首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We have mainly used 3 highly polymorphic DNA markers, 3HVR (D16S85), 16AC2.5 (D16S291) and SM7 (D16S283), flanking the PKD1 region on chromosome 16p13.3 to establish linkage status in seven Icelandic families with autosomal dominant polycystic kidney disease (ADPKD). In four families, the disease locus is in the PKD1 region, and three families are unlinked to chromosome 16p13.3. In one of the unlinked families, the disease locus is excluded from a part of the long arm of chromosome 2, and we support a theory of more than 2 loci being responsible for ADPKD. Our data confirm the location of the locus YNH24 (D2S44) to chromosome 2q13-q24.  相似文献   

2.
Polycystic kidney disease is an inherited heterogeneous disorder that affects approximately 11000 Europeans. It is characterized mainly by the formation of cysts in the kidney that lead to end-stage renal failure with late age of onset. Three loci have been identified, PKD1 on the short arm of chromosome 16, which has recently been isolated and characterized, PKD2 on the long arm of chromosome 4, and a third locus of unknown location, that is apparently much rarer. In families that transmit the PKD2 gene there is a significantly later age of onset of symptoms, compared with families that transmit the PKD1 gene, and in general they present with milder progression of symptomatology. For the first time we attempted molecular genetic analysis in seven Cypriot families using highly polymorphic markers around the PKD1 and PKD2 genes. Our data showed that there is genetic and phenotypic heterogeneity among these families. For four of the families we obtained strong evidence for linkage to the PKD1 locus. In two of these families linkage to PKD1 was strengthened by excluding linkage to PKD2 with the use of marker D4S423. In three other families we showed linkage to the PKD2 locus. In the largest of these families one recombinant placed marker D4S1534 distal to D4S231, thereby rendering it the closest proximal marker known to us to date. The application of molecular methods allowed us to make presymptomatic diagnosis for a number of at-risk individuals.  相似文献   

3.
Summary Polycystic kidney disease (PKD) is a common autosomal dominant genetic disorder caused by mutation in at least two different gene loci. The PKD1 gene has been localized on the short arm of chromosome 16. The location of a second genetic locus in the human genome is not yet known. A large PKD kindred, unlinked to chromosome 16, with over 250 members was studied using both DNA and classical markers. In total, 29 informative marker loci on 11 autosomes have been analyzed for linkage with PKD. The data significantly exclude the linkage with disease locus from 17 marker loci and show no evidence of close linkage with the other loci.  相似文献   

4.
Summary Spinocerebellar ataxia (SCA) was studied in a seven-generation (Schut-Swier) kindred using linkage analysis to localize further the autosomal dominant, HLA-linked, disease-producing SCA1 locus relative to four other loci that map to the short arm of human chromosome 6. Genotypes for each locus were determined in as many individuals as possible from a total of 162 affected and unaffected family members that were studied. A maximum pairwise lod score of 8.52 ( m = 0.10, f = 0.22) for linkage between SCA1 and HLA-A was observed. Multipoint linkage analyses for the SCA1, HLA-A, F13A, D6S7, and GLO1 loci revealed that the SCA1 locus is most probably located telomeric to HLA-A, with a likely location between HLA-A and F13A.  相似文献   

5.
In searching for a putative third gene for autosomal dominant polycystic kidney disease (ADPKD), we studied the genetic inheritance of a large family (NFL10) previously excluded from linkage to both the PKD1 locus and the PKD2 locus. We screened 48 members of the NFL10 pedigree, by ultrasonography, and genotyped them, with informative markers, at both the PKD1 locus and the PKD2 locus. Twenty-eight of 48 individuals assessed were affected with ADPKD. Inspection of the haplotypes of these individuals suggested the possibility of bilineal disease from independently segregating PKD1 and PKD2 mutations. Using single-stranded conformational analysis, we screened for and found a PKD2 mutation (i.e., 2152delA; L736X) in 12 affected pedigree members. Additionally, when the disease status of these individuals was coded as "unknown" in linkage analysis, we also found, with markers at the PKD1 locus, significant LOD scores (i.e., >3.0). These findings strongly support the presence of a PKD1 mutation in 15 other affected pedigree members, who lack the PKD2 mutation. Two additional affected individuals had trans-heterozygous mutations involving both genes, and they had renal disease that was more severe than that in affected individuals who had either mutation alone. This is the first documentation of bilineal disease in ADPKD. In humans, trans-heterozygous mutations involving both PKD1 and PKD2 are not necessarily embryonically lethal. However, the disease associated with the presence of both mutations appears to be more severe than the disease associated with either mutation alone. The presence of bilineal disease as a confounder needs to be considered seriously in the search for the elusive PKD3 locus.  相似文献   

6.
Autosomal dominant polycystic kidney disease (ADPKD) is a commonly inherited disorder (1/1000) in humans characterized by fluid-filled cysts in the kidneys. Defects in the PKD genes, PKD1 and PKD2, cause 85% and 15% of human ADPKD cases, respectively. Mutations in the PKHD1 gene cause autosomal recessive PKD (ARPKD). Mutations in several genes, including Nek8, cause PKD in mice. Although PKD affects 38% of Persian cats worldwide, making it the most prominent inherited feline disease, a causative gene has not been identified. Feline PKD is an autosomal dominant disease with clinical presentations similar to human ADPKD. Forty-three microsatellites were chosen from the feline genetic maps based on known homology with human chromosomal regions containing the PKD1, PKD2, PKHD1, and Nek8 genes. Linkage analysis using seven Persian cat pedigrees segregating for PKD has shown significant linkage and no recombinants (Z=5.83, =0) between the PKD disease phenotype and marker FCA476, which is within 10 cR of the feline PKD1 gene on Chromosome E3. This suggests that the PKD1 gene or another gene within this region may cause feline PKD. Further investigation into the cause of PKD will be valuable for feline health and provide insights into human ADPKD.  相似文献   

7.
Summary We have examined a large family in which eleven members have a form of autosomal dominant Ehlers-Danlos syndrome type IV. Analysis of fibroblast cultures from affected individuals showed a partial deficiency of type III collagen production. The protein produced was, however, normal in all aspects examined. Using a restriction site polymorphism associated with the structural gene for human type III collagen (COL3A1), we have found tight linkage between the low frequency polymorphic allele and the clinical expression of the disease (lod=3.86 at =0), identifying the type III collagen gene as the disease locus.  相似文献   

8.
Summary We describe the first known association between autosomal dominant polycystic kidney disease (ADPKD) and –4.2 thalassemia in a Caucasian family. Linkage studies have been carried out using two probes (3 HVR and 24-1) linked to ADPKD on locus PKD1 and two probes (1-PstI and BarnH-I/EcoRI-2 fragment) allowing detection of -thalassemia with either a 3.7-kb deletion or a 4.2-kb deletion. Our results show that to avoid misinterpretation it is important to investigate the occurrence of an -gene deletion when polymorphisms situated in the -globin locus are used for linkage studies on ADPKD. The studied family is one of the rare cases of leftward deletional thalassemia described in a non-Asian population.  相似文献   

9.
Evidence of linkage (lod=3.1, =0.05) was reported previously in one large kindred (the Brandywine genetic isolate) for an autosomal dominant form of early onset periodontitis (EOP) with a protein polymorphism in the vitamin D binding protein (GC) located on chromosome 4q12-q13. To evaluate the generality of this finding, 19 unrelated families (228 individuals), each with two or more EOP affected individuals, were ascertained and sampled. A restriction fragment length polymorphism (RFLP) at the GC locus and eight other polymorphic DNA markers and two red blood cell antigens located on proximal chromosome 4q in the vicinity of the GC locus were typed. Twelve genetic models of EOP were evaluated, which varied in diagnostic classification, penetrance, and mode of disease transmission. Results for all models strongly exclude linkage between an EOP susceptibility gene and this chromosomal region assuming locus homogeneity. Our data statistically exclude (lod -2.0) the possibility that more than 40% of our families are linked to this candidate region for one model tested. Linkage under heterogeneity was excluded less strongly for other models, but no significant evidence in support of linkage was obtained for any model. Our results indicate that either the previous report of linkage was a false positive, or that there are two or more unlinked forms of EOP, with the form located in 4q12-q13 being less common.  相似文献   

10.
Yang Y  Guo J  Liu Z  Tang S  Li N  Yang M  Pang Q  Fan F  Bu J  Yuan ST  Xiao X  Chen Y  Zhao K 《Human genetics》2006,120(1):144-147
Accessory auricular anomaly is a small excrescence of skin that contains elastic cartilage on different regions of the helix and the face. Previous work has shown that the genetic trait of some patients with the isolated symptom of accessory auricular anomaly is autosomal dominant. To map the gene for autosomal dominant accessory auricular anomaly (ADAAA), we investigated a Chinese family with 11 affected individuals. We performed linkage analysis with microsatellite markers spanning the whole human-genome in the family. The inheritance pattern of the ADAAA family was autosomal dominant with complete penetrance. Two-point linkage analysis revealed significant maximum LOD scores of 4.20(D14S990 and D14S264, sita = 0) in the family. Haplotype construction and multipoint linkage analysis also confirmed the locus and defined the isolated ADAAA locus to a 9.84 cM interval between the markers D14S283 and D14S297. Our study assigned an isolated ADAAA locus to 14q11.2–q12. This is the first ADAAA locus reported to date.Y. Yang and J. Guo contribute to this work equally.  相似文献   

11.
Familial multiple endocrine neoplasia type 2A (MEN 2A) is a cancer syndrome that is inherited as an autosomal dominant with high penetrance. Its clinical features are medullary carcinoma of the thyroid, pheochromocytomas, and hyperparathyroidism. A new polymorphic locus D10S97 (probe: KW6SacI) detects a codominant EcoRI polymorphism that is tightly linked to the MEN2A locus. The peak lod score for linkage between D10S97 with MEN2A is 13.03 at =0.00. The polymorphic locus D10S97 maps, by linkage analysis, into the previously defined interval between FNRB and RBP3 to which MEN2A has been assigned. We present physical mapping data showing that the probe pKW6 originates from 10p13 and that the polymorphic locus D10S97 in 10q11.2 is detected by cross-hybridization.  相似文献   

12.
A genome-wide linkage scan was conducted in a Northern-European multigenerational pedigree with nine of 40 related members affected with concomitant strabismus. Twenty-seven members of the pedigree including all affected individuals were genotyped using a SNP array interrogating > 300,000 common SNPs. We conducted parametric and non-parametric linkage analyses assuming segregation of an autosomal dominant mutation, yet allowing for incomplete penetrance and phenocopies. We detected two chromosome regions with near-suggestive evidence for linkage, respectively on chromosomes 8 and 18. The chromosome 8 linkage implied a penetrance of 0.80 and a rate of phenocopy of 0.11, while the chromosome 18 linkage implied a penetrance of 0.64 and a rate of phenocopy of 0. Our analysis excludes a simple genetic determinism of strabismus in this pedigree.  相似文献   

13.
Assignment of congenital cataract Volkmann type (CCV) to chromosome 1p36   总被引:8,自引:0,他引:8  
Congenital cataract, type Volkmann (McKusick no 115665, gene symbol CCV) is an autosomal dominant eye disease. The disease is characterized by a progressive, central and zonular cataract, with opacities both in the embryonic, fetal and juvenile nucleus and around the anterior and posterior Y-suture. We examined blood samples from 91 members of a Danish pedigree comprising 426 members, by using highly informative short tandem repeat polymorphisms and found the closest linkage of the disease gene (CCV) to a (CA) n dinucleotide repeat polymorphism at locus D1S243 (Zmax = 14.04 at M = 0.025 F = 0.000), at a penetrance of 0.90. Using two additional chromosome 1 markers, we were able to map the CCV gene in the sequence 1pter-(CCV, D1S243)-D1S468-D1S214. The (enolase 1) gene has been mapped to this area; however, a mutation described in this gene did not give eye disease.  相似文献   

14.
Congenital microphthalmia is a common developmental ocular disorder characterized by shortened axial length. Isolated microphthalmia is clinically and genetically heterogeneous and may be inherited in an autosomal dominant, autosomal recessive, or X-linked manner. Here, we studied a five-generation family of Sephardic Jewish origin that included 38 members, of whom 7 have either unilateral or bilateral microphthalmia of variable severity inherited as an autosomal dominant trait with incomplete penetrance. After exclusion of several candidate loci, we performed a genome-scan study and demonstrated linkage to chromosome 15q12-q15. Positive LOD scores were obtained with a maximum at the D15S1007 locus (maximum LOD score 3.77, at recombination fraction 0.00). Haplotype analyses supported the location of the disease-causing gene in a 13.8-cM interval between loci D15S1002 and D15S1040.  相似文献   

15.
We describe a large family in which a combination of chronic mucocutaneous candidiasis (fungal infections of the skin, nails, and mucous membranes) and thyroid disease segregate as an autosomal dominant trait with reduced penetrance. The family includes (a) four members with both candidiasis and thyroid disease, (b) five members, including one pair of phenotype-concordant MZ twins, with candidiasis only, and (c) three members with thyroid disease only. A whole-genome scan using DNA samples from 20 members of the family identified a candidate linkage region on chromosome 2p. By sampling additional individuals and genotyping supplementary markers, we established linkage to a region of approximately 15 cM bounded by D2S367 and D2S2240 and including seven adjacent markers consistent with linkage. With a penetrance estimate of.8, which was based on pedigree and affected status, the peak two-point LOD score was 3.70 with marker D2S2328, and the peak three-point LOD score was 3.82. This is the first linkage assignment of a dominant locus for mucocutaneous candidiasis.  相似文献   

16.
Pancreatic cancer is the fifth leading cause of cancer death in the United States. Nearly every person diagnosed with pancreatic cancer will die from it, usually in <6 mo. Familial clustering of pancreatic cancers is commonly recognized, with an autosomal dominant inheritance pattern in approximately 10% of all cases. However, the late age at disease onset and rapid demise of affected individuals markedly hamper collection of biological samples. We report a genetic linkage scan of family X with an autosomal dominant pancreatic cancer with early onset and high penetrance. For the study of this family, we have developed an endoscopic surveillance program that allows the early detection of cancer and its precursor, before family members have died of the disease. In a genomewide screening of 373 microsatellite markers, we found significant linkage (maximum LOD score 4.56 in two-point analysis and 5.36 in three-point analysis) on chromosome 4q32-34, providing evidence for a major locus for pancreatic cancer.  相似文献   

17.
Summary Marfan syndrome represents a heterogeneous connective tissue disease, the symptoms arising in several tissues and organs. The defective gene(s) behind this autosomal dominant condition has not been found despite considerable research. The main targets of the research have been the genes coding for connective tissue components. Several of the candidate genes suspected to be defective in Marfan syndrome are located on the long arm of chromosome 2. These genes include a cluster of two genes coding for fibrillar collagens COL3A1 and COL5A2, and a third member of the collagen gene family: COL6A3. Furthermore, genes for elastin (ELN) and fibronectin (FN) are also located in this area of chromosome 2. We studied this chromosomal area using restriction fragment length polymorphism (RFLP) linkage analysis in five Finnish Marfan families with affected members in three generations. In two point linkage analyses, Lod scores of –3.192 ( = 0.1) to COL3A1, –1.683 ( = 0) to COL6A3 and –2.664 ( = 0.01) to FN were obtained, whereas the linkage analysis between elastin and the disease was non-informative (Lod score 0.444, = 0). With the multipoint linkage analysis that permits simultaneous examination of several loci and more efficient use of family data, we obtained an exclusion of all these loci as the site of the mutation leading to Marfan syndrome in these families.  相似文献   

18.
A locus for an autosomal dominant form of spinocerebellar ataxia (SCA1) has been assigned to the short arm of chromosome 6 on the basis of linkage to the major histocompatibility system (HLA). In this study of a five-generation American black family, close linkage between the disease locus and both HLA and the coagulation factor XIIIA (F13A1) locus was excluded, and lod scores for all locations of the disease locus between HLA and F13A1 were less than -1.4. These results suggest that the locus causing spinocerebellar ataxia in this family is not in this region. However, the disease locus was found to be closely linked to a microsatellite polymorphism, D6S89, which is between HLA and F13A1. The maximum lod score for SCA1 and D6S89 is 4.90 at a recombination fraction of 0, both in males and in females. These data show that exclusion of close linkage to the HLA complex and F13A1 in a kindred with spinocerebellar ataxia does not rule out the possibility that the disease locus in that family is on 6p. Accordingly, all families segregating a dominantly inherited ataxia should be evaluated for linkage to D6S89, to determine whether the locus causing the disease is SCA1.  相似文献   

19.
Summary The -galactosidases in normal man-Chinese hamster somatic cell hybrids were investigated with antibodies specific for human -galactosidase A and antibodies specific for Chinese hamster -galactosidase. It was found that an isoenzyme in hybrid cells, which has an electrophoretic mobility between that of human -galactosidase A and Chinese hamster -galactosidase, contains immunologic determinants of both human and Chinese hamster origin, suggesting that it is a heteropolymeric molecule. Moreover, the locus for human -galactosidase, which was found to be X-linked, is the locus coding for -galactosidase A. Hybrids isolated after fusion of Chinese hamster cells with cells of a patient with Fabry's disease did not express human -galactosidase A or the heteropolymeric molecule even in the presence of the active human X chromosome, indicating that the deficiency of -galactosidase A in Fabry's disease is probably due to a mutation in a structural gene resulting in the inability to form immunologically detectable and functionally active molecules of -galactosidase A.  相似文献   

20.
Blepharophimosis-ptosis-epicanthus inversus syndrome (BPES) is an autosomal dominant malformation of the eyelids that may severely impair visual function. Chromosomal aberrations involving chromosomes 3q23, 3p25 and 7p34 have been reported in BPES but the disease gene has not been hitherto localized by linkage analysis. We have mapped a gene for BPES to chromosome 3q23 in a large French pedigree (Z max = 4.62 at =0 for probe AFM 182yc5 at locus D3S1549). The best estimate for the location of the disease gene is at locus D3S1549, between the loci D3S1292 and D3S1555 (maximum lod score of 5.10).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号