首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Oleic acid causes pulmonary edema by increasing capillary endothelial permeability, although the mechanism of this action is uncertain. We tested the hypothesis that the damage is an oxidant injury initiated by oleic acid, using isolated blood-perfused canine lung lobes. The lobes were dilated with papaverine and perfused in zone III with a constant airway pressure of 3 cmH2O. Changes in isogravimetric capillary pressure (Pc,i) and capillary filtration coefficient (Kf,C) were used as indices of alterations in microvascular permeability in lungs treated with silicone fluid (n = 3), oleic acid (n = 11), oleic acid after pretreatment with the antioxidants promethazine HCl (n = 11) or N,N'-diphenyl-p-phenylenediamine (DPPD; n = 4), or oleic acid following pretreatment with methylprednisolone (n = 4). Kf,C averaged 0.21 +/- 0.02 ml X min-1 X cmH2O-1 X 100 g-1 in control and increased to 0.55 +/- 0.05 and 0.47 +/- 0.05 when measured 20 and 180 min after the administration of oleic acid. When oleic acid was infused into lungs pretreated with promethazine, Kf,C increased to only 0.38 +/- 0.05 ml X min-1 X cmH2O-1 X 100 g-1 after 20 min and had returned to control levels by 180 min. Pretreatment with DPPD, but not methylprednisolone, similarly attenuated the increase in Kf,C following oleic acid. Silicone fluid had no effect on Kf,C. That oleic acid increases vascular permeability was also evidenced by a fall (P less than 0.05) in Pc,i from control when measured at 180 min in every group.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

2.
Segmental vascular resistances and compliances in dog lung   总被引:1,自引:0,他引:1  
The segmental distribution of vascular resistances and compliances were evaluated in isolated blood perfused lung lobes using arterial, venous, and double-occlusion pressures and were compared with filtration midpoint capillary pressures (Pc,f). We separated total vascular resistance (RT) and compliance (CT) into large artery (Ra, Ca), large vein (Rv, Cv), and microvascular compartments (Rmc, Cmc) at base-line and increased vascular pressures and during infusions of histamine, serotonin, and norepinephrine. In control lobes, double-occlusion pressure (Pdo) closely approximated Pc,f at all vascular pressures. Pre- and postcapillary resistance were approximately equal when referenced to either Pc,f or Pdo. Although Rmc comprised 42% of RT and Cmc constituted 76% of CT, a twofold increase in base-line Pc,f caused RT to decrease to 67% and Rmc/RT to 29% of control values, whereas CT decreased to 87% and Cmc/CT decreased to 88% of control values over the same Pc,f range. Mean static CT was 2.25 +/- 0.09 ml X cmH2O-1. 100 g-1, whereas dynamic CT was 1.54 +/- 0.08 ml X cmH2O-1. 100 g-1, or only 68% of static vascular compliance. Drug infusions increased mean RT from 4.2- to 5.3-fold and significantly decreased both static and dynamic CT. Although all vascular segments were constricted, histamine affected primarily large veins, serotonin increased Ra greater than Rv, and norepinephrine constricted upstream and downstream vessels about equally. Increased Pc,f in the presence of these drugs decreased RT significantly in every case primarily through attenuation of the drug vasoconstrictor effect on Rmc and decreased CT primarily due to a decrease in Cmc, but increased Cmc/(Ca + Cv). Thus the microvascular compartment appears to be the major site of both fluid filtration and vascular compliance and contributes significantly to total vascular resistance. Drug infusions constricted large and small vessel compartments as defined here, but increased Pc,f attenuated microvascular vasoconstriction and to a lesser extent large vessel vasoconstriction resulting in a reduced microvascular resistance in both drug-treated and control lobes. This effect can be attributed to recruitment and/or distension of microvessels and distension of larger vessels.  相似文献   

3.
The canine lung lobe was embolized with 100-micron glass beads before lobectomy and blood anticoagulation. The lobe was isolated, ventilated, and pump-perfused with blood at an arterial pressure (Pa) of about 50 (high pressure, HP, n = 9) or 25 Torr (low pressure, LP, n = 9). Rus/PVR, the ratio of upstream (Rus) to total lobar vascular resistance (PVR), was determined by venous occlusion and the isogravimetric capillary pressure technique. The capillary filtration coefficient (Kf), an index of vascular permeability, was obtained from rate of lobe weight gain during stepwise capillary pressure (Pc) elevation. The embolized lobes became more edematous than nonembolized controls, (C, n = 11), (P less than 0.05), with Kf values of 0.20 +/- 0.04, 0.25 +/- 0.06, and 0.07 +/- 0.01 ml X min-1 X Torr-1 X 100 X g-1 in LP, HP, and C, respectively (P less than 0.05). The greater Rus/PVR in embolized lobes (P less than 0.05) protected the microvessels and, although Pc was greater in HP than in controls (P less than 0.05), Pc did not differ between HP and LP (P greater than 0.05). Although indexes of permeability did not differ between embolized groups (P greater than 0.05), HP became more edematous than LP (P less than 0.05). The greater edema in HP did not appear due to a greater imbalance of Starling forces across the microvessel wall or to vascular recruitment. At constant Pc and venous pressure, elevating Pa from 25 to 50 Torr in embolized lobes resulted in greater edema to suggest fluid filtration from precapillary vessels.  相似文献   

4.
The osmotic reflection coefficient (sigma) for total plasma proteins was estimated in 11 isolated blood-perfused canine lungs. Sigma's were determined by first measuring the capillary filtration coefficient (Kf,C in ml X min-1 X 100g-1 X cmH2O-1) using increased hydrostatic pressures and time 0 extrapolation of the slope of the weight gain curve. Kf,C averaged 0.19 +/- 0.05 (mean +/- SD) for 14 separate determinations in the 11 lungs. Following a Kf,C determination, the isogravimetric capillary pressure (Pc,i) was determined and averaged 9.9 +/- 0.5 cmH2O for all controls reported in this study. Then the blood colloids in the perfusate were either diluted or concentrated. The lung either gained or lost weight, respectively, and an initial slope of the weight gain curve (delta W/delta t)0 was estimated. The change in plasma protein colloid osmotic pressure (delta IIP) was measured using a membrane osmometer. The measured delta IIP was related to the effective colloid osmotic pressure (delta IIM) by delta IIM = (delta W/delta t)0/Kf,C = sigma delta IIP. Using this relationship, sigma averaged 0.65 +/- 0.06, and the least-squares linear regression equation relating Pc,i and the measured IIP was Pc,i = -3.1 + 0.67 IIP. The mean estimate of sigma (0.65) for total plasma proteins is similar to that reported for dog lung using lymphatic protein flux analyses, although lower than estimates made in skeletal muscle using the present methods (approximately 0.95).  相似文献   

5.
Hemodynamics and vascular permeability were studied during acute alveolar hypoxia in isolated canine lung lobes perfused at constant flow with autogenous blood. Hypoxia was induced in the presence (COI + Hypox, n = 6) or absence (Hypox, n = 6) of cyclooxygenase inhibition (COI) with indomethacin or meclofenamate. Hypoxic ventilation reduced blood PO2 from 143 to 25-29 Torr without a change in PCO2. During hypoxia a capillary filtration coefficient (Kf) was obtained gravimetrically as an index of vascular permeability to water. In COI + Hypox, pulmonary arterial pressure (Pa) increased from 11.5 +/- 0.7, post-COI normoxia, to a peak of 22.1 +/- 2.3 during hypoxia (P less than 0.01) without a change in capillary pressure (Pc). In contrast, hypoxia changed neither Pa nor Pc in Hypox relative to an untreated normoxic control group (Normox, n = 6, P greater than 0.05). Kfs (means +/- SE in ml.min-1.Torr-1.100 g-1) for Normox (0.070 +/- 0.014), Hypox (0.082 +/- 0.024), and COI + Hypox (0.057 +/- 0.017) did not differ from one another (P greater than 0.05). Although COI markedly enhanced the pressor response to acute alveolar hypoxia, hypoxia increased neither Pc nor vascular permeability regardless of COI.  相似文献   

6.
Because both chemical and mechanical insults to the lung may occur concomitantly with trauma, we hypothesized that the pressure threshold for vascular pressure-induced (mechanical) injury would be decreased after a chemical insult to the lung. Normal isolated canine lung lobes (N, n = 14) and those injured with either airway acid instillation (AAI, n = 18) or intravascular oleic acid (OA, n = 25) were exposed to short (5-min) periods of elevated venous pressure (HiPv) ranging from 19 to 130 cmH2O. Before the HiPv stress, the capillary filtration coefficient (Kf,c) was 0.12 +/- 0.01, 0.27 +/- 0.03, and 0.31 +/- 0.02 ml.min-1.cmH2O-1 x 100 g-1 and the isogravimetric capillary pressure (Pc,i) was 9.2 +/- 0.3, 6.8 +/- 0.5, and 6.5 +/- 0.3 cmH2O in N, AAI, and OA lungs, respectively. However, the pattern of response to HiPv was similar in all groups: Kf,c was no different from the pre-HiPv value when the peak venous pressure (Pv) remained less than 55 cmH2O, but it increased reversibly when peak Pv exceeded 55 cmH2O (P less than 0.05). The reflection coefficient (sigma) for total proteins measured after pressure exposure averaged 0.60 +/- 0.03, 0.32 +/- 0.04, and 0.37 +/- 0.09 for N, AAI, and OA lobes respectively. However, in contrast to the result expected if pore stretching had occurred at high pressure, in all groups the sigma measured during the HiPv stress when Pv exceeded 55 cmH2O was significantly larger than that measured during the recovery period.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

7.
The base-line capillary filtration coefficient (Kf) obtained from rates of lobe weight gain during stepwise vascular pressure elevation is reported to be threefold greater in isolated than in intact dog lung. To further evaluate the stepwise pressure elevation technique, we obtained Kf in control and oleic acid-injured isolated lung. The left lower lung lobe was removed, placed on a balance, ventilated, and pump perfused with autogenous blood. Saline (n = 6) or oleic acid (n = 6) was infused, and rate of lobe weight gain was obtained during stepwise pressure elevation. Kf averaged 0.071 +/- 0.012 and 0.243 +/- 0.027 ml X min-1 X Torr-1 X 100 g-1 in the control and injured lobes, respectively. Stepwise pressure elevation can yield a base-line Kf in isolated lung similar to Kf's obtained from this and other gravimetric methods in intact and isolated lung. Furthermore, Kf increased severalfold following lung injury with oleic acid. The stepwise pressure elevation technique for Kf determination in isolated lung can be a useful tool for quantitating changes in vascular permeability.  相似文献   

8.
We determined the effects of paraquat (PQ) concentrations ranging from 10(-3) to 10(-2) M and three levels of venous PO2 [hypoxia (41 +/- 3 Torr), normoxia (147 +/- 8 Torr), and hyperoxia (444 +/- 17 Torr)] in the presence of 4 x 10(-3) M PQ on microvascular permeability in isolated blood-perfused dog lungs. Capillary filtration coefficient (Kf,c) increased and isogravimetric capillary pressure (Pc,i) decreased 3 h after perfusion with 10(-2) M PQ (n = 7) and 5 h after perfusion with 4 x 10(-3) M PQ (n = 6) but not with 10(-3) M PQ (n = 4). In hyperoxic lungs perfused with 4 x 10(-3) M PQ, Kf,c increased to nine times the base-line value 5 h after PQ [0.15 +/- 0.01 to 1.35 +/- 0.25 (SE) ml.min-1.cmH2O-1.100 g-1]. Pc,i significantly decreased from a base-line value of 9.4 +/- 0.2 to 7.1 +/- 0.4 cmH2O at 3 h. In hypoxic lungs perfused with 4 x 10(-3) M PQ (n = 5), Pc,i and Kf,c changes were not significantly different from those in normoxic lungs treated with PQ. Thus both hyperoxia and an increased dose of PQ shortened the latent period and increased the severity of the PQ-induced microvascular permeability lesion, but hypoxia failed to prevent the PQ damage.  相似文献   

9.
Arachidonic acid (AA) metabolites are known to be potent vasoactive substances in the pulmonary circulation, whereas their influence on lung vascular permeability is still uncertain. We investigated the effect of AA bolus injection on the capillary filtration coefficient (Kf,C) of isolated rabbit lungs, recirculatingly perfused with Krebs-Henseleit albumin (1%) buffer. Kf,C was measured using repetitive sudden venous pressure elevations (7.5 Torr) and time zero extrapolation of the slope of the weight gain curve. It ranged from 1.3 to 2.4 cm3 X s-1 X Torr-1 X g-1 X 10(-4) in control lungs. Pulmonary arterial injection of AA (100 microM; in presence of 20 microM indomethacin to suppress pulmonary arterial pressure rise) during an acute hydrostatic challenge, but not at zero venous pressure, caused a greater than 10-fold increase in Kf,C. Vascular compliance was not altered. Additional experiments, performed under zero-flow conditions to avoid any ambiguity in microvascular pressure, corroborated the severalfold increase in vascular permeability, detectable within 3 min after AA application during acute hydrostatic challenge.  相似文献   

10.
Pulmonary edema has frequently been associated with air embolization of the lung. In the present study the hemodynamic effects of air emboli (AE) were studied in the isolated mechanically ventilated canine right lower lung lobe (RLL), pump perfused at a constant blood flow. Air was infused via the pulmonary artery (n = 7) at 0.6 ml/min until pulmonary arterial pressure (Pa) rose 250%. While Pa rose from 12.4 +/- 0.6 to 44.6 +/- 2.0 (SE) cmH2O (P less than 0.05), venous occlusion pressure remained constant (7.0 +/- 0.5 to 6.8 +/- 0.6 cmH2O; P greater than 0.05). Lobar vascular resistance (RT) increased from 2.8 +/- 0.3 to 12.1 +/- 0.2 Torr.ml-1.min.10(-2) (P less than 0.05), whereas the venous occlusion technique used to determine the segmental distribution of vascular resistance indicated the increase in RT was confined to vessels upstream to the veins. Control lobes (n = 7) administered saline at a similar rate showed no significant hemodynamic changes. As an index of microvascular injury the pulmonary filtration coefficient (Kf) was obtained by sequential elevations of lobar vascular pressures. The Kf was 0.11 +/- 0.01 and 0.07 +/- 0.01 ml.min-1.Torr-1.100 g RLL-1 in AE and control lobes, respectively (P less than 0.05). Despite a higher Kf in AE lobes, total lobe weight gains did not differ and airway fluid was not seen in the AE group. Although air embolization caused an increase in upstream resistance and vascular permeability, venous occlusion pressure did not increase, and marked edema did not occur.  相似文献   

11.
We investigated the effect of increasing hemoglobin- (Hb) O2 affinity on muscle maximal O2 uptake (VO2max) while muscle blood flow, [Hb], HbO2 saturation, and thus O2 delivery (muscle blood flow X arterial O2 content) to the working muscle were kept unchanged from control. VO2max was measured in isolated in situ canine gastrocnemius working maximally (isometric tetanic contractions). The muscles were pump perfused, in alternating order, with either normal blood [O2 half-saturation pressure of hemoglobin (P50) = 32.1 +/- 0.5 (SE) Torr] or blood from dogs that had been fed sodium cyanate (150 mg.kg-1.day-1) for 3-4 wk (P50 = 23.2 +/- 0.9). In both conditions (n = 8) arterial PO2 was set at approximately 200 Torr to fully saturate arterial blood, which thereby produced the same arterial O2 contents, and muscle blood flow was set at 106 ml.100 g-1.min-1, so that O2 delivery in both conditions was the same. VO2max was 11.8 +/- 1.0 ml.min-1.100 g-1 when perfused with the normal blood (control) and was reduced by 17% to 9.8 +/- 0.7 ml.min-1.100 g-1 when perfused with the low-P50 blood (P less than 0.01). Mean muscle effluent venous PO2 was also significantly less (26 +/- 3 vs. 30 +/- 2 Torr; P less than 0.01) in the low-P50 condition, as was an estimate of the capillary driving pressure for O2 diffusion, the mean capillary PO2 (45 +/- 3 vs. 51 +/- 2 Torr). However, the estimated muscle O2 diffusing capacity was not different between conditions.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

12.
This study evaluated the effect of ischemia-reperfusion (I-R) on pulmonary capillary permeability in isolated rabbit lungs and the roles of xanthine oxidase (XO), aldehyde oxidase (AO), and neutrophils (PMN) in producing this lung injury. Effects of XO and AO were studied by inactivation with a tungsten-enriched diet (0.7 g/kg) and inhibition of XO by allopurinol (100 microM) or AO by menadione (3.5 microM). PMN effects were studied by preventing endothelial adhesion with the monoclonal antibody IB4 (10 microM). Vascular permeability was evaluated by determining the capillary filtration coefficient (Kf,c) measured before and after I-R in all experimental conditions. Reperfusion after 2 h of ischemia significantly increased pulmonary capillary permeability (Kf,c changed from 0.096 +/- 0.014 to 0.213 +/- 0.025 ml.min-1. cmH2O-1.100 g-1), and this increase was blocked by the addition of catalase (50,000 U) at reperfusion (baseline Kf,c was 0.125 +/- 0.023 and 0.116 +/- 0.014 ml.min-1.cmH2O-1.100 g-1). XO inactivation with the tungsten-supplemented diet and XO inhibition with allopurinol prevented the Kf,c increase observed after I-R (0.183 +/- 0.030 to 0.185 +/- 0.033 and 0.126 +/- 0.018 to 0.103 +/- 0.005 ml.min-1.cmH2O-1.100 g-1). Inhibition of AO had no effect on I-R injury (Kf,c 0.108 +/- 0.011 to 0.167 +/- 0.014 ml.min-1.cmH2O-1.100 g-1). Preventing PMN adhesion resulted in significant attenuation of the change in Kf,c associated with I-R (0.112 +/- 0.032 to 0.090 +/- 0.065 ml.min-1.cmH2O-1.100 g-1). We conclude that XO and PMN adherence, but not AO, are involved in the increased capillary permeability associated with I-R.  相似文献   

13.
We continuously weighed fully distended excised or in situ canine lobes to estimate the fluid filtration coefficient (Kf) of the arterial and venous extra-alveolar vessels compared with that of the entire pulmonary circulation. Alveolar pressure was held constant at 25 cmH2O after full inflation. In the in situ lobes, the bronchial circulation was interrupted by embolization. Kf was estimated by two methods (Drake and Goldberg). Extra-alveolar vessels were isolated from alveolar vessels by embolizing enough 37- to 74-micron polystyrene beads into the lobar artery or vein to completely stop flow. In excised lobes, Kf's of the entire pulmonary circulation by the Drake and Goldberg methods were 0.122 +/- 0.041 (mean +/- SD) and 0.210 +/- 0.080 ml X min-1 X mmHg-1 X 100 g lung-1, respectively. Embolization was not found to increase the Kf's. The mean Kf's of the arterial extra-alveolar vessels were 0.068 +/- 0.014 (Drake) and 0.069 +/- 0.014 (Goldberg) (24 and 33% of the Kf's for the total pulmonary circulation). The mean Kf's of the venous extra-alveolar vessels were similar [0.046 +/- 0.020 (Drake) and 0.065 +/- 0.036 (Goldberg) or 33 and 35% of the Kf's for the total circulation]. No significant difference was found between the extra-alveolar vessel Kf's of in situ vs. excised lobes. These results suggest that when alveolar pressure, lung volume, and pulmonary vascular pressures are high, approximately one-third of the total fluid filtration comes from each of the three compartments.  相似文献   

14.
The effect of leukocyte depletion on acute lung injury produced by intravenous or intratracheal phorbol myristate acetate (PMA) administration was studied in isolated perfused rat lungs. Vascular endothelial permeability was assessed by use of the capillary filtration coefficient (Kf,c). A predicted pulmonary capillary pressure (Ppc,p) was calculated from measurements of postcapillary resistances. These parameters were measured before and 90 min after the administration of PMA, either intratracheally or intravascularly. When blood elements were present both intratracheal and intravascular PMA caused an increased Kf,c [0.27 +/- 0.02 vs. 0.99 +/- 0.22 and 0.25 +/- 0.05 vs. 0.64 +/- 0.15 (SE) ml.min-1.cmH2O-1.100 g-1, respectively; P less than 0.05] and an increased Ppc,p (8.3 +/- 0.4 vs. 74.7 +/- 18.3 and 8.7 +/- 0.8 vs. 74.2 +/- 25.1 cmH2O, respectively; P less than 0.05). Removal of circulating leukocytes abolished the increased Kf,c when PMA was given intratracheally (0.35 +/- 0.06 vs. 0.23 +/- 0.07 ml.min-1.cmH2O-1.100 g-1) or intravascularly (0.39 +/- 0.07 vs. 0.33 +/- 0.07 ml.min-1.cmH2O-1.100 g-1). In the absence of neutrophils, Ppc,p slightly increased with intratracheal PMA, from 6.9 +/- 0.5 to 10.5 +/- 1.1 cmH2O (P less than 0.05), but was unchanged at 90 min with intravascular PMA. Depletion of circulating neutrophils with an antineutrophil serum failed to block the Kf,c change with intratracheal PMA (from 0.24 +/- 0.03 to 0.42 +/- 0.09 ml.min-1.cmH2O-1.100 g-1; P less than 0.05). Ppc,p also increased from 6.9 +/- 0.6 to 19.8 +/- 6.7 cmH2O (P less than 0.05).(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

15.
To determine whether the accelerated rate of lobe weight gain during severe pulmonary edema is attributed to increased permeability of the microvascular barrier or a loss of tissue forces opposing filtration, the effect of edema on capillary filtration coefficient (Kf,C), interstitial compliance (Ci), and the volume of fluid filtered after a step increase in microvascular pressure (delta Vi) were determined in eight isolated left lower lobes of dog lungs perfused at 37 degrees C with autologous blood. After attaining a base-line isogravimetric state, the capillary pressure (Pc) was increased in successive steps of 2, 5, and 10 cmH2O. This sequence of vascular pressure increases was repeated three times. Edema accumulation was expressed as weight gained as a percent of initial lobe weight (% delta Wt), and Kf,C was measured by time 0 extrapolation of the weight gain curve. An exponential rate constant for the decrease in the rate of weight gain with time (K) was calculated for each curve. Ci was then calculated by assuming that the capillary wall and interstitium constitute a resistance-capacitance network. Kf,C was not increased by edema formation in any group. Between mild (% delta Wt less than 30%) and severe edema states (% delta Wt greater than 50%) respective mean Ci increased significantly from 3.54 to 9.12 ml.cmH2O-1.100 g-1, K decreased from 0.089 to 0.036 min-1, and delta Vi increased from 1.28 to 2.4 ml.cmH2O-1.100 g-1. The delta Vi during each Pc increase was highly correlated with Kf,C and Ci when used together as independent variables (r = 0.99) but less well correlated when used separately.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

16.
Dopamine production by the isolated perfused rat kidney   总被引:1,自引:0,他引:1  
We used isolated perfused rat kidneys to examine dopamine (DA) production and its relation to renal function. Both innervated and chronically surgically denervated kidneys perfused with a solution containing neither albumin nor tyrosine, excreted 0.2 +/- 0.1 ng DA X min-1 X g wet weight-1 during the 10-min collection period between 30 and 40 min after starting perfusion. When perfused with 6.7% albumin, without tyrosine, innervated kidneys excreted 1.0 +/- 0.06 ng DA X min-1 X g-1 and denervated kidneys excreted 1.0 +/- 0.07 DA X min-1 X g-1. When 0.03 mM tyrosine was included in the albumin perfusate, innervated kidneys excreted 1.2 +/- 0.1 ng DA X min-1 X g-1 (p less than 0.1). Under these conditions DA excretion continued for at least 100 min at which time it was 0.6 ng X min-1 X g-1 and 86 ng/g kidney weight had been excreted. Denervated kidneys perfused with albumin + tyrosine excreted 0.9 +/- 0.13 ng DA X min-1 X g-1. Renal stores of free DA, conjugated DA, and dihydroxyphenylalanine (DOPA) could have provided at the most 30 ng/g of DA. Carbidopa inhibited DA excretion completely. DA excretion did not correlate with renal vascular resistance, inulin clearance, or fractional sodium excretion. In summary, nonneural tissue in isolated perfused kidneys produced DA at the same rate as denervated kidneys in vivo. Less than one-third of the DA produced by isolated kidneys could have come from intrarenal stores of DOPA, free DA, and conjugated DA; the rest was synthesized from unknown precursors.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

17.
This study evaluated the physiological effects of compounds that increase adenosine 3',5'-cyclic monophosphate (cAMP) on changes in pulmonary capillary permeability and vascular resistance induced by ischemia-reperfusion (I-R) in isolated blood-perfused rabbit lungs. cAMP was elevated by 1) beta-adrenergic stimulation with isoproterenol (ISO, 10(-5) M), 2) post-beta-receptor stimulation of adenylate cyclase with forskolin (FSK, 10(-5) M), 3) and dibutyryl cAMP (DBcAMP, 1 mM), a cAMP analogue. Vascular permeability was assessed by determining the capillary filtration coefficient (Kf,c), and capillary pressure was measured using the double occlusion technique. The total, arterial, and venous vascular resistances were calculated from measured pulmonary arterial, venous, and capillary pressures and blood flow. Reperfusion after 2 h of ischemia significantly (P less than 0.05) increased Kf,c (from 0.115 +/- 0.028 to 0.224 +/- 0.040 ml.min-1.cmH2O-1.100 g-1). These I-R-induced changes in capillary permeability were prevented when ISO, FSK, or DBcAMP was added to the perfusate at reperfusion (0.110 +/- 0.022 and 0.103 +/- 0.021, 0.123 +/- 0.029 and 0.164 +/- 0.024, and 0.153 +/- 0.030 and 0.170 +/- 0.027 ml.min-1.cmH2O-1.100 g-1, respectively). I-R significantly increased total, arterial, and venous vascular resistances. These increases in vascular resistance were also blocked by ISO, FSK, and DBcAMP. These data suggest that beta-adrenergic stimulation, post-beta-receptor activation of adenylate cyclase, and DBcAMP prevent the changes in pulmonary vascular permeability and vascular resistances caused by I-R in isolated rabbit lungs through a mechanism involving an increase in intracellular levels of cAMP.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

18.
In six open-chest dogs, electrocardiogram- (ECG) controlled pulmonary arterial occlusion was performed during the control period and during the infusions of serotonin and histamine. A temporal series of instantaneous pulmonary capillary pressure and the longitudinal distributions of vascular resistance and compliance were evaluated in the intact left lower lung lobe. In the control period, we found a significant phasic variation of pulmonary capillary pressure (Pc) with the cardiac cycle. The ratio of arterial to venous resistances (Ra/Rv) was 6:4, and the ratio of arterial to capillary compliances (Ca/Cc) was 1:11. During the infusions of serotonin and histamine, Pc showed similar phasic variations, despite significant hemodynamic changes induced by these agents. Serotonin predominantly increased Ra, whereas histamine predominantly increased Rv. The ratio of Rv to the total resistance decreased significantly from 0.42 to 0.32 during the infusion of serotonin and increased significantly to 0.62 during the infusion of histamine. The data suggest that phasic Pc determined by ECG-controlled arterial occlusion reflects the pulsatility in the pulmonary microvascular bed under control conditions and after alterations of the pulmonary vascular resistance by serotonin and histamine.  相似文献   

19.
The Starling fluid filtration coefficient (Kf) of blood-perfused excised goat lungs was examined before and after infusion of Escherichia coli endotoxin. Kf was calculated from rate of weight gain as described by Drake et al. [Am. J. Physiol. 234 (Heart Circ. Physiol. 3): H266-H274, 1978]. These calculations were made twice during base line and then at hourly intervals for 5 h after infusion of 5 mg (approximately 250 micrograms/kg) of E. coli endotoxin or after injection of oleic acid (47 microliter/kg). All lungs were perfused at constant arterial and venous pressure under zone 3 conditions. Base-line Kf averaged 27 +/- 10 and 20 +/- 4 (SD) microliter.min-1.cmH2O-1.g dry wt-1 for endotoxin and oleic acid groups, respectively. It was unchanged in the endotoxin group throughout the experiment but approximately doubled in the oleic acid lungs. Pulmonary arterial and venous pressures were not changed significantly during the course of these experiments in either group. Lung wet-to-dry weight ratios of these lungs were 5.6 +/- 0.6 and 6.1 +/- 0.5 ml/g for the endotoxin and oleic acid groups, respectively. This compares with 4.6 +/- 0.5 ml/g for normal, freshly excised but not perfused goat lungs. The small change in lung water and unchanged pulmonary pressures after both endotoxin and oleic acid suggest that lung injury was minimal. We conclude that 1) endotoxin does not cause a direct injury to the endothelium of isolated lungs during the first 5 h of perfusion, and 2) neutrophils are not sufficient to cause increased Kf after endotoxin infusion in this preparation.  相似文献   

20.
Increased dependence on blood glucose after acclimatization to 4,300 m   总被引:5,自引:0,他引:5  
To evaluate the hypothesis that altitude exposure and acclimatization result in increased dependency on blood glucose as a fuel, seven healthy males (23 +/- 2 yr, 72.2 +/- 1.6 kg, mean +/- SE) on a controlled diet were studied in the postabsorptive condition at sea level (SL), on acute altitude exposure to 4,300 m (AA), and after 3 wk of chronic altitude exposure to 4,300 m (CA). Subjects received a primed continuous infusion of [6,6-2D]glucose and rested for a minimum of 90 min, followed immediately by 45 min of exercise at 101 +/- 3 W, which elicited 51.1 +/- 1% of the SL maximal O2 consumption (VO2 max; 65 +/- 2% of altitude VO2 max). At SL, resting arterial glucose concentration was 82.4 +/- 3.2 mg/dl and rose significantly to 91.2 +/- 3.2 mg/dl during exercise. Resting glucose appearance rate (Ra) was 1.79 +/- 0.02 mg.kg-1.min-1; this increased significantly during exercise at SL to 3.71 +/- 0.08 mg.kg-1.min-1. On AA, resting arterial glucose concentration (85.8 +/- 4.1 mg/dl) was not different from sea level, but Ra (2.11 +/- 0.14 mg.kg-1.min-1) rose significantly. During exercise on AA, glucose concentration rose to levels seen at SL (91.4 +/- 3.0 mg/dl), but Ra increased more than at SL (to 4.85 +/- 0.15 mg.kg-1.min-1; P less than 0.05). Resting arterial glucose was significantly depressed with CA (70.8 +/- 3.8 mg/dl), but resting Ra increased to 3.59 +/- 0.08 mg.kg-1.min-1, significantly exceeding SL and AA values.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号