首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 578 毫秒
1.
Many issues concerning the evolution of spliceosomal introns remain poorly understood. In this respect, the reconstruction of the evolution of introns in deep branching species such as alveolates is of special significance. In this study, we inferred the intron evolution in alveolates using 3,368 intron positions in 162 orthologs from 10 species (9 alveolates and 1 outgroup, Homo sapiens). We found that although very few intron gains and losses have occurred in Theileria and Plasmodium recently, many intron gains and losses have occurred in the evolution of alveolates. Thus, the rates of intron gain and loss in alveolates have varied greatly across time and lineage. Our results seem to support the notion that massive intron gains and losses have occurred during short episodes, perhaps coinciding with major evolutionary events.  相似文献   

2.
We examined the gene structure of a set of 2563 Arabidopsis thaliana paralogous pairs that were duplicated simultaneously 20-60 MYA by tetraploidy. Out of a total of 23,164 introns in these genes, we found that 10,004 pairs have been conserved and 578 introns have been inserted or deleted in the time since the duplication event. This intron insertion/deletion rate of 2.7 x 10(-3) to 9.1 x 10(-4) per site per million years is high in comparison to previous studies. At least 56 introns were gained and 39 lost based on parsimony analysis of the phylogenetic distribution of these introns. We found weak evidence that genes undergoing intron gain and loss are biased with respect to gene ontology terms. Gene pairs that experienced at least 2 intron insertions or deletions show evidence of enrichment for membrane location and transport and transporter activity function. We do not find any relationship of intron flux to expression level or G + C content of the gene. Detection of a bias in the location of intron gains and losses within a gene depends on the method of measurement: an intragene method indicates that events (specifically intron losses) are biased toward the 3' end of the gene. Despite the relatively recent acquisition of these introns, we found only one case where we could identify the mechanism of intron origin--the TOUCH3 gene has experienced 2 tandem, partial, internal gene duplications that duplicated a preexisting intron and also created a novel, alternatively spliced intron that makes use of a duplicated pair of cryptic splice sites.  相似文献   

3.
Sequencing of eukaryotic genomes allows one to address major evolutionary problems, such as the evolution of gene structure. We compared the intron positions in 684 orthologous gene sets from 8 complete genomes of animals, plants, fungi, and protists and constructed parsimonious scenarios of evolution of the exon-intron structure for the respective genes. Approximately one-third of the introns in the malaria parasite Plasmodium falciparum are shared with at least one crown group eukaryote; this number indicates that these introns have been conserved through >1.5 billion years of evolution that separate Plasmodium from the crown group. Paradoxically, humans share many more introns with the plant Arabidopsis thaliana than with the fly or nematode. The inferred evolutionary scenario holds that the common ancestor of Plasmodium and the crown group and, especially, the common ancestor of animals, plants, and fungi had numerous introns. Most of these ancestral introns, which are retained in the genomes of vertebrates and plants, have been lost in fungi, nematodes, arthropods, and probably Plasmodium. In addition, numerous introns have been inserted into vertebrate and plant genes, whereas, in other lineages, intron gain was much less prominent.  相似文献   

4.
Intron density in eukaryote genomes varies by more than three orders of magnitude, so there must have been extensive intron gain and/or intron loss during evolution. A favored and partial explanation for this range of intron densities has been that introns have accumulated stochastically in large eukaryote genomes during their evolution from an intron-poor ancestor. However, recent studies have shown that some eukaryotes lost many introns, whereas others accumulated and/or gained many introns. In this article, we discuss the growing evidence that these differences are subject to selection acting on introns depending on the biology of the organism and the gene involved.  相似文献   

5.
The origins and importance of spliceosomal introns comprise one of the longest-abiding mysteries of molecular evolution. Considerable debate remains over several aspects of the evolution of spliceosomal introns, including the timing of intron origin and proliferation, the mechanisms by which introns are lost and gained, and the forces that have shaped intron evolution. Recent important progress has been made in each of these areas. Patterns of intron-position correspondence between widely diverged eukaryotic species have provided insights into the origins of the vast differences in intron number between eukaryotic species, and studies of specific cases of intron loss and gain have led to progress in understanding the underlying molecular mechanisms and the forces that control intron evolution.  相似文献   

6.
7.
Although spliceosomal introns are present in all characterized eukaryotes, intron numbers vary dramatically, from only a handful in the entire genomes of some species to nearly 10 introns per gene on average in vertebrates. For all previously studied intron-rich species, significant fractions of intron positions are shared with other widely diverged eukaryotes, indicating that 1) large numbers of the introns date to much earlier stages of eukaryotic evolution and 2) these lineages have not passed through a very intron-poor stage since early eukaryotic evolution. By the same token, among species that have lost nearly all of their ancestral introns, no species is known to harbor large numbers of more recently gained introns. These observations are consistent with the notion that intron-dense genomes have arisen only once over the course of eukaryotic evolution. Here, we report an exception to this pattern, in the intron-rich diatom Thalassiosira pseudonana. Only 8.1% of studied T. pseudonana intron positions are conserved with any of a variety of divergent eukaryotic species. This implies that T. pseudonana has both 1) lost nearly all of the numerous introns present in the diatom-apicomplexan ancestor and 2) gained a large number of new introns since that time. In addition, that so few apparently inserted T. pseudonana introns match the positions of introns in other species implies that insertion of multiple introns into homologous genic sites in eukaryotic evolution is less common than previously estimated. These results suggest the possibility that intron-rich genomes may have arisen multiple times in evolution. These results also provide evidence that multiple intron insertion into the same site is rare, further supporting the notion that early eukaryotic ancestors were very intron rich.  相似文献   

8.
Tetrodotoxin (TTX) is a highly potent neurotoxin that selectively binds to the outer vestibule of voltage-gated sodium channels. Pufferfishes accumulate extremely high concentrations of TTX without any adverse effect. A nonaromatic amino acid (Asn) residue present in domain I of the pufferfish, Takifugu pardalis, Na v1.4 channel has been implicated in the TTX resistance of pufferfishes . However, the effect of this residue on TTX sensitivity has not been investigated, and it is not known if this residue is conserved in all pufferfishes. We have investigated the genetic basis of TTX resistance in pufferfishes by comparing the sodium channels from two pufferfishes (Takifugu rubripes [fugu] and Tetraodon nigroviridis) and the TTX-sensitive zebrafish. Although all three fishes contain duplicate copies of Na v1.4 channels (Na v1.4a and Na v1.4b), several substitutions were found in the TTX binding outer vestibule of the two pufferfish channels. Electrophysiological studies showed that the nonaromatic residue (Asn in fugu and Cys in Tetraodon) in domain I of Na v1.4a channels confers TTX resistance. The Glu-to-Asp mutation in domain II of Tetraodon channel Na v1.4b is similar to that in the saxitoxin- and TTX-resistant Na+ channels of softshell clams . Besides helping to deter predators, TTX resistance enables pufferfishes to selectively feed on TTX-bearing organisms.  相似文献   

9.
10.
Identification of recently gained spliceosomal introns would provide crucial evidence in the continuing debate concerning the age and evolutionary significance of introns. A previously published genomic analysis reported to have identified 122 introns that had been gained since the divergence of the nematodes Caenorhabidits elegans and Caenorhabditis briggsae approximately 100 MYA. However, using newly available genomic sequence from additional Caenorhabditis species, we show that 74% (60/81) of the reported gains in C. elegans are present in a C. briggsae relative. This pattern indicates that these introns represent losses in C. briggsae, not gains in C. elegans. In addition, 61% (25/41) of the reported gains in C. briggsae are present in the more distant C. briggsae relative, in a pattern suggesting that additional reported gains in C. elegans and/or C. briggsae may in fact represent unrecognized losses. These results underscore the dominance of intron loss over intron gain in recent eukaryotic evolution, the pitfalls associated with parsimony in inferring intron gains, and the importance of genomic sequencing of clusters of closely related species for drawing accurate inferences about genome evolution.  相似文献   

11.
Angiosperms (flowering plants), including both monocots and dicots, contain small catalase gene families. In the dicot, Arabidopsis thaliana, two catalase (CAT) genes, CAT1 and CAT3, are tightly linked on chromosome 1 and a third, CAT2, which is more similar to CAT1 than to CAT3, is unlinked on chromosome 4. Comparison of positions and numbers of introns among 13 angiosperm catalase genomic sequences indicates that intron positions are conserved, and suggests that an ancestral catalase gene common to monocots and dicots contained seven introns. Arabidopsis CAT2 has seven introns; both CAT1 and CAT3 have six introns in positions conserved with CAT2, but each has lost a different intron. We suggest the following sequence of events during the evolution of the Arabidopsis catalase gene family. An initial duplication of an ancestral catalase gene gave rise to CAT3 and CAT1. CAT1 then served as the template for a second duplication, yielding CAT2. Intron losses from CAT1 and CAT3 followed these duplications. One subclade of monocot catalases has lost all but the 5''-most and 3''-most introns, which is consistent with a mechanism of intron loss by replacement of an ancestral intron-containing gene with a reverse-transcribed DNA copy of a fully spliced mRNA. Following this event of concerted intron loss, the Oryza sativa (rice, a monocot) CAT1 lineage acquired an intron in a novel position, consistent with a mechanism of intron gain at proto-splice sites.  相似文献   

12.
Hashimoto H  Uji S  Kurokawa T  Washio Y  Suzuki T 《Gene》2007,387(1-2):126-132
The lefty gene encodes a member of the TGF-beta superfamily that regulates L-R axis formation during embryogenesis via antagonistic activity against Nodal, another TGF-beta superfamily member. Both mouse and zebrafish have two lefty genes, lefty1 and lefty2. Interestingly, the expression domains of mouse and zebrafish lefty are different from one another. At present, the orthology and functional diversity of the mouse and zebrafish lefty genes are not clear. Here, we report that flounder and two fugu species, Takifugu and Tetraodon, have a single lefty gene in their genomes. In addition, we provide evidence that the mouse lefty genes were duplicated on a single chromosome but the zebrafish lefty genes arose from a whole-genome duplication that occurred early in the divergence of ray-finned fishes. These independent origins likely explain the difference in the expression domains of the mouse and zebrafish lefty gene pairs. Furthermore, we found that the duplication corresponding to the zebrafish lefty2 gene was lost from the fugu genome, suggesting that loss of lefty2 in the fugu/flounder lineage occurred after its divergence from the zebrafish lineage. During L-R patterning, the single lefty gene of flounder covers two expression domains, the left side of the dorsal diencephalon and the left LPM, which are regulated separately by lefty1 and lefty2 in zebrafish. We infer that the lefty genes of the ray-finned fishes and mammals underwent independent gene duplication events that resulted in independent regulation of lefty expression.  相似文献   

13.
D J Bolland  J E Hewitt 《Gene》2001,271(1):43-49
The human SART1 gene was initially identified in a screen for proteins recognised by IgE, which may be implicated in atopic disease. We have examined the genomic structure and cDNA sequence of the SART1 gene in the compact genomes of the pufferfish Fugu rubripes and Tetraodon nigroviridis. The entire coding regions of both the Fugu and Tetraodon SART1 genes are contained within single exons. The Fugu gene contains only one intron located in the 5' untranslated region. Southern blot hybridisation of Fugu genomic DNA confirmed the SART1 gene to be single copy. Partial genomic structures were also determined for the human, mouse, Drosophila and C. elegans SART1 homologues. The human and mouse genes both contain many introns in the coding region, the human gene possessing at least 20 exons. The Drosophila and C. elegans homologues contain 6 and 12 exons, respectively. This is only the second time such a difference in the organization of homologous Fugu and human genes has been reported. The Fugu and Tetraodon SART1 genes encode putative proteins of 772 and 774 aa, respectively, each having 65% amino acid identity to human SART1. Leucine zipper and basic motifs are conserved in the predicted Fugu and Tetraodon proteins.  相似文献   

14.
Slow molecular clocks in Old World monkeys,apes, and humans   总被引:17,自引:0,他引:17  
Two longstanding issues on the molecular clock hypothesis are studied in this article. First, is there a global molecular clock in mammals? Although many authors have observed unequal rates of nucleotide substitution among mammalian lineages, some authors have proposed a global clock for all eutherians, i.e., a single global rate of 2.2 x 10(-9) substitutions per nucleotide site per year. We reexamine this issue using noncoding, nonrepetitive DNA from Old World monkeys (OWMs), chimpanzee, and human. First, using the minimal date of 6 MYA for the human-chimpanzee divergence and more than 2.5 million base pairs of genomic sequences from human and chimpanzee, we estimate a maximal rate of 0.99 x 10(-9) for noncoding, nonrepetitive genomic regions for these two species. This estimate is less than half of the proposed global rate and much smaller than the commonly used rate (3.5 x 10(-9)) for eutherians. Further, using a minimal date of 23 MYA for the human-OWM divergence, we estimate a maximal rate of 1.5 x 10(-9) for both introns and fourfold degenerate sites in humans and OWMs. In addition, with the New World monkey (NWM) lineage as an outgroup, we estimate that the rate of substitution in introns is 30% higher in the OWM lineage than in the human lineage. Clearly, there is no global molecular clock in eutherians. Second, although many studies have indicated considerable variation in the mutation rate among regions of the mammalian genome, a recent study proposed a uniform rate. Using new and existing intron sequence data from higher primates, we find significant rate variation among genomic regions and a positive correlation between the rate of substitution and the GC content, refuting the claim of a uniform rate.  相似文献   

15.
16.
The evolution of spliceosomal introns remains intensely debated. We studied 96 Entamoeba histolytica genes previously identified as having been laterally transferred from prokaryotes, which were presumably intronless at the time of transfer. Ninety out of the 96 are also present in the reptile parasite Entamoeba invadens, indicating lateral transfer before the species' divergence approximately 50 MYA. We find only 2 introns, both shared with E. invadens. Thus, no intron gains have occurred in approximately 50 Myr, implying a very low rate of intron gain of less than one gain per gene per approximately 4.5 billion years. Nine other predicted introns are due to annotation errors reflecting apparent mistakes in the E. histolytica genome assembly. These results underscore the massive differences in intron gain rates through evolution.  相似文献   

17.
Intron loss and gain in Drosophila   总被引:1,自引:0,他引:1  
Although introns were first discovered almost 30 years ago, their evolutionary origin remains elusive. In this work, we used multispecies whole-genome alignments to map Drosophila melanogaster introns onto 10 other fully sequenced Drosophila genomes. We were able to find 1,944 sites where an intron was missing in one or more species. We show that for most (>80%) of these cases, there is no leftover intronic sequence or any missing exonic sequence, indicating exact intron loss or gain events. We used parsimony to classify these differences as 1,754 intron loss events and 213 gain events. We show that lost and gained introns are significantly shorter than average and flanked by longer than average exons. They also display quite distinct phase distributions and show greater than average similarity between the 5' splice site and its 3' partner splice site. Introns that have been lost in one or more species evolve faster than other introns, occur in slowly evolving genes, and are found adjacent to each other more often than would be expected for independent single losses. Our results support the cDNA recombination mechanism of intron loss, suggest that selective pressures affect site-specific loss rates, and show conclusively that intron gain has occurred within the Drosophila lineage, solidifying the "introns-middle" hypothesis and providing some hints about the gain mechanism.  相似文献   

18.
Today, the reconstruction of the organismal evolutionary tree is based mainly on molecular sequence data. However, sequence data are sometimes insufficient to reliably resolve in particular deep branches. Thus, it is highly desirable to find novel, more reliable types of phylogenetic markers that can be derived from the wealth of genomic data. Here, we consider the gain of introns close to older preexisting ones. Because correct splicing is impeded by very small exons, nearby pairs of introns very rarely coexist, that is, the gain of the new intron is nearly always associated with the loss of the old intron. Both events may even be directly connected as in cases of intron migration. Therefore, it should be possible to identify one of the introns as ancient (plesiomorphic) and the other as novel (derived or apomorphic). To test the suitability of such near intron pairs (NIPs) as a marker class for phylogenetic analysis, we undertook an analysis of the evolutionary positions of bees and wasps (Hymenoptera) and beetles (Coleoptera) in relation to moths (Lepidoptera) and dipterans (Diptera) using recently completed genome project data. By scanning 758 putatively orthologous gene structures of Apis mellifera (Hymenoptera) and Tribolium castaneum (Coleoptera), we identified 189 pairs of introns, one from each species, which are located less than 50 nt from each other. A comparison with genes from 5 other holometabolan and 9 metazoan outgroup genomes resulted in 22 shared derived intron positions found in beetle as well as in butterflies and/or dipterans. This strongly supports a basal position of hymenopterans in the holometabolous insect tree. In addition, we found 31 and 12 intron positions apomorphic for A. mellifera and T. castaneum, respectively, which seem to represent changes inside these branches. Another 12 intron pairs indicate parallel intron gains or extraordinarily small exons. In conclusion, we show here that the analysis of phylogenetically nested, nearby intron pairs is suitable to identify evolutionarily younger intron positions and to determine their relative age, which should be of equal importance for the understanding of intron evolution and the reconstruction of the eukaryotic tree.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号