首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In animal models of neurodegenerative diseases pathological changes vary with the type of organ and species of the animals. We studied differences in the mitochondrial permeability transition (mPT) and reactive oxygen species (ROS) generation in the liver (LM) and brain (BM) of Sprague-Dawley rats and C57Bl mice. In the presence of ADP mouse LM and rat LM required three times less Ca2+ to initiate mPT than the corresponding BM. Mouse LM and BM sequestered 70% and 50% more Ca2+ phosphate than the rat LM and BM. MBM generated 50% more ROS with glutamate than the RBM, but not with succinate. With the NAD substrates, generation of ROS do not depend on the energy state of the BM. Organization of the respiratory complexes into the respirasome is a possible mechanism to prevent ROS generation in the BM. With BM oxidizing succinate, 80% of ROS generation was energy dependent. Induction of mPT does not affect ROS generation with NAD substrates and inhibit with succinate as a substrate. The relative insensitivity of the liver to systemic insults is associated with its high regenerative capacity. Neuronal cells with low regenerative capacity and a long life span protect themselves by minimizing ROS generation and by the ability to withstand very large Ca2+ insults. We suggest that additional factors, such as oxidative stress, are required to initiate neurodegeneration. Thus the observed differences in the Ca2+-induced mPT and ROS generation may underlie both the organ-specific and species-specific variability in the animal models of neurodegenerative diseases. permeability transition; reactive oxygen species generation; interspecies difference  相似文献   

2.
Phytanic acid (Phyt) increase is associated with the hereditary neurodegenerative Refsum disease. To elucidate the still unclear toxicity of Phyt, mitochondria from brain and heart of adult rats were exposed to free Phyt. Phyt at low micromolar concentrations (maximally: 100 nmol/mg of protein) enhances superoxide (O(2)(.))(2) generation. Phyt induces O(2)(.) in state 3 (phosphorylating), as well as in state 4 (resting). Phyt stimulates O(2)(.) generation when the respiratory chain is fed with electrons derived from oxidation of glutamate/malate, pyruvate/malate, or succinate in the presence of rotenone. With succinate alone, Phyt suppresses O(2)(.) generation caused by reverse electron transport from succinate to complex I. The enhanced O(2)(.) generation by Phyt in state 4 is in contrast to the mild uncoupling concept. In this concept uncoupling by nonesterified fatty acids should abolish O(2)(.) generation. Stimulation of O(2)(.) generation by Phyt is paralleled by inhibition of the electron transport within the respiratory chain or electron leakage from the respiratory chain. The interference of Phyt with the electron transport was demonstrated by inhibition of state 3- and p-trifluoromethoxyphenylhydrazone (FCCP)-dependent respiration, inactivation of the NADH-ubiquinone oxidoreductase complex in permeabilized mitochondria, decrease in reduction of the synthetic electron acceptor 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide in state 4, and increase of the mitochondrial NAD(P)H level in FCCP-uncoupled mitochondria. Thus, we suggest that complex I is the main site of Phyt-stimulated O(2)(.) generation. Furthermore, inactivation of aconitase and oxidation of the mitochondrial glutathione pool show that enhanced O(2)(.) generation with chronic exposure to Phyt causes oxidative damage.  相似文献   

3.
The generation of H2O2 in skeletal muscle mitochondria during the oxidation of NAD-dependent substrates and succinate is initiated by antimycin A but not by rotenone, which points to H2O2 formation at the respiratory chain site between the rotenone and antimycin blocks. The O2-/H2O2 ratio for alpha-ketoglutarate and succinate oxidation is approximately 1.4, which suggests that in skeletal muscle mitochondria H2O2 is predominantly formed via the superoxide radical generation. Heart and skeletal muscle mitochondria appeared to have the similar values of Vmax for H2O2 production; the catalase activity in skeletal muscle mitochondria is much lower.  相似文献   

4.
The generation of H2O2 by isolated pea stem mitochondria, oxidizing either malate plus glutamate or succinate, was examined. The level of H2O2 was almost one order of magnitude higher when mitochondria were energized by succinate. The succinate-dependent H2O2 formation was abolished by malonate, but unaffected by rotenone. The lack of effect of the latter suggests that pea mitochondria were working with a proton motive force below the threshold value required for reverse electron transfer. The activation by pyruvate of the alternative oxidase was reflected in an inhibition of H2O2 formation. This effect was stronger when pea mitochondria oxidized malate plus glutamate. Succinate-dependent H2O2 formation was ca. four times lower in Arum sp. mitochondria (known to have a high alternative oxidase) than in pea mitochondria. An uncoupler (FCCP) completely prevented succinate-dependent H2O2 generation, while it only partially (40-50%) inhibited that linked to malate plus glutamate. ADP plus inorganic phosphate (transition from state 4 to state 3) also inhibited the succinate-dependent H2O2 formation. Conversely, that dependent on malate plus glutamate oxidation was unaffected by low and stimulated by high concentrations of ADP. These results show that the main bulk of H2O2 is formed during substrate oxidation at the level of complex II and that this generation may be prevented by either dissipation of the electrochemical proton gradient (uncoupling and transition state 4-state 3), or preventing its formation (alternative oxidase). Conversely, H2O2 production, dependent on oxidation of complex I substrate, is mainly lowered by the activation of the alternative oxidase.  相似文献   

5.
We have determined the underlying sites of H(2)O(2) generation by isolated rat brain mitochondria and how these can shift depending on the presence of respiratory substrates, electron transport chain modulators and exposure to stressors. H(2)O(2) production was determined using the fluorogenic Amplex red and peroxidase system. H(2)O(2) production was higher when succinate was used as a respiratory substrate than with another FAD-dependent substrate, alpha-glycerophosphate, or with the NAD-dependent substrates, glutamate/malate. Depolarization by the uncoupler p-trifluoromethoxyphenylhydrazone decreased H(2)O(2) production stimulated by all respiratory substrates. H(2)O(2) production supported by succinate during reverse transfer of electrons was decreased by inhibitors of complex I (rotenone and diphenyleneiodonium) whereas in glutamate/malate-oxidizing mitochondria diphenyleneiodonium decreased while rotenone increased H(2)O(2) generation. The complex III inhibitors antimycin and myxothiazol decreased succinate-induced H(2)O(2) production but stimulated H(2)O(2) production in glutamate/malate-oxidizing mitochondria. Antimycin and myxothiazol also increased H(2)O(2) production in mitochondria using alpha-glycerophosphate as a respiratory substrate. In substrate/inhibitor experiments maximal stimulation of H(2)O(2) production by complex I was observed with the alpha-glycerophosphate/antimycin combination. In addition, three forms of in vitro mitochondrial stress were studied: Ca(2+) overload, cold storage for more than 24 h and cytochrome c depletion. In each case we observed (i) a decrease in succinate-supported H(2)O(2) production by complex I and an increase in succinate-supported H(2)O(2) production by complex III, (ii) increased glutamate/malate-induced H(2)O(2) generation by complex I and (iii) increased alpha-glycerophosphate-supported H(2)O(2) generation by complex III. Our results suggest that all three forms of mitochondrial stress resulted in similar shifts in the localization of sites of H(2)O(2) generation and that, in both normal and stressed states, the level and location of H(2)O(2) production depend on the predominant energetic substrate.  相似文献   

6.
Abnormal accumulation of Ca2+ and exposure to pro-apoptotic proteins, such as Bax, is believed to stimulate mitochondrial generation of reactive oxygen species (ROS) and contribute to neural cell death during acute ischemic and traumatic brain injury, and in neurodegenerative diseases, e.g. Parkinson's disease. However, the mechanism by which Ca2+ or apoptotic proteins stimulate mitochondrial ROS production is unclear. We used a sensitive fluorescent probe to compare the effects of Ca2+ on H2O2 emission by isolated rat brain mitochondria in the presence of physiological concentrations of ATP and Mg2+ and different respiratory substrates. In the absence of respiratory chain inhibitors, Ca2+ suppressed H2O2 generation and reduced the membrane potential of mitochondria oxidizing succinate, or glutamate plus malate. In the presence of the respiratory chain Complex I inhibitor rotenone, accumulation of Ca2+ stimulated H2O2 production by mitochondria oxidizing succinate, and this stimulation was associated with release of mitochondrial cytochrome c. In the presence of glutamate plus malate, or succinate, cytochrome c release and H2O2 formation were stimulated by human recombinant full-length Bax in the presence of a BH3 cell death domain peptide. These results indicate that in the presence of ATP and Mg2+, Ca2+ accumulation either inhibits or stimulates mitochondrial H2O2 production, depending on the respiratory substrate and the effect of Ca2+ on the mitochondrial membrane potential. Bax plus a BH3 domain peptide stimulate H2O2 production by brain mitochondria due to release of cytochrome c and this stimulation is insensitive to changes in membrane potential.  相似文献   

7.
Despite the considerable interest in superoxide as a potential cause of pathology, the mechanisms of its deleterious production by mitochondria remain poorly understood. Previous studies in purified mitochondria have found that the highest rates of superoxide production are observed with succinate-driven reverse-electron transfer through complex I, although the physiological importance of this pathway is disputed because it necessitates high concentrations of succinate and is thought not to occur when NAD is in the reduced state. However, very few studies have examined the rates of superoxide production with mitochondria respiring on both NADH-linked (e.g. glutamate) and complex II-linked substrates. In the present study, we find that the rates of superoxide production (measured indirectly as H2O2) with glutamate+succinate (approximately 1100 pmol of H2O2 x min(-1) x mg(-1)) were unexpectedly much higher than with succinate (approximately 400 pmol of H2O2 x min(-1) x mg(-1)) or glutamate (approximately 80 pmol of H2O2 x min(-1) x mg(-1)) alone. Superoxide production with glutamate+succinate remained high even at low substrate concentrations (<1 mM), was decreased by rotenone and was completely eliminated by FCCP (carbonyl cyanide p-trifluoromethoxyphenylhydrazone), indicating that it must in large part originate from reverse-electron transfer through complex I. Similar results were obtained when glutamate was replaced with pyruvate, alpha-ketoglutarate or palmitoyl carnitine. In contrast, superoxide production was consistently lowered by the addition of malate (malate+succinate approximately 30 pmol of H2O2 x min(-1) x mg(-1)). We propose that the inhibitory action of malate on superoxide production can be explained by oxaloacetate inhibition of complex II. In summary, the present results indicate that reverse-electron transfer-mediated superoxide production can occur under physiologically realistic substrate conditions and suggest that oxaloacetate inhibition of complex II may be an adaptive mechanism to minimize this.  相似文献   

8.
The hypothesis that mitochondria damaged during complete cerebral ischemia generate increased amounts of superoxide anion radical and hydrogen peroxide (H2O2) upon postischemic reoxygenation has been tested. In rat brain mitochondria, succinate supported H2O2 generation, whereas NADH-linked substrates, malate plus glutamate, did so only in the presence of respiratory chain inhibitors. Succinate-supported H2O2 generation was diminished by rotenone and the uncoupler carbonyl cyanide m-chlorphenylhydrazone and enhanced by antimycin A and increased oxygen tensions. When maximally reduced, the NADH dehydrogenase and the ubiquinone-cytochrome b regions of the electron transport chain are sources of H2O2. These studies suggest that a significant portion of H2O2 generation in brain mitochondria proceeds via the transfer of reducing equivalents from ubiquinone to the NADH dehydrogenase portion of the electron transport chain. Succinate-supported H2O2 generation by mitochondria isolated from rat brain exposed to 15 min of postdecapitative ischemia was 90% lower than that of control preparations. The effect of varying oxygen tensions on H2O2 generation by postischemic mitochondrial preparations was negligible compared with the increased H2O2 generation measured in control preparations. Comparison of the effects of respiratory chain inhibitors and oxygen tension on succinate-supported H2O2 generation suggests that the ability for reversed electron transfer is impaired during ischemia. These data do not support the hypothesis that mitochondrial free radical generation increases during postischemic reoxygenation.  相似文献   

9.
The endogenous production of H2O2 in isolated rat intestinal mitochondria and oxidant induced damage to mitochondria were examined. There was an appreciable amount of H2O2 production in presence of succinate, glutamate and pyruvate, while the presence of rotenone with succinate further increased production. Superoxide generated by the X-XO system induced membrane permeability transition (MPT), calcium influx, lipid peroxidation and changes in membrane fluidity in mitochondria. A decreased mitochondrial ATPase activity and uncoupling of respiration was also observed. Spermine inhibited swelling induced by X-XO and also blocked the calcium influx and reversed the membrane fluidity changes.  相似文献   

10.
Mitochondria play a critical role in some forms of apoptosis, and the Ca(2+)-dependent permeability transition (PT) is a key initiator of this process. We quantitatively examined major control mechanisms of PT in rat brain (RBM) and liver (RLM) mitochondria. Compared with RLM, RBM were less sensitive to cyclosporin A (CsA), but the combined action of CsA+ADP was much more pronounced in RBM. Carboxyatractyloside abrogated the effects of all mPTP inhibitors in RBM but not in RLM, where the effects of CsA were not reduced. Estimated H(+)/Ca(2+) ratios were 0.81+/-0.01 for RLM and 0.84-0.93 for RBM, suggesting that Ca(2+) and Pi were sequestered in the matrix as CaHPO(4) and Ca(3)(PO(4))(2) salts, and that RBM sequester more CaPi as the least soluble salt. We conclude that: (1) RBM and RLM differ in their baseline behavior of the PT and in their responses to PT modifiers, and (2) PT modifiers can be functionally divided into those which directly affect the mitochondrial PT pore and are not energy-dependent (CsA, free Ca(2+), ADP(ex), and Mg(2+)), and those which affect the energy-dependent calcium phosphate sequestration process (ADP(mt), CATR, local anesthetics). We also conclude that ANT affects PT by changing mitochondrial capacity for energization.  相似文献   

11.
In brain mitochondria, state 4 respiration supported by the NAD-linked substrates glutamate/malate in the presence of EGTA promotes a high rate of exogenous H2O2 removal. Omitting EGTA decreases the H2O2 removal rate by almost 80%. The decrease depends on the influx of contaminating Ca2+, being prevented by the Ca2+ uniporter inhibitor ruthenium red. Arsenite is also an inhibitor (maximal effect approximately 40%, IC50, 12 microm). The H2O2 removal rate (EGTA present) is decreased by 20% during state 3 respiration and by 60-70% in fully uncoupled conditions. H2O2 removal in mitochondria is largely dependent on glutathione peroxidase and glutathione reductase. Both enzyme activities, as studied in disrupted mitochondria, are inhibited by Ca2+. Glutathione reductase is decreased by 70% with an IC50 of about 0.9 microm, and glutathione peroxidase is decreased by 38% with a similar IC50. The highest Ca2+ effect with glutathione reductase is observed in the presence of low concentrations of H2O2. With succinate as substrate, the removal is 50% less than with glutamate/malate. This appears to depend on succinate-supported production of H2O2 by reverse electron flow at NADH dehydrogenase competing with exogenous H2O2 for removal. Succinate-dependent H2O2 is inhibited by rotenone, decreased DeltaPsi, as described previously, and by ruthenium red and glutamate/malate. These agents also increase the measured rate of exogenous H2O2 removal with succinate. Succinate-dependent H2O2 generation is also inhibited by contaminating Ca2+. Therefore, Ca2+ acts as an inhibitor of both H2O2 removal and the succinate-supported H2O2 production. It is concluded that mitochondria function as intracellular Ca2+-modulated peroxide sinks.  相似文献   

12.
Complex I (NADH:ubiquinone oxidoreductase) is responsible for most of the mitochondrial H2O2 release, both during the oxidation of NAD-linked substrates and during succinate oxidation. The much faster succinate-dependent H2O2 production is ascribed to Complex I, being rotenone-sensitive. In the present paper, we report high-affinity succinate-supported H2O2 generation in the absence as well as in the presence of GM (glutamate/malate) (1 or 2 mM of each). In brain mitochondria, their only effect was to increase from 0.35 to 0.5 or to 0.65 mM the succinate concentration evoking the semi-maximal H2O2 release. GM are still oxidized in the presence of succinate, as indicated by the oxygen-consumption rates, which are intermediate between those of GM and of succinate alone when all substrates are present together. This effect is removed by rotenone, showing that it is not due to inhibition of succinate influx. Moreover, alpha-oxoglutarate production from GM, a measure of the activity of Complex I, is decreased, but not stopped, by succinate. It is concluded that succinate-induced H2O2 production occurs under conditions of regular downward electron flow in Complex I. Succinate concentration appears to modulate the rate of H2O2 release, probably by controlling the hydroquinone/quinone ratio.  相似文献   

13.
Bioenergetics of isolated lung and heart mitochondria from adult and aged rats were examined in the presence of glutamate (NAD-linked substrate) or succinate + rotenone (FAD-linked substrate) following ozone exposure (3.0 ppm, 8 hr). In controls, several differences were observed between adults and aged in both organ preparations. Following exposure, all bioenergetic parameters were decreased significantly in lung preparations from both adult and aged rats. In heart mitochondria, the respiration rates in state 3 and in uncoupled state, and the ADP/O ratio were decreased significantly in both exposed age groups. The respiratory control ratio (RCR) was decreased significantly only in the aged exposed rats. These results suggest that acute exposure to high levels of ozone alters energy production in both lung and heart mitochondria of adult and aged rats.  相似文献   

14.
In homogenate and isolated mitochondria from the liver of male and female rats of Wistar and August strains, a higher uncoupled vs State 3 oxidation of succinate and glutamate and lower that of 3-hydroxybutyrate and glycerol 3-phosphate were observed. The optimal concentration of 2,4-dinitrophenol (DNP) was in the range 7-12 microM for 3-hydroxybutyrate oxidation and 50-100 microM for succinate or glutamate oxidation.  相似文献   

15.
1. Mitochondria isolated from porcine adrenal cortex under State 3 conditions oxidized succinate with a rate of 47 +/- 4.48 na oxygen/min/mg/protein and with ADP:O ratio 0.98 +/- 0.09. In the presence of 15 microM deoxycorticosterone the rate of succinate oxidation was 36.8 +/- 3.08 na oxygen/min/mg/protein. 2. Under the same conditions the rate of glutamate oxidation was 22.8 +/- 2.21 and 16.8 +/- 0.65 na oxygen/min/mg/protein, respectively. ADP:O ratio was 1.45 +/- 0.14. 3. Introduction of trace amounts of malate into the mitochondria oxidizing glutamate only slightly increased the rate of O2 uptake. 4. The glutamate dehydrogenase activity in these mitochondria was 12.5 +/- 0.69 nmol/min/mg.  相似文献   

16.
3-Nitropropionic acid (3-NPA), an inhibitor of succinate dehydrogenase (SDH) at complex II of the mitochondrial electron transport chain induces cellular energy deficit and oxidative stress-related neurotoxicity. In the present study, we identified the site of reactive oxygen species production in mitochondria. 3-NPA increased O2- generation in mitochondria respiring on the complex I substrates pyruvate+malate, an effect fully inhibited by rotenone. Antimycin A increased O2- production in the presence of complex I and/or II substrates. Addition of 3-NPA markedly increased antimycin A-induced O2- production by mitochondria incubated with complex I substrates, but 3-NPA inhibited O2- formation driven with the complex II substrate succinate. At 0.6 microM, myxothiazol inhibits complex III, but only partially decreases complex I activity, and allowed 3-NPA-induced O2- formation; however, at 40 microM myxothiazol (which completely inhibits both complexes I and III) eliminated O2- production from mitochondria respiring via complex I substrates. These results indicate that in the presence of 3-NPA, mitochondria generate O2- from a site between the ubiquinol pool and the 3-NPA block in the respiratory complex II.  相似文献   

17.
Bioenergetics of isolated lung and heart mitochondria from adult and aged rats were examined in the presence of glutamate (NAD-linked substrate) or succinate + rotenone (FAD-linked substrate) following ozone exposure (3.0 ppm, 8 hr). In controls, several differences were observed between adults and aged in both organ preparations. Following exposure, all bioenergetic parameters were decreased significantly in lung preparations from both adult and aged rats. In heart mitochondria, the respiration rates in state 3 and in uncoupled state, and the ADP/O ratio were decreased significantly in both exposed age groups. The respiratory control ratio (RCR) was decreased significantly only in the aged exposed rats. These results suggest that acute exposure to high levels of ozone alters energy production in both lung and heart mitochondria of adult and aged rats.  相似文献   

18.
Characterization of superoxide-producing sites in isolated brain mitochondria   总被引:17,自引:0,他引:17  
Mitochondrial respiratory chain complexes I and III have been shown to produce superoxide but the exact contribution and localization of individual sites have remained unclear. We approached this question investigating the effects of oxygen, substrates, inhibitors, and of the NAD+/NADH redox couple on H2O2 and superoxide production of isolated mitochondria from rat and human brain. Although rat brain mitochondria in the presence of glutamate+malate alone do generate only small amounts of H2O2 (0.04 +/- 0.02 nmol H2O2/min/mg), a substantial production is observed after the addition of the complex I inhibitor rotenone (0.68 +/- 0.25 nmol H2O2/min/mg) or in the presence of the respiratory substrate succinate alone (0.80 +/- 0.27 nmol H2O2/min/mg). The maximal rate of H2O2 generation by respiratory chain complex III observed in the presence of antimycin A was considerably lower (0.14 +/- 0.07 nmol H2O2/min/mg). Similar observations were made for mitochondria isolated from human parahippocampal gyrus. This is an indication that most of the superoxide radicals are produced at complex I and that high rates of production of reactive oxygen species are features of respiratory chain-inhibited mitochondria and of reversed electron flow, respectively. We determined the redox potential of the superoxide production site at complex I to be equal to -295 mV. This and the sensitivity to inhibitors suggest that the site of superoxide generation at complex I is most likely the flavine mononucleotide moiety. Because short-term incubation of rat brain mitochondria with H2O2 induced increased H2O2 production at this site we propose that reactive oxygen species can activate a self-accelerating vicious cycle causing mitochondrial damage and neuronal cell death.  相似文献   

19.
Catalase takes part in rat liver mitochondria oxidative stress defense   总被引:3,自引:0,他引:3  
Highly purified rat liver mitochondria (RLM) when exposed to tert-butylhydroperoxide undergo matrix swelling, membrane potential collapse, and oxidation of glutathione and pyridine nucleotides, all events attributable to the induction of mitochondrial permeability transition. Instead, RLM, if treated with the same or higher amounts of H2O2 or tyramine, are insensitive or only partially sensitive, respectively, to mitochondrial permeability transition. In addition, the block of respiration by antimycin A added to RLM respiring in state 4 conditions, or the addition of H2O2, results in O2 generation, which is blocked by the catalase inhibitors aminotriazole or KCN. In this regard, H2O2 decomposition yields molecular oxygen in a 2:1 stoichiometry, consistent with a catalytic mechanism with a rate constant of 0.0346 s(-1). The rate of H2O2 consumption is not influenced by respiratory substrates, succinate or glutamate-malate, nor by N-ethylmaleimide, suggesting that cytochrome c oxidase and the glutathione-glutathione peroxidase system are not significantly involved in this process. Instead, H2O2 consumption is considerably inhibited by KCN or aminotriazole, indicating activity by a hemoprotein. All these observations are compatible with the presence of endogenous heme-containing catalase with an activity of 825 +/- 15 units, which contributes to mitochondrial protection against endogenous or exogenous H2O2. Mitochondrial catalase in liver most probably represents regulatory control of bioenergetic metabolism, but it may also be proposed for new therapeutic strategies against liver diseases. The constitutive presence of catalase inside mitochondria is demonstrated by several methodological approaches as follows: biochemical fractionating, proteinase K sensitivity, and immunogold electron microscopy on isolated RLM and whole rat liver tissue.  相似文献   

20.
《BBA》2022,1863(2):148518
The kinetics and efficiency of mitochondrial oxidative phosphorylation (OxPhos) can depend on the choice of respiratory substrates. Furthermore, potential differences in this substrate dependency among different tissues are not well-understood. Here, we determined the effects of different substrates on the kinetics and efficiency of OxPhos in isolated mitochondria from the heart and kidney cortex and outer medulla (OM) of Sprague-Dawley rats. The substrates were pyruvate+malate, glutamate+malate, palmitoyl-carnitine+malate, alpha-ketoglutarate+malate, and succinate±rotenone at saturating concentrations. The kinetics of OxPhos were interrogated by measuring mitochondrial bioenergetics under different ADP perturbations. Results show that the kinetics and efficiency of OxPhos are highly dependent on the substrates used, and this dependency is distinctly different between heart and kidney. Heart mitochondria showed higher respiratory rates and OxPhos efficiencies for all substrates in comparison to kidney mitochondria. Cortex mitochondria respiratory rates were higher than OM mitochondria, but OM mitochondria OxPhos efficiencies were higher than cortex mitochondria. State 3 respiration was low in heart mitochondria with succinate but increased significantly in the presence of rotenone, unlike kidney mitochondria. Similar differences were observed in mitochondrial membrane potential. Differences in H2O2 emission in the presence of succinate±rotenone were observed in heart mitochondria and to a lesser extent in OM mitochondria, but not in cortex mitochondria. Bioenergetics and H2O2 emission data with succinate±rotenone indicate that oxaloacetate accumulation and reverse electron transfer may play a more prominent regulatory role in heart mitochondria than kidney mitochondria. These studies provide novel quantitative data demonstrating that the choice of respiratory substrates affects mitochondrial responses in a tissue-specific manner.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号