共查询到20条相似文献,搜索用时 15 毫秒
1.
Background
The most popular methods for significance analysis on microarray data are well suited to find genes differentially expressed across predefined categories. However, identification of features that correlate with continuous dependent variables is more difficult using these methods, and long lists of significant genes returned are not easily probed for co-regulations and dependencies. Dimension reduction methods are much used in the microarray literature for classification or for obtaining low-dimensional representations of data sets. These methods have an additional interpretation strength that is often not fully exploited when expression data are analysed. In addition, significance analysis may be performed directly on the model parameters to find genes that are important for any number of categorical or continuous responses. We introduce a general scheme for analysis of expression data that combines significance testing with the interpretative advantages of the dimension reduction methods. This approach is applicable both for explorative analysis and for classification and regression problems. 相似文献2.
Caroline Truntzer Catherine Mercier Jacques Estève Christian Gautier Pascal Roy 《BMC bioinformatics》2007,8(1):90
Background
With the advance of microarray technology, several methods for gene classification and prognosis have been already designed. However, under various denominations, some of these methods have similar approaches. This study evaluates the influence of gene expression variance structure on the performance of methods that describe the relationship between gene expression levels and a given phenotype through projection of data onto discriminant axes. 相似文献3.
Boosting for tumor classification with gene expression data 总被引:7,自引:0,他引:7
MOTIVATION: Microarray experiments generate large datasets with expression values for thousands of genes but not more than a few dozens of samples. Accurate supervised classification of tissue samples in such high-dimensional problems is difficult but often crucial for successful diagnosis and treatment. A promising way to meet this challenge is by using boosting in conjunction with decision trees. RESULTS: We demonstrate that the generic boosting algorithm needs some modification to become an accurate classifier in the context of gene expression data. In particular, we present a feature preselection method, a more robust boosting procedure and a new approach for multi-categorical problems. This allows for slight to drastic increase in performance and yields competitive results on several publicly available datasets. AVAILABILITY: Software for the modified boosting algorithms as well as for decision trees is available for free in R at http://stat.ethz.ch/~dettling/boosting.html. 相似文献
4.
Dettling M 《Bioinformatics (Oxford, England)》2004,20(18):3583-3593
MOTIVATION: Microarray experiments are expected to contribute significantly to the progress in cancer treatment by enabling a precise and early diagnosis. They create a need for class prediction tools, which can deal with a large number of highly correlated input variables, perform feature selection and provide class probability estimates that serve as a quantification of the predictive uncertainty. A very promising solution is to combine the two ensemble schemes bagging and boosting to a novel algorithm called BagBoosting. RESULTS: When bagging is used as a module in boosting, the resulting classifier consistently improves the predictive performance and the probability estimates of both bagging and boosting on real and simulated gene expression data. This quasi-guaranteed improvement can be obtained by simply making a bigger computing effort. The advantageous predictive potential is also confirmed by comparing BagBoosting to several established class prediction tools for microarray data. AVAILABILITY: Software for the modified boosting algorithms, for benchmark studies and for the simulation of microarray data are available as an R package under GNU public license at http://stat.ethz.ch/~dettling/bagboost.html. 相似文献
5.
MOTIVATION: The nearest shrunken centroids classifier has become a popular algorithm in tumor classification problems using gene expression microarray data. Feature selection is an embedded part of the method to select top-ranking genes based on a univariate distance statistic calculated for each gene individually. The univariate statistics summarize gene expression profiles outside of the gene co-regulation network context, leading to redundant information being included in the selection procedure. RESULTS: We propose an Eigengene-based Linear Discriminant Analysis (ELDA) to address gene selection in a multivariate framework. The algorithm uses a modified rotated Spectral Decomposition (SpD) technique to select 'hub' genes that associate with the most important eigenvectors. Using three benchmark cancer microarray datasets, we show that ELDA selects the most characteristic genes, leading to substantially smaller classifiers than the univariate feature selection based analogues. The resulting de-correlated expression profiles make the gene-wise independence assumption more realistic and applicable for the shrunken centroids classifier and other diagonal linear discriminant type of models. Our algorithm further incorporates a misclassification cost matrix, allowing differential penalization of one type of error over another. In the breast cancer data, we show false negative prognosis can be controlled via a cost-adjusted discriminant function. AVAILABILITY: R code for the ELDA algorithm is available from author upon request. 相似文献
6.
7.
MOTIVATION: We introduce simple graphical classification and prediction tools for tumor status using gene-expression profiles. They are based on two dimension estimation techniques sliced average variance estimation (SAVE) and sliced inverse regression (SIR). Both SAVE and SIR are used to infer on the dimension of the classification problem and obtain linear combinations of genes that contain sufficient information to predict class membership, such as tumor type. Plots of the estimated directions as well as numerical thresholds estimated from the plots are used to predict tumor classes in cDNA microarrays and the performance of the class predictors is assessed by cross-validation. A microarray simulation study is carried out to compare the power and predictive accuracy of the two methods. RESULTS: The methods are applied to cDNA microarray data on BRCA1 and BRCA2 mutation carriers as well as sporadic tumors from Hedenfalk et al. (2001). All samples are correctly classified. 相似文献
8.
Tumor classification is a well-studied problem in the field of bioinformatics. Developments in the field of DNA chip design have now made it possible to measure the expression levels of thousands of genes in sample tissue from healthy cell lines or tumors. A number of studies have examined the problems of tumor classification: class discovery, the problem of defining a number of classes of tumors using the data from a DNA chip, and class prediction, the problem of accurately classifying an unknown tumor, given expression data from the unknown tumor and from a learning set. The current work has applied phylogenetic methods to both problems. To solve the class discovery problem, we impose a metric on a set of tumors as a function of their gene expression levels, and impose a tree structure on this metric, using standard tree fitting methods borrowed from the field of phylogenetics. Phylogenetic methods provide a simple way of imposing a clear hierarchical relationship on the data, with branch lengths in the classification tree representing the degree of separation witnessed. We tested our method for class discovery on two data sets: a data set of 87 tissues, comprised mostly of small, round, blue-cell tumors (SRBCTs), and a data set of 22 breast tumors. We fit the 87 samples of the first set to a classification tree, which neatly separated into four major clusters corresponding exactly to the four groups of tumors, namely neuroblastomas, rhabdomyosarcomas, Burkitt's lymphomas, and the Ewing's family of tumors. The classification tree built using the breast cancer data separated tumors with BRCA1 mutations from those with BRCA2 mutations, with sporadic tumors separated from both groups and from each other. We also demonstrate the flexibility of the class discovery method with regard to standard resampling methodology such as jackknifing and noise perturbation. To solve the class prediction problem, we built a classification tree on the learning set, and then sought the optimal placement of each test sample within the classification tree. We tested this method on the SRBCT data set, and classified each tumor successfully. 相似文献
9.
Background
An important use of data obtained from microarray measurements is the classification of tumor types with respect to genes that are either up or down regulated in specific cancer types. A number of algorithms have been proposed to obtain such classifications. These algorithms usually require parameter optimization to obtain accurate results depending on the type of data. Additionally, it is highly critical to find an optimal set of markers among those up or down regulated genes that can be clinically utilized to build assays for the diagnosis or to follow progression of specific cancer types. In this paper, we employ a mixed integer programming based classification algorithm named hyper-box enclosure method (HBE) for the classification of some cancer types with a minimal set of predictor genes. This optimization based method which is a user friendly and efficient classifier may allow the clinicians to diagnose and follow progression of certain cancer types.Methodology/Principal Findings
We apply HBE algorithm to some well known data sets such as leukemia, prostate cancer, diffuse large B-cell lymphoma (DLBCL), small round blue cell tumors (SRBCT) to find some predictor genes that can be utilized for diagnosis and prognosis in a robust manner with a high accuracy. Our approach does not require any modification or parameter optimization for each data set. Additionally, information gain attribute evaluator, relief attribute evaluator and correlation-based feature selection methods are employed for the gene selection. The results are compared with those from other studies and biological roles of selected genes in corresponding cancer type are described.Conclusions/Significance
The performance of our algorithm overall was better than the other algorithms reported in the literature and classifiers found in WEKA data-mining package. Since it does not require a parameter optimization and it performs consistently very high prediction rate on different type of data sets, HBE method is an effective and consistent tool for cancer type prediction with a small number of gene markers. 相似文献10.
Computational methods for gene expression-based tumor classification 总被引:10,自引:0,他引:10
Gene expression profiles may offer more or additional information than classic morphologic- and histologic-based tumor classification systems. Because the number of tissue samples examined is usually much smaller than the number of genes examined, efficient data reduction and analysis methods are critical. In this report, we propose a principal component and discriminant analysis method of tumor classification using gene expression profile data. Expression of 2000 genes in 40 tumor and 22 normal colon tissue samples is used to examine the feasibility of gene expression-based tumor classification systems. Using this method, the percentage of correctly classified normal and tumor tissue was 87.0%. The combined approach using principal components and discriminant analysis provided superior sensitivity and specificity compared to an approach using simple differences in the expression levels of individual genes. 相似文献
11.
12.
Ghosh D 《Biometrics》2003,59(4):992-1000
Due to the advent of high-throughput microarray technology, it has become possible to develop molecular classification systems for various types of cancer. In this article, we propose a methodology using regularized regression models for the classification of tumors in microarray experiments. The performances of principal components, partial least squares, and ridge regression models are studied; these regression procedures are adapted to the classification setting using the optimal scoring algorithm. We also develop a procedure for ranking genes based on the fitted regression models. The proposed methodologies are applied to two microarray studies in cancer. 相似文献
13.
Background
Designing appropriate machine learning methods for identifying genes that have a significant discriminating power for disease outcomes has become more and more important for our understanding of diseases at genomic level. Although many machine learning methods have been developed and applied to the area of microarray gene expression data analysis, the majority of them are based on linear models, which however are not necessarily appropriate for the underlying connection between the target disease and its associated explanatory genes. Linear model based methods usually also bring in false positive significant features more easily. Furthermore, linear model based algorithms often involve calculating the inverse of a matrix that is possibly singular when the number of potentially important genes is relatively large. This leads to problems of numerical instability. To overcome these limitations, a few non-linear methods have recently been introduced to the area. Many of the existing non-linear methods have a couple of critical problems, the model selection problem and the model parameter tuning problem, that remain unsolved or even untouched. In general, a unified framework that allows model parameters of both linear and non-linear models to be easily tuned is always preferred in real-world applications. Kernel-induced learning methods form a class of approaches that show promising potentials to achieve this goal. 相似文献14.
Microarrays can provide genome-wide expression patterns for various cancers, especially for tumor sub-types that may exhibit substantially different patient prognosis. Using such gene expression data, several approaches have been proposed to classify tumor sub-types accurately. These classification methods are not robust, and often dependent on a particular training sample for modelling, which raises issues in utilizing these methods to administer proper treatment for a future patient. We propose to construct an optimal, robust prediction model for classifying cancer sub-types using gene expression data. Our model is constructed in a step-wise fashion implementing cross-validated quadratic discriminant analysis. At each step, all identified models are validated by an independent sample of patients to develop a robust model for future data. We apply the proposed methods to two microarray data sets of cancer: the acute leukemia data by Golub et al. and the colon cancer data by Alon et al. We have found that the dimensionality of our optimal prediction models is relatively small for these cases and that our prediction models with one or two gene factors outperforms or has competing performance, especially for independent samples, to other methods based on 50 or more predictive gene factors. The methodology is implemented and developed by the procedures in R and Splus. The source code can be obtained at http://hesweb1.med.virginia.edu/bioinformatics. 相似文献
15.
Clustering methods for microarray gene expression data 总被引:1,自引:0,他引:1
Within the field of genomics, microarray technologies have become a powerful technique for simultaneously monitoring the expression patterns of thousands of genes under different sets of conditions. A main task now is to propose analytical methods to identify groups of genes that manifest similar expression patterns and are activated by similar conditions. The corresponding analysis problem is to cluster multi-condition gene expression data. The purpose of this paper is to present a general view of clustering techniques used in microarray gene expression data analysis. 相似文献
16.
Tumor classification by partial least squares using microarray gene expression data 总被引:30,自引:0,他引:30
MOTIVATION: One important application of gene expression microarray data is classification of samples into categories, such as the type of tumor. The use of microarrays allows simultaneous monitoring of thousands of genes expressions per sample. This ability to measure gene expression en masse has resulted in data with the number of variables p(genes) far exceeding the number of samples N. Standard statistical methodologies in classification and prediction do not work well or even at all when N < p. Modification of existing statistical methodologies or development of new methodologies is needed for the analysis of microarray data. RESULTS: We propose a novel analysis procedure for classifying (predicting) human tumor samples based on microarray gene expressions. This procedure involves dimension reduction using Partial Least Squares (PLS) and classification using Logistic Discrimination (LD) and Quadratic Discriminant Analysis (QDA). We compare PLS to the well known dimension reduction method of Principal Components Analysis (PCA). Under many circumstances PLS proves superior; we illustrate a condition when PCA particularly fails to predict well relative to PLS. The proposed methods were applied to five different microarray data sets involving various human tumor samples: (1) normal versus ovarian tumor; (2) Acute Myeloid Leukemia (AML) versus Acute Lymphoblastic Leukemia (ALL); (3) Diffuse Large B-cell Lymphoma (DLBCLL) versus B-cell Chronic Lymphocytic Leukemia (BCLL); (4) normal versus colon tumor; and (5) Non-Small-Cell-Lung-Carcinoma (NSCLC) versus renal samples. Stability of classification results and methods were further assessed by re-randomization studies. 相似文献
17.
Paul Helman Robert Veroff Susan R Atlas Cheryl Willman 《Journal of computational biology》2004,11(4):581-615
We present new techniques for the application of a Bayesian network learning framework to the problem of classifying gene expression data. The focus on classification permits us to develop techniques that address in several ways the complexities of learning Bayesian nets. Our classification model reduces the Bayesian network learning problem to the problem of learning multiple subnetworks, each consisting of a class label node and its set of parent genes. We argue that this classification model is more appropriate for the gene expression domain than are other structurally similar Bayesian network classification models, such as Naive Bayes and Tree Augmented Naive Bayes (TAN), because our model is consistent with prior domain experience suggesting that a relatively small number of genes, taken in different combinations, is required to predict most clinical classes of interest. Within this framework, we consider two different approaches to identifying parent sets which are supported by the gene expression observations and any other currently available evidence. One approach employs a simple greedy algorithm to search the universe of all genes; the second approach develops and applies a gene selection algorithm whose results are incorporated as a prior to enable an exhaustive search for parent sets over a restricted universe of genes. Two other significant contributions are the construction of classifiers from multiple, competing Bayesian network hypotheses and algorithmic methods for normalizing and binning gene expression data in the absence of prior expert knowledge. Our classifiers are developed under a cross validation regimen and then validated on corresponding out-of-sample test sets. The classifiers attain a classification rate in excess of 90% on out-of-sample test sets for two publicly available datasets. We present an extensive compilation of results reported in the literature for other classification methods run against these same two datasets. Our results are comparable to, or better than, any we have found reported for these two sets, when a train-test protocol as stringent as ours is followed. 相似文献
18.
Berger JA Hautaniemi S Mitra SK Astola J 《IEEE/ACM transactions on computational biology and bioinformatics / IEEE, ACM》2006,3(1):2-16
With the growing surge of biological measurements, the problem of integrating and analyzing different types of genomic measurements has become an immediate challenge for elucidating events at the molecular level. In order to address the problem of integrating different data types, we present a framework that locates variation patterns in two biological inputs based on the generalized singular value decomposition (GSVD). In this work, we jointly examine gene expression and copy number data and iteratively project the data on different decomposition directions defined by the projection angle /spl theta/ in the GSVD. With the proper choice of /spl theta/, we locate similar and dissimilar patterns of variation between both data types. We discuss the properties of our algorithm using simulated data and conduct a case study with biologically verified results. Ultimately, we demonstrate the efficacy of our method on two genome-wide breast cancer studies to identify genes with large variation in expression and copy number across numerous cell line and tumor samples. Our method identifies genes that are statistically significant in both input measurements. The proposed method is useful for a wide variety of joint copy number and expression-based studies. Supplementary information is available online, including software implementations and experimental data. 相似文献
19.
Although many numerical clustering algorithms have been applied to gene expression dataanalysis,the essential step is still biological interpretation by manual inspection.The correlation betweengenetic co-regulation and affiliation to a common biological process is what biologists expect.Here,weintroduce some clustering algorithms that are based on graph structure constituted by biological knowledge.After applying a widely used dataset,we compared the result clusters of two of these algorithms in terms ofthe homogeneity of clusters and coherence of annotation and matching ratio.The results show that theclusters of knowledge-guided analysis are the kernel parts of the clusters of Gene Ontology (GO)-Clustersoftware,which contains the genes that are most expression correlative and most consistent with biologicalfunctions.Moreover,knowledge-guided analysis seems much more applicable than GO-Cluster in a largerdataset. 相似文献