. Although much research has been performed on optimization of fermentation conditions and on the influence of feed source and process parameters on sophorolipid structures and yields, the metabolic pathway of these important bioproducts remains unclear. Here, we identify a glucosyltransferase gene UGTA1 and show that the gene product is responsible for the first glucosylation step in the biosynthetic pathway of sophorolipids. Moreover, we provide evidence that the second glucosylation step is catalysed by a different glucosyltransferase that acts independently from the first. Therefore, the biosynthesis of sophorolipids by C. bombicola involves two glucosyltransferases that act in a stepwise manner. The UGTA1 gene described here is the first identified gene with a clear function in sophorolipid production by this economically important yeast.  相似文献   

7.
Abstract Superoxide dismutase (SOD) activity of 4 strains of methylotrophic yeasts of the genera Candida, Torulopsis, Hansenula and Pichia was demonstrated. Strains tested were grown on glucose or methanol. Yeasts grown on methanol possessed considerably higher levels of SOD- and catalase activity than cells cultivated on glucose.  相似文献   

8.
Synthesis of medium-chain sophorolipids by Candida bombicola is a challenging objective. One of the difficulties is that the obtained sophorolipids always represent a mixture of medium-chain and native de novo formed or long-chain sophorolipids. The fatty acid moiety of de novo sophorolipids is derived from the de novo synthesis of fatty acids. Fatty acid synthesis can be blocked by the antifungal agent cerulenin, an inhibitor if the fatty acid synthase (FAS) complex acting on the β-ketoacyl thioester synthetase reaction. The toxic effect of cerulenin on C. bombicola was evaluated and 20 mg/ml was added in the stationary growth phase. No de novo formed sophorolipids were observed when the cells were cultured on merely glucose. Also when the hydrophilic substrate, 1,12-dodedanediol, was added, no de novo formed sophorolipids were detected, leading to a reduced complexity of the sophorolipid mixture.  相似文献   

9.
The influence of different alkanes on spore morphology, glyoxlate pathway enzyme activities, total lipid contents and fatty acid composition of Isaria fumosorosea were investigated under laboratory conditions. Fungal spores grown on different alkanes showed higher germination and mycelial growth when compared to control. A strong induction of glyoxlate cycle enzymes in cell-free extracts was observed for cells grown on different alkanes when compared to glucose and control. Higher activities of glyoxlate cycle enzymes were observed for cells grown on alkanes when compared to other treatments. Even numbered fatty acids accounted for the majority of fatty acid production with a significant increase in relative amounts of linoleic acid and palmatic acid observed for conidia grown on alkanes. These results indicate that addition of alkanes to culture media can be a tool to pre-induce metabolic adaptations that can facilitate successful infection of insect host by entomopathogenic fungi.  相似文献   

10.
Sophorolipids from the non-pathogenic yeast Candida bombicola are applied commercially as biodegradable, eco-friendly surface active agents. These sophorolipids are produced by cultivation in presence of a hydrophobic carbon source and are always constituted of a mixture of structurally related molecules. For some applications however, certain structural variants perform better than others. Acetylation of the sophorolipid molecule is such a parameter that gains interest because of its influence on water solubility, foaming properties, and biological activity. Fully unacetylated sophorolipids therefore are interesting metabolites but cannot be produced in a pure way by conventional cultivation. Here we report the identification of the acetyltransferase gene AT, responsible for acetylation of de novo synthesized sophorolipids in Candida bombicola. By the creation of a Δat deletion mutant, we could create a yeast strain producing purely unacetylated sophorolipids with a yield of 5 ± 0.7 g/L using rapeseed oil as hydrophobic carbon source. In contrast to the chemical production of unacetylated sophorolipids used nowadays, the microbial production leads to mainly lactonic sophorolipids, in addition to minor amounts of acidic sophorolipids.  相似文献   

11.
Assimilation of chlorinated alkanes by hydrocarbon-utilizing fungi.   总被引:1,自引:0,他引:1       下载免费PDF全文
The fatty acid compositions of two filamentous fungi (Cunninghamella elegans and Penicillium zonatum) and a yeast (Candida lipolytica) were determined after the organisms were grown on 1-chlorohexadecane or 1-chlorooctadecane. These organisms utilized the chlorinated alkanes as sole sources of carbon and energy. Analyses of the fatty acids present after growth on the chlorinated alkanes indicated that 60 to 70% of the total fatty acids in C. elegans were chlorinated. Approximately 50% of the fatty acids in C. lipolytica were also chlorinated. P. zonatum contained 20% 1-chlorohexadecanoic acid after growth on either substrate but did not incorporate C18 chlorinated fatty acids.  相似文献   

12.
Approximately 100 billion liters of oil is generated per week as waste from restaurants around the country. Because of health, environmental, and economic factors, current methods of disposal are ineffective for disposal of the restaurant oil wastes. In this study we have investigated the ability of Candida bombicola to fermentatively transform the restaurant oil waste into glycolipids called sophorolipids. Batch and fed-batch studies were carried out using oil waste as the lipid feedstock in Erlenmeyer flasks and in a fermentor. Batch fermentation in a fermentor gave the highest yield of sophorolipids of 34 g L-1. Fermentation using oleic acid as control feedstock were also carried out. Batch fermentation in the fermentor using this pure fatty acid gave a highest yield of 42 g L-1. The difference in the sophorolipid yield was attributed to the fatty acid composition of restaurant oil waste.  相似文献   

13.
An alkane-degrading, sulfate-reducing bacterial strain, AK-01, isolated from a petroleum-contaminated sediment was studied to elucidate its mechanism of alkane metabolism. Total cellular fatty acids of AK-01 were predominantly C even when it was grown on C-even alkanes and were predominantly C odd when grown on C-odd alkanes, suggesting that the bacterium anaerobically oxidizes alkanes to fatty acids. Among these fatty acids, some 2-, 4-, and 6-methylated fatty acids were specifically found only when AK-01 was grown on alkanes, and their chain lengths always correlated with those of the alkanes. When [1,2-(13)C(2)]hexadecane or perdeuterated pentadecane was used as the growth substrate, (13)C-labeled 2-Me-16:0, 4-Me-18:0, and 6-Me-20:0 fatty acids or deuterated 2-Me-15:0, 4-Me-17:0, and 6-Me-19:0 fatty acids were recovered, respectively, confirming that these monomethylated fatty acids were alkane derived. Examination of the (13)C-labeled 2-, 4-, and 6-methylated fatty acids by mass spectrometry showed that each of them contained two (13)C atoms, located at the methyl group and the adjacent carbon, thus indicating that the methyl group was the original terminal carbon of the [1, 2-(13)C(2)]hexadecane. For perdeuterated pentadecane, the presence of three deuterium atoms, on the methyl group and its adjacent carbon, in each of the deuterated 2-, 4-, and 6-methylated fatty acids further supported the hypothesis that the methyl group was the terminal carbon of the alkane. Thus, exogenous carbon appears to be initially added to an alkane subterminally at the C-2 position such that the original terminal carbon of the alkane becomes a methyl group on the subsequently formed fatty acid. The carbon addition reaction, however, does not appear to be a direct carboxylation of inorganic bicarbonate. A pathway for anaerobic metabolism of alkanes by strain AK-01 is proposed.  相似文献   

14.
Eleven biosurfactant-producing strains were newly isolated from environmental samples using a drop-collapse assay and thin-layer chromatography (TLC). According to the TLC analysis, the separation patterns of the glycolipid spots of nine dominant strains corresponded to that of the sophorolipids produced by a Starmerella bombicola type strain. The retention factor values of the spot patterns of two strains were less than those of the others. Two representative major products were purified, and their molecular structures were determined. The major products were identified as diacetylated lactonic and acidic sophorolipids. The fatty acid moieties of both compounds were estimated to be 17-hydroxymethyl hexadecenoic acid. The amounts of glycolipids ranged from 5.0 to 22.9 g/L after 4 d of cultivation. According to a phylogenetic analysis, the strains were identified as Starmerella bombicola and Candida floricola.  相似文献   

15.
The physiology of biosurfactant synthesis by a soil isolate, identified as a Rhodococcus species, is described. The biosurfactant is a surface-active glycolipid produced during the stationary growth phase of Rhodococcus species H13-A on n-alkanes and fatty alcohols in response to limiting ammonium ion concentrations. Hexadecane-grown cells produced increasing amounts of extracellular glycolipid when the carbon to nitrogen ratio (C/N) was increased from 1.7 to 3.4. The increase in extracellular glycolipid in hexadecane-grown cells correlated with a decrease in the interfacial tension of the spent growth medium to values less than 5?mN/m. Significant levels of extracellular glycolipid were not detected in the spent growth medium of cells grown on triglycerides, fatty acids, ethanol, organic acids, or carbohydrates. Rhodococcus species H13-A contains the three indigenous plasmids pMVS100, pMVS200, and pMVS300, with neither pMVS200 nor pMVS300 being involved in glycolipid synthesis or hexadecane dissimilation. The role of pMVS100 remains undetermined. Key words: biosurfactants, glycolipids, trehalose lipids, Rhodococcus.  相似文献   

16.
Rhodococcus rhodochrous, a producer of mycolic acid of approx. C40, exhibited a higher cellular mass yield when grown on glucose than when grown on galactose or mannose. The cellular content of the diethyl ether-soluble lipids in microorganisms cultivated on glucose or mannose varied with the incubation time, while that of microorganisms grown on galactose remained constant. The lipids extracts from cells cultivated on different hexoses and collected at the exponential phase of growth were more toxigenic; this property was related in general to the content of glycolipid. On the other hand, cells cultivated on galactose or mannose had a higher quantity of glycolipid in the exponential phase, while the glycolipid content of those grown on glucose remained approximately constant. Amongst the components of the lipid extract, the glycolipid fraction was the sole fraction bearing toxic property. Neutral plus fatty acids and phospholipids displayed no similar characteristic.  相似文献   

17.
Journal of Industrial Microbiology & Biotechnology - To make the process of producing sophorolipids by Candida bombicola truly sustainable, we investigated production of these biosurfactants on...  相似文献   

18.
Enzymatic extraction of intracellular enzymes from various yeasts by glucanase was investigated. Favourable conditions for lysis and release of intracellular enzymes were established. The effects of yeast concentration, growth phase of yeast, storage temperature and pretreatment of yeast were studied. The yeasts investigated can be divided into two groups. The first, Kluyveromyces lactis, Saccharomyces cerevisiae, Saccharomyces oviformis, Torulopsis glabrata, Hansenula polymorpha and local bakers' yeast, lysed relatively easily (70–80% of the cells), especially when cells from the logarithmic growth phase were treated. The second, Candida utilis and Candida vini, were more susceptible to lysis (40–50%) when cells were taken from the stationary phase. Release of two enzymes, glycerol kinase from Candida utilis grown on glycerol and formate dehydrogenase from Torulopsis glabrata grown on methanol was examined. The highest specific activities were obtained by incubating the cells with glucanase for 1.5 h at 37°C. Inactivation of the released enzyme was relatively low. After 12 h of enzymatic treatment at 28°C glycerol kinase maintained about 50%, and formate dehydrogenase over 80%, of the original activities.  相似文献   

19.
K Kobayashi  H Suginaka  I Yano 《Microbios》1987,51(206):37-42
The fatty acid composition of representative Candida species was examined by gas-liquid chromatography (GLC) using a polar column. The major fatty acids were C14:0, C16:0, C18:0 saturated, C16:1 and C18:1 monoenoic series, with or without C18 polyunsaturated acids (C18:2 and C18:3). In Torulopsis glabrata and Saccharomyces cerevisiae the C18:2 and C18:3 acids were not found, but the C10:0 and C12:0 acids were detected in S. cerevisiae. These results indicated that the Candida genus could be distinguished from Torulopsis and Saccharomyces genera by GLC analysis of fatty acids. Quantitative differences in the fatty acid composition between cells grown at high temperature (37 degrees C) and low temperature (25 degrees C) were found generally in Candida species, and the amounts of C18 polyunsaturated acids (C18:2 and C18:3) increased in the cells grown at 25 degrees C. Each Candida species showed a characteristic profile in fatty acid composition. Determination of the cellular fatty acid composition in Candida species is likely to be useful for the grouping or chemotaxonomy of newer isolates of Candida species.  相似文献   

20.
Natural relationships, improvement of anaerobic growth on hydrocarbons, and properties that may provide clues to an understanding of oxygen-independent alkane metabolism were studied with two mesophilic sulfate-reducing bacteria, strains Hxd3 and Pnd3. Strain Hxd3 had been formerly isolated from an oil tank; strain Pnd3 was isolated from marine sediment. Strains Hxd3 and Pnd3 grew under strictly anoxic conditions on n-alkanes in the range of C12–C20 and C14–C17, respectively, reducing sulfate to sulfide. Both strains shared 90% 16 S rRNA sequence similarity and clustered with classified species of completely oxidizing, sulfate-reducing bacteria within the δ-subclass of Proteobacteria. Anaerobic growth on alkanes was stimulated by α-cyclodextrin, which served as a non-degradable carrier for the hydrophobic substrate. Cells of strain Hxd3 grown on hydrocarbons and α-cyclodextrin were used to study the composition of cellular fatty acids and in vivo activities. When strain Hxd3 was grown on hexadecane (C16H34), cellular fatty acids with C-odd chains were dominant. Vice versa, cultures grown on heptadecane (C17H36) contained mainly fatty acids with C-even chains. In contrast, during growth on 1-alkenes or fatty acids, a C-even substrate yielded C-even fatty acids, and a C-odd substrate yielded C-odd fatty acids. These results suggest that anaerobic degradation of alkanes by strain Hxd3 does not occur via a desaturation to the corresponding 1-alkenes, a hypothetical reaction formerly discussed in the literature. Rather an alteration of the carbon chain by a C-odd carbon unit is likely to occur during activation; one hypothetical reaction is a terminal addition of a C1 unit. In contrast, fatty acid analyses of strain Pnd3 after growth on alkanes did not indicate an alteration of the carbon chain by a C-odd carbon unit, suggesting that the initial reaction differed from that in strain Hxd3. When hexadecane-grown cells of strain Hxd3 were resuspended in medium with 1-hexadecene, an adaptation period of 2 days was observed. Also this result is not in favor of an anaerobic alkane degradation via the corresponding 1-alkene. Received: 25 June 1998 / Accepted: 29 July 1998  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号