首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
R Herber  A Liem  H Pitot    P F Lambert 《Journal of virology》1996,70(3):1873-1881
The human papillomavirus type 16 (HPV-16) genome is commonly present in human cervical carcinoma, in which a subset of the viral genes, E6 and E7, are expressed. The HPV-16 E6 and E7 gene products can associated with and inactivate the tumor suppressor proteins p53 and Rb (the retinoblastoma susceptibility gene product), and in tissue culture cells, these viral genes display oncogenic properties. These findings have led to the hypothesis that E6 and E7 contribute to cervical carcinogenesis. This hypothesis has recently been tested by using transgenic mice as an animal model. HPV-16 E6 and E7 together were found to induce cancers in multiple tissues in which they were expressed, including squamous cell carcinoma, the cancer type most commonly associated with HPV-16 in the human cervix. We have extended these studies to investigate the in vivo activities of HPV-16 E7 when expressed in squamous epithelia of transgenic mice. Grossly, E7 transgenic mice had multiple phenotypes, including wrinkled skin that was apparent prior to the appearance of hair on neonates, thickened ears, and loss of hair in adults. In lines of mice expressing higher levels of E7, we observed stunted growth and mortality at an early age, potentially caused by an incapacity to feed. Histological analysis demonstrated that E7 causes epidermal hyperplasia in multiple transgenic lineages with high penetrance. This epithelial hyperplasia was characterized by an expansion of the proliferating compartment and an expansion of the keratin 10-positive layer of cells and was associated with hyperkeratosis. Hyperplasia was found at multiple sites in the animals in addition to the skin, including the mouth palate, esophagus, forestomach, and exocervix. In multiple transgenic lineages, adult animals developed skin tumors late in life with low penetrance. These tumors arose from the squamous epithelia and from sebaceous glands and were characterized histologically to be highly differentiated, locally invasive, and aggressive in their growth properties. On the basis of these phenotypes, we conclude that HPV-16 E7 can alter epithelial cell growth parameters sufficiently to potentiate tumorigenesis in mice.  相似文献   

2.
Kim SH  Kim KS  Lee EJ  Kim MO  Park JH  Cho KI  Imakawa K  Hyun BH  Chang KT  Lee HT  Ryoo ZY 《Life sciences》2004,75(25):3035-3042
Human papillomavirus type 16 (HPV16) has been known as a major causative factor for the development of uterine cervical carcinomas. To investigate the in vivo activity of HPV16 expressed in squamous epithelia, transgenic mice harboring HPV16 E6/E7 with human keratin 14 (hK14) promoter were generated. Grossly, hK14 driven HPV16 E6/E7 transgenic mice exhibited multiple phenotypes, including wrinkled skin that was apparent prior to the appearance of hair in neonates, thickened ears, and loss of hair in adults. Transgenic mice with phenotype exhibiting severe wrinkled skin and a lack of hair growth died at the age of 3-4 weeks. Histological analysis revealed that in transgenic mice survived beyond the initial 3-4 weeks, HPV16 E6/E7 causes epidermal hyperplasia in multiple transgenic lineages with high incidence of transgene penetration. This epithelial hyperplasia was characterized by an expansion of the proliferating compartment and keratinocytes, and was associated with hyperkeratosis. Such activities were significantly higher in the skin of transgenic mice than that of the normal mice. Thus, these transgenic mice appeared to be useful for the expression of HPV16 E6/E7 gene and subsequent analysis on hyperkeratosis.  相似文献   

3.
High-risk human papillomaviruses encode two oncogenes, E6 and E7, expressed in nearly all cervical cancers. Although E7 protein is best known for its ability to inactivate the retinoblastoma tumor suppressor protein, pRb, many other activities for E7 have been proposed in in vitro studies. Herein, we describe studies that allowed us to define unambiguously the pRb-dependent and -independent activities of E7 for the first time in vivo. In these studies, we crossed mice transgenic for human papillomavirus 16 E7 to knock-in mice genetically engineered to express a mutant form of pRb (pRb(DeltaLXCXE)) that is selectively defective for binding E7. pRb inactivation was necessary for E7 to induce DNA synthesis and to overcome differentiation-dependent cell cycle withdrawal and DNA damage-induced cell cycle arrest. While most of E7's effects on epidermal differentiation were found to require pRb inactivation, a modest delay in terminal differentiation with resulting hyperplasia was observed in E7 mice on the Rb(DeltaLXCXE) mutant background. E7-induced p21 upregulation was also pRb dependent, and genetic Rb inactivation was sufficient to reproduce this effect. While E7-mediated p21 induction was partially p53 dependent, neither p53 nor p21 induction by E7 required p19(ARF). These data show that E7 upregulates the expression of p53 and p21 via pRb-dependent mechanisms distinct from the proposed p19-Mdm2 pathway. These results extend our appreciation of the importance of pRb as a relevant target for high-risk E7 oncoproteins.  相似文献   

4.
The high-risk HPV E6 and E7 proteins cooperate to immortalize primary human cervical cells and the E7 protein can independently transform fibroblasts in vitro, primarily due to its ability to associate with and degrade the retinoblastoma tumor suppressor protein, pRb. The binding of E7 to pRb is mediated by a conserved Leu-X-Cys-X-Glu (LXCXE) motif in the conserved region 2 (CR2) of E7 and this domain is both necessary and sufficient for E7/pRb association. In the current study, we report that the E7 protein of the malignancy-associated canine papillomavirus type 2 encodes an E7 protein that has serine substituted for cysteine in the LXCXE motif. In HPV, this substitution in E7 abrogates pRb binding and degradation. However, despite variation at this critical site, the canine papillomavirus E7 protein still bound and degraded pRb. Even complete deletion of the LXSXE domain of canine E7 failed to interfere with binding to pRb in vitro and in vivo. Rather, the dominant binding site for pRb mapped to the C-terminal domain of canine E7. Finally, while the CR1 and CR2 domains of HPV E7 are sufficient for degradation of pRb, the C-terminal region of canine E7 was also required for pRb degradation. Screening of HPV genome sequences revealed that the LXSXE motif of the canine E7 protein was also present in the gamma HPVs and we demonstrate that the gamma HPV-4 E7 protein also binds pRb in a similar way. It appears, therefore, that the type 2 canine PV and gamma-type HPVs not only share similar properties with respect to tissue specificity and association with immunosuppression, but also the mechanism by which their E7 proteins interact with pRb.  相似文献   

5.
The functional role of UV irradiation, in combination with the E6 and E7 proteins of the cutaneous human papillomavirus (HPV) types in the malignant conversion of benign papillomatous lesions, has not been elucidated. Transgenic SKH-hr1 hairless mice expressing HPV-20 and HPV-27 E6 and E7 proteins in the suprabasal compartment were generated and exposed to chronic UV irradiation. Histological and immunohistochemical examination of skin samples revealed enhanced proliferation of the epidermal layers and papilloma formation in both transgenic strains in comparison to what was observed with nontransgenic mice. Squamous cell carcinoma developed in the HPV-20 E6/E7 transgenic line as well as in the HPV-27 E6/E7 transgenic line. Several weeks after cessation of UV-B exposure, enhanced proliferation, as measured by BrdU incorporation, was maintained only in HPV-20 transgenic skin. Keratin 6 expression was increased in the transgenic mice throughout all cell layers. Expression of the differentiation markers involucrin and loricrin was reduced and disturbed. p63alpha expression was differentially regulated with high levels of cytoplasmic expression in clusters of cells in the granular layer of the skin in the transgenic lines 20 weeks after cessation of UV-B exposure, in contrast to uninterrupted staining in the nontransgenic lines. p53 was expressed in clusters of cells in nontransgenic and HPV-27 transgenic mice, in contrast to an even distribution in a higher number of cells in HPV-20 transgenic animals.  相似文献   

6.
Although the human papillomavirus (HPV) E7 oncogene is known to contribute to the development of human cervical cancer, the mechanisms of its carcinogenesis are poorly understood. The first identified and most recognized function of E7 is its binding to and inactivation of the retinoblastoma tumor suppressor (pRb), but at least 18 other biological activities have also been reported for E7. Thus, it remains unclear which of these many activities contribute to the oncogenic potential of E7. We used a Cre-lox system to abolish pRb expression in the epidermis of transgenic mice and compared the outcome with the effects of E7 expression in the same tissue at early ages. Mice lacking pRb in epidermis showed epithelial hyperplasia, aberrant DNA synthesis, and improper differentiation. In addition, Rb-deleted epidermis (i.e., epidermis composed of cells with Rb deleted) exhibited centrosomal abnormalities and failed to arrest the cell cycle in response to ionizing radiation. Transgenic mice expressing E7 in skin display the same range of phenotypes. In sum, few differences were detected between Rb-deleted epidermis and E7-expressing epidermis in young mice. However, when both E7 was expressed and Rb was deleted in the same tissue, increased hyperplasia and dysplasia were observed. These findings indicate that inactivation of the Rb pathway can largely account for E7's phenotypes at an early age, but that pRb-independent activities of E7 are detectable in vivo.  相似文献   

7.
Established cancers are frequently associated with a lymphocytic infiltrate that fails to clear the tumour mass. In contrast, the importance of recruited lymphocytes during premalignancy is less well understood. In a mouse model of premalignant skin epithelium, transgenic mice that express the human papillomavirus type 16 (HPV16) E7 oncoprotein under a keratin 14 promoter (K14E7 mice) display epidermal hyperplasia and have a predominant infiltrate of lymphocytes consisting of both CD4 and CD8 T cells. Activated, but not naïve T cells, were shown to preferentially traffic to hyperplastic skin with an increased frequency of proliferative CD8+ T cells and CD4+ T cells expressing CCR6 within the tissue. Disruption of the interaction between E7 protein and retinoblastoma tumour suppressor protein (pRb) led to reduced epithelial hyperplasia and T cell infiltrate. Finally, while K14E7 donor skin grafts are readily accepted onto syngeneic, non-transgenic recipients, these same skin grafts lacking skin-resident lymphocytes were rejected. Our data suggests that expression of a single oncoprotein in the epidermis is sufficient for lymphocyte trafficking (including immunosuppressive lymphocytes) to premalignant skin.  相似文献   

8.
The function of retinoblastoma protein (pRb) in the regulation of small intestine epithelial cell homeostasis has been challenged by several groups using various promoter-based Cre transgenic mouse lines. Interestingly, different pRb deletion systems yield dramatically disparate small intestinal phenotypes. These findings confound the function of pRb in this dynamic tissue. In this study, Villin-Cre transgenic mice were crossed with Rb (flox/flox) mice to conditionally delete pRb protein in small intestine enterocytes. We discovered a novel hyperplasia phenotype as well as ectopic cell cycle reentry within villus enterocytes in the small intestine. This phenotype was not seen in other pRb family member (p107 or p130) null mice. Using a newly developed crypt/villus isolation method, we uncovered that expression of pRb was undetectable, whereas proliferating cell nuclear antigen, p107, cyclin E, cyclin D3, Cdk2, and Cdc2 were dramatically increased in pRb-deficient villus cells. Cyclin A, cyclin D1, cyclin D2, and Cdk4/6 expression was not affected by absent pRb expression. pRb-deficient villus cells appeared capable of progressing to mitosis but with higher rates of apoptosis. However, the cycling villus enterocytes were not completely differentiated as gauged by significant reduction of intestinal fatty acid-binding protein expression. In summary, pRb, but not p107 or p130, is required for maintaining the postmitotic villus cell in quiescence, governing the expression of cell cycle regulatory proteins, and completing of absorptive enterocyte differentiation in the small intestine.  相似文献   

9.
10.
Transgenic mice expressing the simian virus 40 large T antigen (TAg) in enterocytes develop intestinal hyperplasia that progresses to dysplasia with age. This induction requires TAg action on the retinoblastoma (Rb) family of tumor suppressors and is independent of the p53 pathway. In cell culture systems, the inactivation of Rb proteins requires both a J domain in TAg that interacts with hsc70 and an LXCXE motif that directs association with Rb proteins. Together these elements are sufficient to release E2Fs from their association with Rb family members. We have generated transgenic mice that express a J domain mutant (D44N) in villus enterocytes. In contrast to wild-type TAg, the D44N mutant is unable to induce enterocyte proliferation. Histological and morphological examination revealed that mice expressing the J domain mutant have normal intestines without loss of growth control. Unlike mice expressing wild-type TAg, mice expressing D44N do not reduce the protein levels of p130 and are also unable to dissociate p130-E2F DNA binding complexes. Furthermore, mice expressing D44N in a null p130 background are still unable to develop hyperplasia. These studies demonstrate that the ectopic proliferation of enterocytes by TAg requires a functional J domain and suggest that the J domain is necessary to inactivate all three pRb family members.  相似文献   

11.
The human papillomavirus type 16 (HPV-16) E6 and E7 oncogenes are thought to play a role in the development of most human cervical cancers. These E6 and E7 oncoproteins affect cell growth control at least in part through their association with and inactivation of the cellular tumor suppressor gene products, p53 and Rb. To study the biological activities of the HPV-16 E6 and E7 genes in epithelial cells in vivo, transgenic mice were generated in which expression of E6 and E7 was targeted to the ocular lens. Expression of the transgenes correlated with bilateral microphthalmia and cataracts (100% penetrance) resulting from an efficient impairment of lens fiber cell differentiation and coincident induction of cell proliferation. Lens tumors formed in 40% of adult mice from the mouse lineage with the highest level of E6 and E7 expression. Additionally, when lens cells from neonatal transgenic animals were placed in tissue culture, immortalized cell populations grew out and acquired a tumorigenic phenotype with continuous passage. These observations indicate that genetic changes in addition to the transgenes are likely necessary for tumor formation. These transgenic mice and cell lines provide the basis for further studies into the mechanism of action of E6 and E7 in eliciting the observed pathology and into the genetic alterations required for HPV-16-associated tumor progression.  相似文献   

12.
13.
14.
To model human papillomavirus-induced neoplastic progression, expression of the early region of human papillomavirus type 16 (HPV16) was targeted to the basal cells of the squamous epithelium in transgenic mice, using a human keratin 14 (K14) enhancer/promoter. Twenty-one transgenic founder mice were produced, and eight lines carrying either wild-type or mutant HPV16 early regions that did not express the E1 or E2 genes were established. As is characteristic of human cancers, the E6 and E7 genes remained intact in these mutants. The absence of E1 or E2 function did not influence the severity of the phenotype that eventually developed in the transgenic mice. Hyperplasia, papillomatosis, and dysplasia appeared at multiple epidermal and squamous mucosal sites, including ear and truncal skin, face, snout and eyelids, and anus. The ears were the most consistently affected site, with pathology being present in all lines with 100% penetrance. This phenotype also progressed through discernible stages. An initial mild hyperplasia was followed by hyperplasia, which further progressed to dysplasia and papillomatosis. During histopathological progression, there was an incremental increase in cellular DNA synthesis, determined by 5-bromo-2'-deoxyuridine incorporation, and a profound perturbation in keratinocyte terminal differentiation, as revealed by immunohistochemistry to K5, K14, and K10 and filaggrin. These K14-HPV16 transgenic mice present an opportunity to study the role of the HPV16 oncogenes in the neoplastic progression of squamous epithelium and provide a model with which to identify genetic and epigenetic factors necessary for carcinogenesis.  相似文献   

15.
The function of the human papillomavirus (HPV) E4 proteins is unknown. In cultured epithelial cells the proteins associate with the keratin intermediate filaments (IFs) and, for some E4 types, e.g., HPV type 16 (HPV-16), induce collapse of the keratin networks. An N-terminal leucine-rich motif (LLXLL) is a conserved feature of many E4 proteins. In a previous study we showed that deletion of this region from the HPV-1 and -16 E4 proteins abrogated the localization of the mutant proteins to the keratin cytoskeleton in a simian virus 40-transformed human keratinocyte cell line (S. Roberts, I. Ashmole, L. J. Gibson, S. M. Rookes, G. J. Barton, and P. H. Gallimore, J. Virol. 68:6432-6445, 1994). The E4 proteins of HPV-1 and -16 have little sequence homology except at the N terminus. Therefore, to establish the role of sequences other than those at the N terminus, we have performed a mutational analysis of the HPV-16 E4 protein. The results of the analysis were as follows: (i) similar to findings for the HPV-1 protein, no mutation of HPV-16 E4 sequences (other than the N-terminal leucine motif) results in a mutant protein which fails to colocalize to the keratin IFs; (ii) the C-terminal domain (residues 61 to 92) is not essential for association with the cytoskeleton; and (iii) deletion of C-terminal sequences (residues 84 to 92; LTVIVTLHP) corresponding to part of a domain conserved between mucosal E4 proteins affects the ability of the mutant protein to induce cytoskeletal collapse, despite colocalization with the keratin IFs. Further analysis of this region showed that conserved hydrophobic residues valines 86 and 88 are important. In addition, we show that the HPV-16 E4 protein is detergent insoluble and exists as several disulfide-linked, high-molecular-weight complexes which could represent homo-oligomers. The C-terminal sequences (residues 84 to 92), in particular valines 86 and 88, are important in the formation of these insoluble complexes. The results of this study support our postulate that the E4 proteins include functional domains at the N terminus and the C terminus, with the intervening sequences possibly acting as a flexible hinge.  相似文献   

16.
Simian virus 40 large T antigen interacts with three cellular proteins, pRb, p107, and p130, through a common binding site on the T antigen protein called the E1A conserved region 2-like (CR2-like) domain. Mutations in this domain inactivate the transforming activity of large T antigen. Since these mutations have been demonstrated to abolish binding to pRb and p107, and presumably therefore affect binding to p130, assessment of the relative roles of these three proteins in transformation of rodent fibroblasts by T antigen has been difficult. We have examined the role of T antigen-pRb interactions in transformation. We have introduced a mutant T antigen, which is unable to bind any of these three proteins, into primary mouse fibroblasts derived from the embryos of mice in which the Rb gene encoding the retinoblastoma protein had been disrupted. This mutant is unable to transform the Rb-negative fibroblasts, indicating that inactivation of pRb is not the sole function of the CR2-like domain in the induction of transformation of mouse fibroblasts by simian virus 40.  相似文献   

17.
S L Chen  Y K Lin  L Y Li  Y P Tsao  H Y Lo  W B Wang    T C Tsai 《Journal of virology》1996,70(12):8558-8563
Human papillomavirus type 11 (HPV-11) and HPV-16 contain an E5 gene that can induce c-fos gene expression in mouse fibroblasts. This study investigated the human c-fos promoter characteristics by mapping the c-fos promoter sequence with several deletion and point mutants that confer responsiveness to E5 of HPV-11 or HPV-16. The mutant studies show that NF1 binding sequences within the c-fos promoter were crucial for the induction of the c-fos gene by E5, and the gel shift assay study suggested that E5 of both HPV-11 and HPV-16 is associated, perhaps indirectly, with this NF1 element in the transactivation of the human c-fos promoter. Using an inducible system, we demonstrate that increased induction of the HPV-11 E5 gene in cells led to increased transactivation of the NF1 element. In addition, the transactivating activity of a series of HPV-11 E5 mutants on the NF1 element had a strong correlation with their respective transforming activities.  相似文献   

18.
19.

Background

Human Papillomavirus (HPV)-16 is a paradigm for “high-risk” HPVs, the causative agents of virtually all cervical carcinomas. HPV E6 and E7 viral genes are usually expressed in these tumors, suggesting key roles for their gene products, the E6 and E7 oncoproteins, in inducing malignant transformation.

Methodology/Principal Findings

By protein-protein interaction analysis, using mass spectrometry, we identified glutathione S-transferase P1-1 (GSTP1) as a novel cellular partner of the HPV-16 E7 oncoprotein. Following mapping of the region in the HPV-16 E7 sequence that is involved in the interaction, we generated a three-dimensional molecular model of the complex between HPV-16 E7 and GSTP1, and used this to engineer a mutant molecule of HPV-16 E7 with strongly reduced affinity for GSTP1.When expressed in HaCaT human keratinocytes, HPV-16 E7 modified the equilibrium between the oxidized and reduced forms of GSTP1, thereby inhibiting JNK phosphorylation and its ability to induce apoptosis. Using GSTP1-deficient MCF-7 cancer cells and siRNA interference targeting GSTP1 in HaCaT keratinocytes expressing either wild-type or mutant HPV-16 E7, we uncovered a pivotal role for GSTP1 in the pro-survival program elicited by its binding with HPV-16 E7.

Conclusions/Significance

This study provides further evidence of the transforming abilities of this oncoprotein, setting the groundwork for devising unique molecular tools that can both interfere with the interaction between HPV-16 E7 and GSTP1 and minimize the survival of HPV-16 E7-expressing cancer cells.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号