首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
M Kimura  T Yura    T Nagata 《Journal of bacteriology》1980,144(2):649-655
Specialized transducing phage lambda (formula, see text) dnaA-2 was mutagenized, and two derivatives designated lambda (formula) dnaA17(Am) and lambda (formula) dnaA452(Am) were obtained. They did not transduce such mutations as dnaA46, dnaA167, and dnaA5 when an amber suppressor was absent, but they did so in the presence of an amber suppressor. By contrast, they transduced the dna-806 and tna-2 mutations in the absence of an active amber suppressor. The dna-806 and tna-2 mutations are known to be located very close to the dnaA gene, but in separate cistrons. When ultraviolet light-irradiated uvrB cells were infected with the derivative phages and proteins specified by them were analyzed by gel electrophoresis, a 50,000-dalton protein was found to be specifically missing if an amber suppressor was absent. This protein was synthesized when an amber suppressor was present. The dnaA17(Am) mutation on the transducing phage genome was then transferred by genetic recombination onto the chromosome of an Escherichia coli strain carrying a temperature-sensitive amber suppressor supF6(Ts), yielding a strain which was temperature sensitive for growth and deoxyribonucleic acid replication. The temperature-sensitive trait was suppressed by supD, supE, or supF. We conclude that, most likely, the derivative phages acquired amber mutations in the dnaA gene whose product is a 50,000-dalton protein as identified by gel electrophoretic analysis.  相似文献   

2.
Mutants of Escherichia coli tolerant to the ghosts of T-even phages (T2, T4, and T6) have been isolated from a strain supersensitive to T6 phage. First, T6 supersensitive mutants were isolated from mutagenized E. coli W2252 by replica plating to T6 phage-overlaid agar. One of them, strain NM101, was mutagenized again, grown, and then plated with a high multiplicity of T4 and T6 ghosts. Surviving cells were checked for tolerance to ghosts and adsorption of phages. One such ghost-tolerant mutant, strain GT29, was tolerant to ghosts of both T4 and T6 phages and sensitive to T2 ghosts. This mutant was also sensitive to ethylenediaminetetraacetic acid and penicillin G and intermediately sensitive to acriflavine, sodium dodecyl sulfate, sodium deoxycholate, actinomycin D, and lysozyme. Another mutant, strain GT62, was tolerant not only to T4 and T6 ghosts but also to T2 ghosts. It was sensitive to sodium dodecyl sulfate, sodium deoxycholate, penicillin G, acridine orange, actinomycin D, phenethyl alcohol, and novobiocin and intermediately sensitive to acriflavine and lysozyme. Spontaneous revertants of strain GT62 were isolated with a frequency of 2.7 X 10(-9). It is suggested that ghosts attack host bacteria indirectly through the cell surface by a mechanism similar to the transmission hypothesis that was originally adopted by Nomura (1967) to explain the mechanism of the action of colicins, and that our ghost-tolerant mutants presumably have defects in the cell surface.  相似文献   

3.
Bacteriophage lambda requires the lambda O and P proteins for its DNA replication. The rest of the replication proteins are provided by the Escherichia coli host. Some of these host proteins, such as DnaK, DnaJ, and GrpE, are heat shock proteins. Certain mutations in the dnaK, dnaJ, or grpE gene block lambda growth at all temperatures and E. coli growth above 43 degrees C. We have isolated bacterial mutants that were shown by Southern analysis to contain a defective, mini-Tn10 transposon inserted into either of two locations and in both orientations within the dnaJ gene. We have shown that these dnaJ-insertion mutants did not grow as well as the wild type at temperatures above 30 degrees C, although they blocked lambda DNA replication at all temperatures. The dnaJ-insertion mutants formed progressively smaller colonies at higher temperatures, up to 42 degrees C, and did not form colonies at 43 degrees C. The accumulation of frequent, uncharacterized suppressor mutations allowed these insertion mutants to grow better at all temperatures and to form colonies at 43 degrees C. None of these suppressor mutations restored the ability of the host to propagate phage lambda. Radioactive labeling of proteins synthesized in vivo followed by immunoprecipitation or immunoblotting with anti-DnaJ antibodies demonstrated that no DnaJ protein could be detected in these mutants. Labeling studies at different temperatures demonstrated that these dnaJ-insertion mutations resulted in altered kinetics of heat shock protein synthesis. An additional eight dnaJ mutant isolates, selected spontaneously on the basis of blocking phage lambda growth at 42 degrees C, were shown not to synthesize DnaJ protein as well. Three of these eight spontaneous mutants had gross DNA alterations in the dnaJ gene. Our data provide evidence that the DnaJ protein is not absolutely essential for E. coli growth at temperatures up to 42 degrees C under standard laboratory conditions but is essential for growth at 43 degrees C. However, the accumulation of extragenic suppressors is necessary for rapid bacterial growth at higher temperatures.  相似文献   

4.
A method has been developed for the isolation of Escherichia coli mutants which are resistant to catabolic repression. The method is based on the fact that a mixture of glucose and gluconate inhibits the development of chemotactic motility in the wild type, but not in the mutants. A motile E. coli strain was mutagenized and grown in glucose and gluconate. Mutants which were able to swim into a tube containing a chemotactic attractant (aspartic acid) were isolated. Most of these mutants were able to produce beta-galactosidase in the presence of glucose and gluconate and were normal in their ability to degrade adenosine 3',5-cyclic monophosphate. Some of these mutants were defective in the glucose phosphotransferase system.  相似文献   

5.
Several mutants of Escherichia coli K-12 defective in aerobic metabolism were isolated. One such mutant was found to be deficient in cytochromes, heme, and catalase. Aerobically grown cells did not consume oxygen and could grow only on fermentable carbon sources. Supplementation of the growth medium with delta-aminolevulonic acid, protoporphyrin IX, or hemin did not restore aerobic metabolism. The lack of heme and catalase in mutant cells grown on glucose was not due to catabolite repression, since the addition of exogenous cyclic AMP did not restore the normal phenotype. When grown aerobically on complex medium containing glucose, the mutant produced lactic acid as the principal fermentation product. This pleotropic mutation was attributed to an inability of the cells to synthesize heme, and preliminary data mapped the mutation to between 8 and 13 min on the E. coli genome.  相似文献   

6.
7.
cysK mutants, deficient in O-acetylserine sulphydrylase A [O-acetyl-L-serine acetate-lyase (adding hydrogen-sulphide); EC 4.2.99.8], were isolated as strains resistant to selenite or giving a black colour reaction on bismuth citrate indicator medium. All were resistant to the inhibitor I,2,4-triazole. Four independent mutants were found which possessed lowered levels of O-acetylserine sulphydrylase activity and also partially constitutive levels of NADPH-sulphite reductase [hydrogen-sulphide: NADP+ oxidoreductase; EC I.8.I.2]. Strains containing both a cysE mutation and a cysK mutation lacked the constitutive levels of NADPH-sulphite reductase showing that these levels were due to the in vivo concentration of the inducer, O-acetylserine. The cysK locus was found to be 81% cotransducible with the ptsI gene.  相似文献   

8.
The Escherichia coli CheZ protein stimulates dephosphorylation of CheY, a response regulator in the chemotaxis signal transduction pathway, by an unknown mechanism. Genetic analysis of CheZ has lagged behind biochemical and biophysical characterization. To identify putative regions of functional importance in CheZ, we subjected cheZ to random mutagenesis and isolated 107 nonchemotactic CheZ mutants. Missense mutations clustered in six regions of cheZ, whereas nonsense and frameshift mutations were scattered reasonably uniformly across the gene. Intragenic complementation experiments showed restoration of swarming activity when compatible plasmids containing genes for the truncated CheZ(1-189) peptide and either CheZA65V, CheZL90S, or CheZD143G were both present, implying the existence of at least two independent functional domains in each chain of the CheZ dimer. Six mutant CheZ proteins, one from each cluster of loss-of-function missense mutations, were purified and characterized biochemically. All of the tested mutant proteins were defective in their ability to dephosphorylate CheY-P, with activities ranging from 0.45 to 16% of that of wild-type CheZ. There was good correlation between the phosphatase activity of CheZ and the ability to form large chemically cross-linked complexes with CheY in the presence of the CheY phosphodonor acetyl phosphate. In consideration of both the genetic and biochemical data, the most severe functional impairments in this set of CheZ mutants seemed to be concentrated in regions which are located in a proposed large N-terminal domain of the CheZ protein.  相似文献   

9.
10.
To determine the physiological role of cyanate aminohydrolase (cyanase, EC 3.5.5.3) in bacteria, mutants of Escherichia coli K12 devoid of this inducible activity were isolated and their properties investigated. Five independent mutations were localized next to lac; three of them lay between lacY and codA. Thus cyanase activity could depend on the integrity of one gene or set of clustered genes; we propose for this locus the symbol cnt. Growth of the mutant stains was more sensitive to cyanate than growth of wild-type strains. This difference was noticeable in synthetic medium in the presence of low concentrations of cyanate (less than or equal to 1 mM). Higher concentrations inhibited growth of both wild-type and mutant strains. Urea in aqueous solutions dissociates slowly into ammonium cyanate. Accordingly wild-type strains were able to grow on a synthetic medium containing 0.5 M-urea whereas mutants lacking cyanase were not. We conclude that cyanase could play a role in destroying exogenous cyanate originating from the dissociation of carbamoyl compounds such as urea; alternatively cyanate might constitute a convenient nitrogen source for bacteria able to synthesize cyanase in an inducible way.  相似文献   

11.
19 independent recombination-deficient mutants were isolated. 7 carried mutations that mapped near or in the recB and recC genes between thyA and argA. 10 mutants carried mutations cotransducible with pheA and exhibited no complementation with recA in temporary zygotic diploids.  相似文献   

12.
Escherichia coli mutants sensitive to methyl viologen (MV), an active oxygen propagator, were isolated. Among them, the new genes mvrA and mvrB were mapped at 7 and 28 min on the E. coli linkage map, respectively. MV toxicity was exerted only in the presence of oxygen and was suppressed by the radical scavenger uric acid but not by the hydroxyl radical scavenger mannitol. The mvr mutants were sensitive only to MV and had a normal repair capacity for the MV-damaged DNA. From these results, these mutants were assumed to be related to the elimination of MV-specific toxic species. Gene mvrA was cloned into vector pBR322 and its sequence was determined. The mvrA gene, which was predicted to range in size from 600 to 900 base pairs (bp) by transposon Tn1000 insertion analysis, was identified to be 807 bp, with an approximately 60-bp promoter sequence carrying consensus sequences for the -35 region, the -10 region, and a ribosome-binding site. The MvrA protein deduced from the DNA sequence was 29.7 kilodaltons, which was in good agreement with the 29 kilodaltons of the MvrA protein identified by sodium dodecyl sulfate-polyacrylamide gel electrophoresis after a maxicell labeling experiment.  相似文献   

13.
Mutants of Escherichia coli K-12 defective in the pantothenate permease (panF) were isolated and characterized. The panF mutation resulted in the complete loss of pantothenate uptake and of the ability to use extracellular vitamin for growth. The growth phenotypes of panF panD, panF panB, and panF panC double mutants showed that the cytoplasmic membrane was impermeable to external pantothenate. Analysis of the intracellular and extracellular metabolites from strain DV1 (panF panD) labeled with beta-[3-3H]alanine demonstrated that a carrier-mediated mechanism for efficient pantothenate efflux remained in the panF mutant. Genetic mapping of this nonselectable allele was facilitated by the isolation of three independent Tn10 insertions close to panF. Two- and three-factor crosses located panF at minute 72 of the E. coli chromosome and established the gene order fabE panF aroE.  相似文献   

14.
Strains of Escherichia coli containing reduced levels of exonuclease VII activity due to mutations in the xseB gene have been isolated after mutagenesis with N-methyl-N'-nitro-N-nitrosoguanidine. Seven mutants of independent origin deficient in exonuclease VII activity were obtained. Four of these contained defects in xseA, a locus which has been previously identified, and three others contained mutations in a gene distinct from xseA, which we have designated xseB. Genetic mapping studies place the xseB locus between proC and dnaZ. Exonuclease VII purified from KLC835 (xseA+ xseB3) is more heat labile than enzyme purified from the parent strain PA610 (xse+), showing that xseB is a structural gene for exonuclease VII. The isolation of lambda transducing phage carrying xseA is also described.  相似文献   

15.
We have isolated chromosomal mutants of an Escherchia coli K-12 strain that maintain higher levels of an F' plasmid. The mutants are designated as plasmid copy number (pcn) mutants. They were detected by selecting for increased lactose fermentation in bacteria deleted for the lac operon but harboring an F'lacI,P pro+ plasmid. When examined for the amount of F' plasmid deoxyribonucleic acid (DNA) by the dye-CsCl isopycnic technique, the mutants show two to seven times as much covalently closed, circular (CCC) DNA as does the parental strain. The increased plasmid level in one mutant strain (pcn-24) was confirmed by DNA-DNA hybridization; however, this latter technique indicated about a twofold lower increase when compared with the increase measured for pcn-24 by the dye-CsCl technique. In mutant pcn-24 the increased amount of F' DNA reflects a proportional increase in monomeric-size plasmid molecules because oligomeric forms are not found. Also, in mutant pcn-24 the extra CCC plasmid copies do not seem to be randomly distributed throughout the cell's cytoplasm but appear complexed in situ with their host's folded chromosome. In all pcn mutants examined to date, the classical sex factor F is maintained at normal levels, whereas the viral plasmid Pl CM is maintained at two to three times the normal level. In all 17 pcn mutants isolated, the pcn mutation maps on the chromosome and not on the plasmid. Finally, the absolute amount of CCC F' DNA detectable in lysates of the six different pcn mutants examined decreased 50 to 90% upon incubation of the lysate at 37 C. In contrast, no loss of CCC DNA occurs when lysates of the parental F' strain are incubated at 37 C.  相似文献   

16.
Escherichia coli mutants defective in propionate metabolism (Prp-) were isolated after mutagenesis with N-methyl-N'-nitro-N-nitrosoguanidine. Prp- mutants demonstrate a phenotypic inability to grow on odd-chain-length fatty acids. The new genetic locus for the Prp- phenotype maps at approximately 98 min on the E. coli chromosome.  相似文献   

17.
We developed an efficient method for isolation of novel dnaA mutations based on PCR mutagenesis in the presence of manganese ion and shuffling of dnaA-carrying plasmids in a dnaA deletion host bacterium. Using this system, we obtained 30 cold-sensitive mutants from 4000 clones carrying plasmids with a mutagenized dnaA gene. All 27 cold-sensitive mutants analyzed were defective in DNA replication; none had a DnaAcos (over-initiation) phenotype. Nucleotide sequencing revealed that novel 15 alleles (mutations in 14 amino acid residues) are responsible for the cold-sensitive phenotype and are all located in the carboxy-terminal half of the DnaA protein.  相似文献   

18.
Four mutants of Escherichia coli that are resistant to the flagellotropic phage chi, but are motile, were isolated. When they were observed in liquid culture bylight microscopy, one mutant exhibited circular movement and another tumbled at high frequency on the surface of a glass slide. The remaining two mutants moved normally. None of these mutants adsorbed the wild-type strain of chi. P1 transduction revealed that the mutation sites of these four mutants were more than 97% contransducible with a site in hag, the structural gene for flagellin. When flagellins of these mutants were chromatographed on a diethylaminoethyl-cellulose column, two eluted slower and one eluted slightly faster than the flagellin of the parental strain. The other flagellin eluted at the same position as that of the parent. Host range mutants of phage chi, which could infect these bacterial mutants, were isolated.  相似文献   

19.
Mutants of Escherichia coli defective in catabolism of 3-phenylpropionate, 3-(3-hydroxyphenyl)propionate, or both were isolated after mutagenesis with ethylmethane sulfonate. Nine phenotypically distinct classes of mutants were identified, including strains lacking each of the first five enzyme activities for the degradation of these compounds and mutants pleiotropically negative for some of these activities. Characterization of these mutants was greatly facilitated by the use of indicator media in which accumulation of 3-(2,3-dihydroxyphenyl)propionate or 2-hydroxy-6-ketononadienedioic acid led to the formation of dark red or bright yellow colors, respectively, in the medium. Assays with wild-type and mutant strains indicated that 3-phenylpropionate (or its dihydrodiol), but none of the hydroxylated derivatives tested, induced the synthesis of enzymes for its conversion to 3-(2,3-dihydroxyphenyl)propionate. The remaining enzymes were induced by the 2- or 3-hydroxy or 2,3-dihydroxy derivatives of 3-phenylpropionate, with the 2-hydroxy compound acting as an apparent gratuitous inducer. Metabolism to nonaromatic intermediates appeared to be unnecessary for full induction of any pathway enzyme. One unusual class of mutants, in which 2-keto-4-pentenoate hydratase appeared to be uninducible, indicated a level of control not previously shown in meta-fission catabolic pathways.  相似文献   

20.
We report a new procedure for the facile selection of mutants of Escherichia coli that are blocked in the production of membrane-derived oligosaccharides. Four phenotypic classes were identified, including two with a novel array of characteristics. The mutations mapped to two genetic loci. Mutations in the mdoA region near 23 min are in two distinct genes, only one of which is needed for the membrane-localized glucosyltransferase that catalyzes the synthesis of the beta-1,2-glucan backbone of membrane-derived oligosaccharides. Another set of mutations mapped near 27 min closely linked to osmZ; these appear to be in the galU gene.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号