首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Currently, much attention is given to the development of cellular therapies for treatment of central nervous system (CNS) injuries. Diverse cell implantation strategies, either to directly replace damaged neural tissue or to create a neuroregenerative environment, are proposed to restore impaired brain function. However, because of the complexity of the CNS, it is now becoming clear that the contribution of cell implantation into the brain will mainly act in a supportive manner. In addition, given the time dependence of neural development during embryonic and post-natal life, cellular implants, either self or non-self, will most likely have to interact for a sustained period of time with both healthy and injured neural tissue. The latter also implies potential recognition of cellular implants by the innate immune system of the brain. In this review, we will emphasize on preclinical observations in rodents, regarding the recognition and immunogenicity of autologous, allogeneic and xenogeneic cellular implants in the CNS of immune-competent hosts. Taken together, we here suggest that a profound study of the interaction between cellular grafts and the brain's innate immune system will be inevitable before clinical cell transplantation in the CNS can be performed successfully.  相似文献   

2.
The Gram-negative bacterium Francisella novicida infects primarily monocytes/macrophages and is highly virulent in mice. Macrophages respond by producing inflammatory cytokines that confer immunity against the infection. However, the molecular details of host cell response to Francisella infection are poorly understood. In this study, we demonstrate that F. novicida infection of murine macrophages induces the activation of Akt. Inhibition of Akt significantly decreases proinflammatory cytokine production in infected macrophages, whereas production of the anti-inflammatory cytokine IL-10 is enhanced. Analysis of the mechanism of Akt influence on cytokine response demonstrated that Akt promotes NF-kappaB activation. We have extended these findings to show that Akt activation may be regulated by bacterial genes associated with phagosomal escape. Infection with mglA mutants of F. novicida elicited sustained activation of Akt in comparison to cells infected with wild-type F. novicida. Concomitantly, there was significantly higher proinflammatory cytokine production and lower IL-10 production in cells infected with the mglA mutant. Finally, transgenic animals expressing constitutively active Akt displayed a survival advantage over their wild-type littermates when challenged with lethal doses of F. novicida. Together, these observations indicate that Akt promotes proinflammatory cytokine production by F. novicida-infected macrophages through its influence on NF-kappaB, thereby contributing to immunity against F. novicida infection.  相似文献   

3.
Akt, a protein kinase hyperactivated in many tumors, plays a major role in both cell survival and resistance to tumor therapy. A recent study, 1 along with other evidences, shows interestingly, that Akt is not a single‐function kinase, but may facilitate rather than inhibit cell death under certain conditions. This hitherto undetected function of Akt is accomplished by its ability to increase reactive oxygen species and to suppress antioxidant enzymes. The ability of Akt to down‐regulate antioxidant defenses uncovers a novel Achilles' heel, which could be exploited by oxidant therapies in order to selectively eradicate tumor cells that express high levels of Akt activity.  相似文献   

4.
《Autophagy》2013,9(5):536-538
Signaling through phosphatidylinositol 3-kinase (PtdIns3K)-Akt-mTOR is frequently activated in cancers including glioblastoma multiforme (GBM), where this kinase network regulates survival. It is thus surprising that inhibitors of these pathways induce minimal cell death in glioma. We showed that the dual PtdIns3K-mTOR inhibitor PI-103 induces autophagy in therapy-resistant, PTEN-mutant glioma, with blockade of mTOR complex 1 (mTORC1) and complex 2 (mTORC2) contributing independently to autophagy. Inhibition of autophagosome maturation synergizes with PI-103 to induce apoptosis through the Bax-dependent intrinsic mitochondrial pathway, indicating that PI-103 induces autophagy as a survival pathway in this setting. Not all inhibitors of PtdIns3K-Akt-mTOR signaling synergize with inhibitors of autophagy. The allosteric mTORC1 inhibitor rapamycin fails to induce apoptosis in conjunction with blockade of autophagy, due to feedback-activation of Akt. Apoptosis in the setting of rapamycin therapy requires concurrent inhibition of both autophagy and of PtdIns3K-Akt. Moreover, the clinical PtdIns3K-mTOR inhibitor NVP-BEZ235 cooperates with the clinical lysosomotropic autophagy inhibitor chloroquine to induce apoptosis in PTEN-mutant glioma xenografts in vivo, offering a therapeutic approach translatable to patients.  相似文献   

5.
Fan QW  Weiss WA 《Autophagy》2011,7(5):536-538
Signaling through phosphatidylinositol 3-kinase (PtdIns3K)-Akt-mTOR is frequently activated in cancers including glioblastoma multiforme (GBM), where this kinase network regulates survival. It is thus surprising that inhibitors of these pathways induce minimal cell death in glioma. We showed that the dual PtdIns3K-mTOR inhibitor PI-103 induces autophagy in therapy-resistant, PTEN-mutant glioma, with blockade of mTOR complex 1 (mTORC1) and complex 2 (mTORC2) contributing independently to autophagy. Inhibition of autophagosome maturation synergizes with PI-103 to induce apoptosis through the Bax-dependent intrinsic mitochondrial pathway, indicating that PI-103 induces autophagy as a survival pathway in this setting. Not all inhibitors of PtdIns3K-Akt-mTOR signaling synergize with inhibitors of autophagy. The allosteric mTORC1 inhibitor rapamycin fails to induce apoptosis in conjunction with blockade of autophagy, due to feedback-activation of Akt. Apoptosis in the setting of rapamycin therapy requires concurrent inhibition of both autophagy and of PtdIns3K-Akt. Moreover, the clinical PtdIns3K-mTOR inhibitor NVP-BEZ235 cooperates with the clinical lysosomotropic autophagy inhibitor chloroquine to induce apoptosis in PTEN-mutant glioma xenografts in vivo, offering a therapeutic approach translatable to patients.  相似文献   

6.
The Akt proto-oncogene links Ras to Pak and cell survival signals   总被引:10,自引:0,他引:10  
The Ras oncogene regulates cellular proliferation, differentiation, transformation, and survival through multiple downstream signals. Ras signals through its effector phosphoinositide 3 (PI3) kinase to the Pak protein kinase (p65(pak)), but the steps from Ras to Pak remain to be elucidated. PI3 kinase can stimulate the small G protein, Rac, a direct activator of Pak, as well as the Akt proto-oncogene, a serine-threonine protein kinase. We found that activated Akt stimulated Pak, whereas a dominant negative Akt inhibited Ras activation of Pak in transfection assays. Akt stimulation of Pak was not inhibited by dominant negative mutants of either Rac or Cdc42 suggesting that Akt activated Pak through a GTPase-independent mechanism. We also developed a novel cell-free system to study Ras activation of Pak. In this system Ras activated Pak only in the presence of a crude cell extract but failed to activate Pak when Akt was immunodepleted from the extract. Akt protects cells from apoptosis through phosphorylation of downstream targets such as the Bcl-2 family member, Bad. We found that activated Pak decreased apoptosis and increased phosphorylation of Bad, whereas dominant negative Pak increased apoptosis and decreased phosphorylation of Bad. These studies define a new oncogene-mediated cell survival signal.  相似文献   

7.
8.
Loss of parasympathetic innervation after vagotomy impairs cholangiocyte proliferation, which is associated with depressed cAMP levels, impaired ductal secretion, and enhanced apoptosis. Agonists that elevate cAMP levels prevent cholangiocyte apoptosis and restore cholangiocyte proliferation and ductal secretion. No information exists regarding the role of adrenergic innervation in the regulation of cholangiocyte function. In the present studies, we investigated the role of adrenergic innervation on cholangiocyte proliferative and secretory responses to bile duct ligation (BDL). Adrenergic denervation by treatment with 6-hydroxydopamine (6-OHDA) during BDL decreased cholangiocyte proliferation and secretin-stimulated ductal secretion with concomitant increased apoptosis, which was associated with depressed cholangiocyte cAMP levels. Chronic administration of forskolin (an adenylyl cyclase activator) or beta(1)- and beta(2)-adrenergic receptor agonists (clenbuterol or dobutamine) prevented the decrease in cholangiocyte cAMP levels, maintained cholangiocyte secretory and proliferative activities, and decreased cholangiocyte apoptosis resulting from adrenergic denervation. This was associated with enhanced phosphorylation of Akt. The protective effects of clenbuterol, dobutamine, and forskolin on 6-OHDA-induced changes in cholangiocyte apoptosis and proliferation were partially blocked by chronic in vivo administration of wortmannin. In conclusion, we propose that adrenergic innervation plays a role in the regulation of biliary mass and cholangiocyte functions during BDL by modulating intracellular cAMP levels.  相似文献   

9.
Akt2 regulates cardiac metabolism and cardiomyocyte survival   总被引:4,自引:0,他引:4  
The Akt family of serine-threonine kinases participates in diverse cellular processes, including the promotion of cell survival, glucose metabolism, and cellular protein synthesis. All three known Akt family members, Akt1, Akt2 and Akt3, are expressed in the myocardium, although Akt1 and Akt2 are most abundant. Previous studies demonstrated that Akt1 and Akt3 overexpression results in enhanced myocardial size and function. Yet, little is known about the role of Akt2 in modulating cardiac metabolism, survival, and growth. Here, we utilize murine models with targeted disruption of the akt2 or the akt1 genes to demonstrate that Akt2, but not Akt1, is required for insulin-stimulated 2-[(3)H]deoxyglucose uptake and metabolism. In contrast, akt2(-/-) mice displayed normal cardiac growth responses to provocative stimulation, including ligand stimulation of cultured cardiomyocytes, pressure overload by transverse aortic constriction, and myocardial infarction. However, akt2(-/-) mice were found to be sensitized to cardiomyocyte apoptosis in response to ischemic injury, and apoptosis was significantly increased in the peri-infarct zone of akt2(-/-) hearts 7 days after occlusion of the left coronary artery. These results implicate Akt2 in the regulation of cardiomyocyte metabolism and survival.  相似文献   

10.
PI 3-kinase, Akt and cell survival   总被引:29,自引:0,他引:29  
  相似文献   

11.
12.

Background

We have used optic nerve injury as a model to study early signaling events in neuronal tissue following axonal injury. Optic nerve injury results in the selective death of retinal ganglion cells (RGCs). The time course of cell death takes place over a period of days with the earliest detection of RGC death at about 48 hr post injury. We hypothesized that in the period immediately following axonal injury, there are changes in the soma that signal surrounding glia and neurons and that start programmed cell death. In the current study, we investigated early changes in cellular signaling and gene expression that occur within the first 6 hrs post optic nerve injury.

Results

We found evidence of cell to cell signaling within 30 min of axonal injury. We detected differences in phosphoproteins and gene expression within the 6 hrs time period. Activation of TNFα and glutamate receptors, two pathways that can initiate cell death, begins in RGCs within 6 hrs following axonal injury. Differential gene expression at 6 hrs post injury included genes involved in cytokine, neurotrophic factor signaling (Socs3) and apoptosis (Bax).

Conclusion

We interpret our studies to indicate that both neurons and glia in the retina have been signaled within 30 min after optic nerve injury. The signals are probably initiated by the RGC soma. In addition, signals activating cellular death pathways occur within 6 hrs of injury, which likely lead to RGC degeneration.  相似文献   

13.
14.
Extracellular acidosis (pH 6.5) was found to significantly retard the response of Ehrlich ascites tumor cells (EATC) to direct plasma membrane injury with the non-penetrating organic mercurial compound, p-chloromercuribenzene sulfonic acid (PCMBS). Treatment of cells with 1 mM PCMBS resulted in loss of viability of all cells by 45 minutes at pH 7.4, and by 90 minutes at pH 6.5. Pregression of cellular changes through the various stages of cell injury at the ultrastructural level was correspondingly slower at pH 6.5. The results support the concept that stage 3 of cell injury, associated with condensed mitochondria, dilated ER and swollen cell sap is compatible with cell survival, while stage 5 with high amplitude swelling of mitochondria, fragmentation of membrane systems, and beginning of karyolysis is characteristic of irreversible injury. All cells entered stage 3 at 7.5 minutes at pH 7.4, while essentially all cells entered stage 5 by 45 minutes. At pH 6.5, stage 3 was maintained for 45 minutes and 100% of the cells entered stage 5 by 90 minutes. Although the mechanism of the protection against PCMBS-induced injury is not known, the present electron microscopical results are compatible with the hypothesis that the extracellular acidosis acts to partially stabilize plasma membrane, perhaps by interaction with sulfhydryl (SH) groups.  相似文献   

15.
Previously, we have assembled a cellular model of pyelonephritis which contains a primary culture of renal tubular epithelial cells, mononuclear leukocytes, and bacterial lysate or lipopolysaccharide. After cocultivation of renal cells with leukocytes and bacterial lysate, proinflammatory changes were observed in the renal cells, followed by nitrosative and oxidative stress and cell death. The interaction of bacterial antigens not only with leukocytes, but also with epithelial cells of the renal tubules, was partially mediated by signaling pathways involving Toll-like receptors (TLR2 and TLR4). Activation of these receptors led to increased levels of oxidative stress and synthesis of proinflammatory cytokines (TNF, IL-6, IL-1α) in the renal epithelium, while TLR4 blockade decreased the severity of these processes. Apart from the fact that activation of inflammatory signaling in response to bacterial antigens is observed directly in the renal cells, the presence of leukocytes significantly amplifies the inflammatory response as measured by the level of cytokines generated in the ensemble. In the presence of activated leukocytes, higher expression of TLR2 on the surface of renal cells was observed in response to exposure to bacterial components, which might explain the increased inflammatory response in the presence of leukocytes. The synthesis of IL-1α in the epithelial cells of the renal tubules in this inflammatory model leads to its accumulation in the nuclei, which has been reduced by the TLR4 antagonist polymyxin. TLR2 agonists also led to increased levels of IL-1α. The elevation in the content of IL-1α in nuclei was accompanied by increased acetylation of nuclear proteins, which has been reduced to control values after exposure to protective agents (Trolox, mitochondria-targeted antioxidant SkQR1 or LiCl). The high level of acetylation of histones is probably regulated by proinflammatory cytokines, and to some extent it is a marker of inflammation, which can indirectly be reduced by protective agents.  相似文献   

16.
Neurofilaments (NF) are detected in the cerebrospinal fluid of multiple sclerosis (MS) patients, and their concentration correlates with disease severity. We recently demonstrated that NF and co-isolated proteins increase the proliferation and differentiation of oligodendrocytes (OL) in vitro. If these proteins are released in the extracellular environment in MS, they might then regulate remyelination by OL. To test this hypothesis we took advantage of a paradigm of OL toxic injury using lysophosphatidyl choline (LPC), which decreases proliferation and differentiation of surviving cells, and destroys myelin-like membranes. In OL cultures that have been treated with LPC, NF fractions as well as tubulin (TUB) significantly improved recovery: the number of OL progenitors (OLP, A2B5+ cells) increased by 100% and their proliferation by 200%, whereas differentiated (CNP+) and mature (MBP+) cells increased by 150% compared to cultures treated with LPC alone. When added at the time of LPC treatment, NF and TUB protected OL from LPC toxicity; they increased OLP by 90%, as well as the number of CNP+ and MBP+ OL by 65–110%, respectively, compared to cultures treated only with LPC. These effects were specific since irrelevant proteins (actin, skin proteins) were ineffective. This demonstrates that NF and TUB protect OL and increase OLP proliferation, as well as their survival, when challenged with LPC, without delaying differentiation and maturation in vitro. Thus, NF and TUB delivered following axonal damage in MS could participate in the regulation of remyelination through this process.  相似文献   

17.
Akt: versatile mediator of cell survival and beyond   总被引:4,自引:0,他引:4  
The serine/threonine kinase Akt has been intensely studied for its role in growth factor-mediated cell survival for the past 5 years. On the other hand, the ongoing research effort has recently uncovered novel regulatory mechanisms and downstream effectors of Akt that demonstrate the involvement of Akt in other cellular functions such as cell cycle progression, angiogenesis, and cancer cell invasion/metastasis. Furthermore, recent studies using whole model organisms suggest additional roles for Akt in important diseases such as aging and diabetes. The following review addresses these recent advances in the understanding of Akt function.  相似文献   

18.
Akt decreases lymphocyte apoptosis and improves survival in sepsis   总被引:4,自引:0,他引:4  
Sepsis induces extensive death of lymphocytes that may contribute to the immunosuppression and mortality of the disorder. The serine/threonine kinase Akt is a key regulator of cell proliferation and death. The purpose of this study was to determine whether overexpression of Akt would prevent lymphocyte apoptosis and improve survival in sepsis. In addition, given the important role of Akt in cell signaling, T cell Th1 and Th2 cytokine production was determined. Mice that overexpress a constitutively active Akt in lymphocytes were made septic, and survival was recorded. Lymphocyte apoptosis and cytokine production were determined at 24 h after surgery. Mice with overexpression of Akt had a marked improvement in survival compared with wild-type littermates, i.e., 94 and 47% survival, respectively, p < 0.01. In wild-type littermates, sepsis caused a marked decrease in IFN-gamma production, while increasing IL-4 production >2-fold. In contrast, T cells from Akt transgenic mice had an elevated production of IFN-gamma at baseline that was maintained during sepsis, while IL-4 had little change. Akt overexpression also decreased sepsis-induced lymphocyte apoptosis via a non-Bcl-2 mechanism. In conclusion, Akt overexpression in lymphocytes prevents sepsis-induced apoptosis, causes a Th1 cytokine propensity, and improves survival. Findings from this study strengthen the concept that a major defect in sepsis is impairment of the adaptive immune system, and suggest that strategies to prevent lymphocyte apoptosis represent a potential important new therapy.  相似文献   

19.
It is well-known that dead and dying neurons are quickly removed through phagocytosis by the brain's macrophages, the microglia. Therefore, neuronal loss during brain inflammation has always been assumed to be due to phagocytosis of neurons subsequent to their apoptotic or necrotic death. However, we report in this article that under inflammatory conditions in primary rat cultures of neurons and glia, phagocytosis actively induces neuronal death. Specifically, two inflammatory bacterial ligands, lipoteichoic acid or LPS (agonists of glial TLR2 and TLR4, respectively), stimulated microglial proliferation, phagocytic activity, and engulfment of ~30% of neurons within 3 d. Phagocytosis of neurons was dependent on the microglial release of soluble mediators (and peroxynitrite in particular), which induced neuronal exposure of the eat-me signal phosphatidylserine (PS). Surprisingly, however, eat-me signaling was reversible, so that blocking any step in a phagocytic pathway consisting of PS exposure, the PS-binding protein milk fat globule epidermal growth factor-8, and its microglial vitronectin receptor was sufficient to rescue up to 90% of neurons without reducing inflammation. Hence, our data indicate a novel form of inflammatory neurodegeneration, where inflammation can cause eat-me signal exposure by otherwise viable neurons, leading to their death through phagocytosis. Thus, blocking phagocytosis may prevent some forms of inflammatory neurodegeneration, and therefore might be beneficial during brain infection, trauma, ischemia, neurodegeneration, and aging.  相似文献   

20.
We identified a novel human AMP-activated protein kinase (AMPK) family member, designated ARK5, encoding 661 amino acids with an estimated molecular mass of 74 kDa. The putative amino acid sequence reveals 47, 45.8, 42.4, and 55% homology to AMPK-alpha1, AMPK-alpha2, MELK, and SNARK, respectively, suggesting that it is a new member of the AMPK family. It has a putative Akt phosphorylation motif at amino acids 595-600, and Ser(600) was found to be phosphorylated by active Akt resulting in the activation of kinase activity toward the SAMS peptide, a consensus AMPK substrate. During nutrient starvation, ARK5 supported the survival of cells in an Akt-dependent manner. In addition, we also demonstrated that ARK5, when activated by Akt, phosphorylated the ATM protein that is mutated in the human genetic disorder ataxia-telangiectasia and also induced the phosphorylation of p53. On the basis of our current findings, we propose that a novel AMPK family member, ARK5, is the tumor cell survival factor activated by Akt and acts as an ATM kinase under the conditions of nutrient starvation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号