首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Targeting essential cellular pathways that determine neuronal and vascular survival can foster a successful therapeutic platform for the treatment of a wide variety of degenerative disorders in the central nervous system. In particular, oxidative cellular injury can precipitate several nervous system disorders that may either be acute in nature, such as during cerebral ischemia, or more progressive and chronic, such as during Alzheimer disease. Apoptotic injury in the brain proceeds through two distinct pathways that ultimately result in the early externalization of membrane phosphatidylserine (PS) residues and the late induction of genomic DNA fragmentation. Degradation of DNA may acutely impact cellular survival, while the exposure of membrane PS residues can lead to microglial phagocytosis of viable cells, cellular inflammation, and thrombosis in the vascular system. Through either independent or common pathways, the Wingless/Wnt pathway and the serine-threonine kinase Akt serve central roles in the maintenance of cellular integrity and the prevention of the phagocytic disposal of cells "tagged" by PS exposure. By selectively governing the activity of specific downstream substrates that include GSK-3beta, Bad, and beta-catenin, Wnt and Akt serve to foster neuronal and vascular survival and block the induction of programmed cell death. Novel to Akt is its capacity to protect cells from phagocytosis through the direct modulation of membrane PS exposure. Intimately linked to the activation of Wnt signaling and Akt is the maintenance of mitochondrial membrane potential and the regulation of Bcl-xL, mitochondrial energy metabolism, and cytochrome c release that can lead to specific cysteine protease activation.  相似文献   

2.
Protein kinase B (Akt1) holds a central role for cellular growth, development, and survival, but the cellular pathways of Akt1 that prevent inflammatory demise in the vascular system remain undefined. Employing a constitutively active form of Akt1 (myristoylated Akt1) in endothelial cells (ECs), we demonstrate that Akt1 not only modulates intrinsic pathways of EC injury that involve genomic DNA destruction, but also uniquely regulates extrinsic mechanisms of cellular inflammation mediated by phosphatidylserine exposure (PS) and microglial activation. Activation of Akt1 is necessary and sufficient to prevent apoptotic EC destruction, since inhibition of the phosphatidylinositide-3-kinase pathway as well as transfection of ECs with a dominant-negative Akt1 mutant abrogates vascular protection. Furthermore, we illustrate that control of microglial activation by Akt1 is directly dependent on the modulation of EC membrane PS exposure. Akt1 provides a novel capacity to foster EC survival through the prevention of cysteine protease degradation of Bcl-x(L) that is intimately linked to the specific inhibition of caspase 1-, 3-, and 9-like activities and the modulation of mitochondrial membrane potential and cytochrome c release. Our work elucidates the critical role of Akt1 during cellular inflammation and identifies new downstream targets of Akt1 that may offer therapeutic potential against vascular disease.  相似文献   

3.
The phosphatidylinositol 3-kinase (PI 3-kinase)/protein kinase B (PKB; also known as Akt) signalling pathway is recognized as playing a central role in the survival of diverse cell types. Glycogen synthase kinase-3 (GSK-3) is a ubiquitously expressed serine/threonine protein kinase that is one of several known substrates of PKB. PKB phosphorylates GSK-3 in response to insulin and growth factors, which inhibits GSK-3 activity and leads to the modulation of multiple GSK-3 regulated cellular processes. We show that the novel potent and selective small-molecule inhibitors of GSK-3; SB-415286 and SB-216763, protect both central and peripheral nervous system neurones in culture from death induced by reduced PI 3-kinase pathway activity. The inhibition of neuronal death mediated by these compounds correlated with inhibition of GSK-3 activity and modulation of GSK-3 substrates tau and beta-catenin. Thus, in addition to the previously assigned roles of GSK-3, our data provide clear pharmacological and biochemical evidence that selective inhibition of the endogenous pool of GSK-3 activity in primary neurones is sufficient to prevent death, implicating GSK-3 as a physiologically relevant principal regulatory target of the PI 3-kinase/PKB neuronal survival pathway.  相似文献   

4.
The PI3K-Akt signaling pathway plays a critical role in mediating survival signals in a wide range of neuronal cell types. The recent identification of a number of substrates for the serine/threonine kinase Akt suggests that it blocks cell death by both impinging on the cytoplasmic cell death machinery and by regulating the expression of genes involved in cell death and survival. In addition, recent experiments suggest that Akt may also use metabolic pathways to regulate cell survival.  相似文献   

5.
6.
Chong ZZ  Li F  Maiese K 《Cellular signalling》2007,19(6):1150-1162
Initially described as a modulator of embryogenesis for a number of organ systems, Wnt1 has recently been linked to the development of several neurodegenerative disorders, none being of greater significance than Alzheimer's disease. We therefore examined the ability of Wnt1 to oversee vital pathways responsible for cell survival during beta-amyloid (Abeta1-42) exposure. Here we show that Wnt1 is critical for protection in the SH-SY5Y neuronal cell line against genomic DNA degradation, membrane phosphatidylserine (PS) exposure, and microglial activation, since these neuroprotective attributes of Wnt1 are lost during gene silencing of Wnt1 protein expression. Intimately tied to Wnt1 protection is the presence and activation of Akt1. Pharmacological inhibition of the PI 3-K pathway or gene silencing of Akt1 expression can abrogate the protective capacity of Wnt1. Closely aligned with Wnt1 and Akt1 are the integrated canonical pathways of synthase kinase-3beta (GSK-3beta) and beta-catenin. Through Akt1 dependent pathways, Wnt1 phosphorylates GSK-3beta and maintains beta-catenin integrity to insure its translocation from the cytoplasm to the nucleus to block apoptosis. Our work outlines a highly novel role for Wnt1 and its integration with Akt1, GSK-3beta, and beta-catenin to foster neuronal cell survival and repress inflammatory microglial activation that can identify new avenues of therapy against neurodegenerative disorders.  相似文献   

7.
Despite the immediate event, such as cerebral trauma, cardiac arrest, or stroke that may result in neuronal or vascular injury, specific cellular signal transduction pathways in the central nervous system ultimately influence the extent of cellular injury. Yet, it is a cascade of mechanisms, rather than a single cellular pathway, which determine cellular survival during toxic insults. Although neuronal injury associated with several disease entities, such as Alzheimer's disease, Parkinson's disease, and cerebrovascular disease was initially believed to be irreversible, it has become increasingly evident that either acute or chronic modulation of the cellular and molecular environment within the brain can prevent or even reverse cellular injury. In order to develop rational, efficacious, and safe therapy against neurodegenerative disorders, it becomes vital to elucidate the cellular and molecular mechanisms that control neuronal and vascular injury. These include the pathways of free radical injury, the independent mechanisms of programmed cell death, and the downstream signal transduction pathways of endonuclease activation, intracellular pH, cysteine proteases, the cell cycle, and tyrosine phosphatase activity. Employing the knowledge gained from investigations into these pathways will hopefully further efforts to successfully develop effective treatments against central nervous system disorders.  相似文献   

8.
9.
In slightly over a period of twenty years, our comprehension of the cellular and molecular mechanisms that govern the Wnt signaling pathway continue to unfold. The Wnt proteins were initially implicated in viral carcinogenesis experiments associated with mammary tumors, but since this period investigations focusing on the Wnt pathways and their transmembrane receptors termed Frizzled have been advanced to demonstrate the critical nature of Wnt for the development of a variety of cell populations as well as the potential of the Wnt pathway to avert apoptotic injury. In particular, Wnt signaling plays a significant role in both the cardiovascular and nervous systems during embryonic cell patterning, proliferation, differentiation, and orientation. Furthermore, modulation of Wnt signaling under specific cellular influences can either promote or prevent the early and late stages of apoptotic cellular injury in neurons, endothelial cells, vascular smooth muscle cells, and cardiomyocytes. A number of downstream signal transduction pathways can mediate the biological response of the Wnt proteins that include Dishevelled, beta-catenin, intracellular calcium, protein kinase C, Akt, and glycogen synthase kinase-3beta. Interestingly, these cellular cascades of the Wnt-Frizzled pathways can participate in several neurodegenerative, vascular, and cardiac disorders and may be closely integrated with the function of trophic factors. Identification of the critical elements that modulate the Wnt-Frizzled signaling pathway should continue to unlock the potential of Wnt pathway for the development of new therapeutic options against neurodegenerative and vascular diseases.  相似文献   

10.
Akt is a member of the AGC kinase family and consists of three isoforms. As one of the major regulators of the class I PI3 kinase pathway, it has a key role in the control of cell metabolism, growth, and survival. Although it has been extensively studied in the nervous system, we have only a faint knowledge of the specific role of each isoform in differentiated neurons. Here, we have used both cortical and hippocampal neuronal cultures to analyse their function. We characterized the expression and function of Akt isoforms, and some of their substrates along different stages of neuronal development using a specific shRNA approach to elucidate the involvement of each isoform in neuron viability, axon development, and cell signalling. Our results suggest that three Akt isoforms show substantial compensation in many processes. However, the disruption of Akt2 and Akt3 significantly reduced neuron viability and axon length. These changes correlated with a tendency to increase in active caspase 3 and a decrease in the phosphorylation of some elements of the mTORC1 pathway. Indeed, the decrease of Akt2 and more evident the inhibition of Akt3 reduced the expression and phosphorylation of S6. All these data indicate that Akt2 and Akt3 specifically regulate some aspects of apoptosis and cell growth in cultured neurons and may contribute to the understanding of mechanisms of neuron death and pathologies that show deregulated growth.  相似文献   

11.
During the initial development and maturation of an individual, the metabotropic glutamate receptor (mGluR) system becomes a necessary component for the critical integration of cellular function and plasticity. In addition to the maintenance of cellular physiology, the mGluR system plays a critical role during acute and chronic degenerative disorders of the central nervous system. By coupling to guanosine-nucleotide-binding proteins (G-proteins), the mGluR system employs a broad range of signal transduction systems to regulate cell survival and injury. More commonly, it is the activation of specific mGluR subtypes that can prevent programmed cell death (PCD) consisting of two distinct pathways of genomic DNA degradation and membrane phosphatidylserine (PS) residue exposure. To offer this cellular protection, mGluRs modulate a series of down-stream cellular pathways that include protein kinases, mitochondrial membrane potential, cysteine proteases, intracellular pH, endonucleases, and mitogen activated protein kinases. Prevention of cellular injury by the mGluR system is directly applicable to clinical disability, since immediate and delayed injury paradigms demonstrate the ability of this system to reverse PCD in both neuronal and vascular cell populations. Further understanding of the intricate pathways that determine the protective nature of the mGluR system will provide new therapeutic avenues for the treatment of neurodegenerative disorders.  相似文献   

12.
Zhao S  Guan KL 《Cell》2008,133(3):399-400
The protein kinase Akt occupies a central position in multiple signaling pathways. Although numerous Akt substrates have been identified, less is known about the factors that regulate specific cellular responses to Akt signaling. In this issue, Schenck et al. (2008) demonstrate that the endosomal protein Appl1 modulates Akt's substrate selectivity to promote cell survival during zebrafish development.  相似文献   

13.
New DC  Wu K  Kwok AW  Wong YH 《The FEBS journal》2007,274(23):6025-6036
Akt (also known as protein kinase B) plays an integral role in many intracellular signaling pathways activated by a diverse array of extracellular signals that target several different classes of membrane-bound receptors. Akt plays a particularly prominent part in signaling networks that result in the modulation of cellular proliferation, apoptosis and survival. Thus, the overexpression of Akt subtypes has been measured in a number of cancer types, and dominant-negative forms of Akt can trigger apoptosis and reduce the survival of cancer cells. G protein-coupled receptors act as cell-surface detectors for a diverse spectrum of biological signals and are able to activate or inhibit Akt via several direct and indirect means. In this review, we shall document how G protein-coupled receptors are able to control Akt activity and examine the resulting biochemical and physiological changes, with particular emphasis on cellular proliferation, apoptosis and survival.  相似文献   

14.
Tie2 is an endothelium-specific receptor tyrosine kinase that is required for both normal embryonic vascular development and tumor angiogenesis and is thought to play a role in vascular maintenance. However, the signaling pathways responsible for the function of Tie2 remain unknown. In this report, we demonstrate that the p85 subunit of phosphatidylinositol 3-kinase (PI3-kinase) associates with Tie2 and that this association confers functional lipid kinase activity. Mutation of tyrosine 1101 of Tie2 abrogated p85 association both in vitro and in vivo in yeast. Tie2 was found to activate PI3-kinase in vivo as demonstrated by direct measurement of increases in cellular phosphatidylinositol 3-phosphate and phosphatidylinositol 3,4-bisphosphate, by plasma membrane translocation of a green fluorescent protein-Akt pleckstrin homology domain fusion protein, and by downstream activation of the Akt kinase. Activation of PI3-kinase was abrogated in these assays by mutation of Y1101 to phenylalanine, consistent with a requirement for this residue for p85 association with Tie2. These results suggest that activation of PI3-kinase and Akt may in part account for Tie2’s role in both embryonic vascular development and pathologic angiogenesis, and they are consistent with a role for Tie2 in endothelial cell survival.  相似文献   

15.
Exposure to an enriched environment (EE) has neuroprotective benefits and improves recovery from brain injury due to, among other, increased neurotrophic factor expression. Through these neurotrophins, important cortical and hippocampal changes occur. Vandetanib acts as a tyrosine kinase inhibitor of cell receptors, among others, the vascular endothelial growth factor receptor (VEGFR). Our aim was to investigate the effectiveness of EE counteracting cognitive and cellular effects after tyrosine kinase receptor blockade. Animals were reared under standard laboratory condition or EE; both groups received vandetanib or vehicle. Visuospatial learning was tested with Morris water maze. Neuronal, interneuronal, and vascular densities were measured by inmunohistochemistry and histochemistry techniques. Quantifications were performed in the hippocampus and in the visual cortex. Brain-derived neurotrophic factor (BDNF), tyrosine kinase B receptor (TrkB), Akt, and Erk were measured by Western blot technique. Vandetanib produces a significant decrease in vascular and neuronal densities and reduction in the expression of molecules involved in survival and proliferation processes such as phospho-Akt/Akt and phospho-Erk/Erk. These results correlated to a cognitive impairment in visuospatial test. On the other hand, animals reared in an EE are able to reverse the negative effects, activating PI3K-AKT and MAP kinase pathways mediated by BDNF-TrkB binding. Present results provide novel and consistent evidences about the usefulness of living in EE as a strategy to improve deleterious effects of blocking neurotrophic pathways by vandetanib and the notable role of the BDNF-TrkB pathway to balance the neurovascular unit and cognitive effects.  相似文献   

16.
Inflammation in the central nervous system occurs in diseases such as multiple sclerosis and leads to axon dysfunction and destruction. Both in vitro and in vivo observations have suggested an important role for nitric oxide (NO) in mediating inflammatory axonopathy. The purposes of this study were to model inflammatory axonopathy in vitro and identify modulators of the process. Rat cortical neurones were cultured and exposed to an NO-donor plus potential protective factors. Cultures were then assessed for neuronal survival, axon survival and markers of intracellular signalling pathways. The NO-donor produced dose-dependent neuronal loss and a large degree of axon destruction. Oligodendrocyte conditioned medium (OCM) and insulin-like growth factor type-1 (IGF-1), but not glial cell line-derived neurotrophic factor (GDNF), improved survival of neurones exposed to NO donors. In addition p38 MAP kinase was activated by NO exposure and inhibition of p38 signalling led to neuronal and axonal survival effects. OCM and IGF-1 (but not GDNF) reduced p38 activation in NO-exposed cortical neurones. OCM, IGF-1 and GDNF improved axon survival in cultures exposed to NO, a process dependent on mitogen-activated protein kinase/extracellular signal-related kinase signalling. This study emphasizes that different mechanisms may underlie neuronal/axonal destructive processes, and suggests that trophic factors may modulate NO-mediated neurone/axon destruction via specific pathways.  相似文献   

17.
Glial cell line-derived neurotrophic factor (GDNF) plays a crucial role in rescuing neural crest cells from apoptosis during their migration in the foregut. This survival factor binds to the heterodimer GDNF family receptor alpha1/Ret, inducing the Ret tyrosine kinase activity. ret loss-of-function mutations result in Hirschsprung's disease, a frequent developmental defect of the enteric nervous system. Although critical to enteric nervous system development, the intracellular signaling cascades activated by GDNF and their importance in neuroectodermic cell survival still remain elusive. Using the neuroectodermic SK-N-MC cell line, we found that the Ret tyrosine kinase activity is essential for GDNF to induce phosphatidylinositol 3-kinase (PI3K)/Akt and ERK pathways as well as cell rescue. We demonstrate that activation of PI3K is mandatory for GDNF-induced cell survival. In addition, evidence is provided for a critical up-regulation of the ERK pathway by PI3K at the level of Raf-1. Conversely, Akt inhibits the ERK pathway. Thus, both PI3K and Akt act in concert to finely regulate the level of ERK. We found that Akt activation is indispensable for counteracting the apoptotic signal on mitochondria, whereas ERK is partially involved in precluding procaspase-3 cleavage. Altogether, these findings underscore the importance of the Ret/PI3K/Akt pathway in GDNF-induced neuroectodermic cell survival.  相似文献   

18.
19.
A critical issue in understanding receptor tyrosine kinase signaling is the individual contribution of diverse signaling pathways in regulating cellular growth, survival, and migration. We generated a functionally and biochemically inert c-Kit receptor that lacked the binding sites for seven early signaling pathways. Restoring the Src family kinase (SFK) binding sites in the mutated c-Kit receptor restored cellular survival and migration but only partially rescued proliferation and was associated with the rescue of the Ras/mitogen-activated protein kinase, Rac/JNK kinase, and phosphatidylinositol 3-kinase (PI-3 kinase)/Akt pathways. In contrast, restoring the PI-3 kinase binding site in the mutated receptor did not affect cellular proliferation but resulted in a modest correction in cell survival and migration, despite a complete rescue in the activation of the PI-3 kinase/Akt pathway. Surprisingly, restoring the binding sites for Grb2, Grb7, or phospholipase C-gamma had no effect on cellular growth or survival, migration, or activation of any of the downstream signaling pathways. These results argue that SFKs play a unique role in the control of multiple cellular functions and in the activation of distinct biochemical pathways via c-Kit.  相似文献   

20.
Neary JT 《IUBMB life》2005,57(11):711-718
Advances in our understanding of the signaling pathways and cellular functions regulated by protein kinase cascades have paved the way to study their role in the response of brain and spinal cord to traumatic injury. Mechanical forces imparted by trauma stimulate mitogen-activated protein kinases and protein kinase B/Akt as well as cause changes in the state of phosphorylation of glycogen synthase kinase-3beta. Extracellular ATP released by mechanical strain stimulates P2 purinergic receptors that are coupled to these protein kinase signaling pathways. These kinases regulate gene expression, cell survival, proliferation, differentiation, growth arrest, and apoptosis, thereby affecting cell fate, repair and plasticity after trauma. Elucidation of the molecular responses of protein kinase cascades to mechanical strain and the genes regulated by these signaling pathways may lead to therapeutic opportunities to minimize losses in motor skills and cognitive function caused by trauma to the central nervous system.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号