首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Forward genetic screens provide a powerful approach for inferring gene function on the basis of the phenotypes associated with mutated genes. However, determining the causal mutation by traditional mapping and candidate gene sequencing is often the rate-limiting step, especially when analyzing many mutants. We report two genomic approaches for more rapidly determining the identity of the affected genes in Caenorhabditis elegans mutants. First, we report our use of restriction site-associated DNA (RAD) polymorphism markers for rapidly mapping mutations after chemical mutagenesis and mutant isolation. Second, we describe our use of genomic interval pull-down sequencing (GIPS) to selectively capture and sequence megabase-sized portions of a mutant genome. Together, these two methods provide a rapid and cost-effective approach for positional cloning of C. elegans mutant loci, and are also applicable to other genetic model systems.  相似文献   

2.
Identification of the molecular lesion in Caenorhabditis elegans mutants isolated through forward genetic screens usually involves time-consuming genetic mapping. We used Illumina deep sequencing technology to sequence a complete, mutant C. elegans genome and thus pinpointed a single-nucleotide mutation in the genome that affects a neuronal cell fate decision. This constitutes a proof-of-principle for using whole-genome sequencing to analyze C. elegans mutants.  相似文献   

3.
Positional cloning of chemically induced mutations is the rate-limiting step in forward genetic screens in Drosophila. Single-nucleotide polymorphisms (SNPs) are useful markers to locate a mutated region in the genome. Here, we provide a protocol for high-throughput, high-resolution SNP mapping that enables rapid and cost-effective positional cloning in Drosophila. In stage 1 of the protocol, we use highly multiplexed tag-array mini-sequencing assays to map mutations to an interval of 1-2 Mb. In these assays, SNPs are genotyped by primer extension using fluorescently labeled dideoxy-nucleotides. Fluorescent primers are captured and detected on a microarray. In stage 2, we selectively isolate recombinants within the identified 1-2 Mb interval for fine mapping of mutations to about 50 kb. We have previously demonstrated the applicability of this protocol by mapping 14 muscle morphogenesis mutants within 4 months, which represents a significant acceleration compared with other commonly used mapping strategies that may take years.  相似文献   

4.
Map-based (positional) cloning has traditionally been the preferred strategy for identifying the causal genes underlying the phenotypes of mutants isolated in forward genetic screens. Massively parallel sequencing technologies are enabling the rapid cloning of genes identified in such screens. We have used a combination of linkage mapping and whole-genome re-sequencing to identify the causal mutations in four loss-of-function angulata (anu) mutants. These mutants were isolated in a screen for mutants with defects in leaf shape and leaf pigmentation. Our results show that the anu1-1, anu4-1, anu9-1 and anu12-1 mutants carry new alleles of the previously characterized SECA2, TRANSLOCON AT THE OUTER MEMBRANE OF CHLOROPLASTS 33 (TOC33), NON-INTRINSIC ABC PROTEIN 14 (NAP14) and CLP PROTEASE PROTEOLYTIC SUBUNIT 1 (CLPR1) genes. Re-sequencing the genomes of fine mapped mutants is a feasible approach that has allowed us to identify a moderate number of candidate mutations, including the one that causes the mutant phenotype, in a nonstandard genetic background. Our results indicate that anu mutations specifically affect plastid-localized proteins involved in diverse processes, such as the movement of peptides through chloroplast membranes (ANU1 and ANU4), metal homeostasis (ANU9) and protein degradation (ANU12).  相似文献   

5.
Characterization of rice mutants with enhanced susceptibility to rice blast   总被引:1,自引:0,他引:1  
Kim HK  Lee SK  Cho JI  Lee S  An G  Jwa NS  Kim BR  Cho YC  Han SS  Bhoo SH  Lee YH  Hong YK  Yi G  Park DS  Hahn TR  Jeon JS 《Molecules and cells》2005,20(3):385-391
As a first step towards identifying genes involving in the signal transduction pathways mediating rice blast resistance, we isolated 3 mutants lines that showed enhanced susceptibility to rice blast KJ105 (91-033) from a T-DNA insertion library of the japonica rice cultivar, Hwayeong. Since none of the susceptible phenotypes co-segregated with the T-DNA insertion we adapted a map-based cloning strategy to isolate the gene(s) responsible for the enhanced susceptibility of the Hwayeong mutants. A genetic mapping population was produced by crossing the resistant wild type Hwayeong with the susceptible cultivar, Nagdong. Chi-square analysis of the F2 segregating population indicated that resistance in Hwayeong was controlled by a single major gene that we tentatively named Pi-hy. Randomly selected susceptible plants in the F2 population were used to build an initial map of Pi-hy. The SSLP marker RM2265 on chromosome 2 was closely linked to resistance. High resolution mapping using 105 F2 plants revealed that the resistance gene was tightly linked, or identical, to Pib, a resistance gene with a nucleotide binding sequence and leucine-rich repeats (NB-LRR) previously isolated. Sequence analysis of the Pib locus amplified from three susceptible mutants revealed lesions within this gene, demonstrating that the Pi-hy gene is Pib. The Pib mutations in 1D-22-10-13, 1D-54-16-8, and 1C-143-16-1 were, respectively, a missense mutation in the conserved NB domain 3, a nonsense mutation in the 5th LRR, and a nonsense mutation in the C terminus following the LRRs that causes a small deletion of the C terminus. These findings provide evidence that NB domain 3 and the C terminus are required for full activity of the plant R gene. They also suggest that alterations of the resistance gene can cause major differences in pathogen specificity by affecting interactions with an avirulence factor.  相似文献   

6.
研究发现任何错误剪接、移码、插入等基因突变都可能引入含有提前终止密码子(premature termination codon,PTC)的转录产物,将导致翻译提前终止而产生无生物活性甚至毒害性截短蛋白(truncated proteins)。而无义介导的mRNA的降解(nonsensemediated m RNA decay,NMD)作用机制在基因转录及转录后加工过程中选择性地迅速降解含有提前终止密码子的mRNA,避免产生对细胞正常生理功能有害的截短蛋白,真核生物NMD是转录后m RNA监控的重要环节。肿瘤的发生发展与相应基因的表达有关,NMD可以降解含有PTC的mRNA,学者们认为抑制NMD后肿瘤中某些基因的表达上调,而上调的基因或许在肿瘤的发生发展中其抑癌基因的作用,故学者们抑制肿瘤中NMD后进行测序筛选发生无义突变的抑癌基因。  相似文献   

7.
Random mutagenesis and genetic screens for impaired Raf function in Caenorhabditis elegans were used to identify six loss-of-function alleles of lin-45 raf that result in a substitution of a single amino acid. The mutations were classified as weak, intermediate, and strong based on phenotypic severity. We engineered these mutations into the homologous residues of vertebrate Raf-1 and analyzed the mutant proteins for their underlying biochemical defects. Surprisingly, phenotype strength did not correlate with the catalytic activity of the mutant proteins. Amino acid substitutions Val-589 and Ser-619 severely compromised Raf kinase activity, yet these mutants displayed weak phenotypes in the genetic screen. Interestingly, this is because these mutant Raf proteins efficiently activate the MAPK (mitogen-activated protein kinase) cascade in living cells, a result that may inform the analysis of knockout mice. Equally intriguing was the observation that mutant proteins with non-functional Ras-binding domains, and thereby deficient in Ras-mediated membrane recruitment, displayed only intermediate strength phenotypes. This confirms that secondary mechanisms exist to couple Ras to Raf in vivo. The strongest phenotype in the genetic screens was displayed by a S508N mutation that again did not correlate with a significant loss of kinase activity or membrane recruitment by oncogenic Ras in biochemical assays. Ser-508 lies within the Raf-1 activation loop, and mutation of this residue in Raf-1 and the equivalent Ser-615 in B-Raf revealed that this residue regulates Raf binding to MEK. Further characterization revealed that in response to activation by epidermal growth factor, the Raf-S508N mutant protein displayed both reduced catalytic activity and aberrant activation kinetics: characteristics that may explain the C. elegans phenotype.  相似文献   

8.
In mammals, the cytokine IL-7 is a key regulator of various aspects of lymphocyte differentiation and homeostasis. Because of the difficulty of identifying cytokine homologs in lower vertebrates and the paucity of assay systems and reagents, the degree of functional conservation of cytokine signaling pathways, particularly those pertaining to lymphocyte development, is unclear. In this article, we report on the analysis and characterization of three zebrafish mutants with severely impaired thymopoiesis. The identification of affected genes by positional cloning revealed components of the IL-7 signaling pathway. A presumptive null allele of the zebrafish homolog of the IL-7Rα-chain causes substantially reduced cellularity of the thymus but spares B cell development in the kidney. Likewise, nonsense mutations in the zebrafish homologs of janus kinases JAK1 and JAK3 preferentially affect T cell development. The functional interactions of the cytokine receptor components were examined in the three groups of fish hetero- or homozygous for either il7r and jak1, il7r and jak3, or jak1 and jak3 mutations. The differential effects on T cell development arising from the different genotypes could be explained on the basis of the known structure of the mammalian IL-7R complex. Because IL-7 signaling appears to be a universal requirement for T cell development in vertebrates, the mutants described in this article represent alternative animal models of human immunodeficiency syndromes amenable to large-scale genetic and chemical screens.  相似文献   

9.
We have previously described a microarray approach to identify and clone genes from mutants of higher organisms. In the method cDNA of two mutants with similar phenotype are competitively hybridized to DNA clones arrayed on a glass slide. Clones corresponding to an mRNA that is not expressed in one of the strains due to a mutation will be specifically highlighted in the hybridization, which provides a possibility to identify and eventually clone the mutated gene. The approach is dependent on mutations that affect the amount of mRNA. Nonsense mutations, which prematurely terminate translation, can be such mutations as a surveillance system known as nonsense-mediated decay (NMD) has been developed by organisms to reduce the abundance of mRNA with nonsense codons. In the present study, we have analysed the barley (Hordeum vulgare L.) magnesium chelatase mutants xantha-f26, xantha-f27 and xantha-f40 in order to investigate the presence of NMD in barley, as well as the importance of the position of the stop codon for NMD. Both nonsense-mutants xantha-f27 and xantha-f40, but not the missense mutant xantha-f26, showed NMD. This was not expected for xantha-f27 as its mutation is in the last exon of the gene. We conclude the NMD expands the number of mutants that can be used for gene cloning by our described microarray approach.  相似文献   

10.
11.
Variation is the crux of genetics. Mutagenesis screens in organisms from bacteria to fish have provided a battery of mutants that define protein functions within complex pathways. Large-scale mutation isolation has been carried out in Caenorhabditis elegans, Drosophila melanogaster and zebrafish, and has been recently reported in the mouse in two screens that have generated many new, clinically relevant mutations to reveal the power of phenotype-driven screens in a mammal.  相似文献   

12.
X 性连锁视网膜色素变性中的RP G R 基因的研究进展   总被引:1,自引:0,他引:1       下载免费PDF全文
视网膜色素变性是一组常见的遗传性致盲眼病,患病率约为1/3500。X染色体连锁遗传RP作为其中的一种类型,具有发病早,损害最为严重等特点。而在XLRP的相关基因中RPGR有着重要的意义。本文就RPGR的定位克隆、结构、功能及其突变谱予以综述,并对该基因的突变研究的临床意义作出了相关阐述。  相似文献   

13.
Cui M  Fay DS  Han M 《Genetics》2004,167(3):1177-1185
Null mutations in lin-35, the Caenorhabditis elegans ortholog of the mammalian Rb protein, cause no obvious morphological defects. Using a genetic approach to identify genes that may function redundantly with lin-35, we have isolated a mutation in the C. elegans psa-1 gene. lin-35; psa-1 double mutants display severe developmental defects leading to early larval arrest and adult sterility. The psa-1 gene has previously been shown to encode a C. elegans homolog of yeast SWI3, a critical component of the SWI/SNF complex, and has been shown to regulate asymmetric cell divisions during C. elegans development. We observed strong genetic interactions between psa-1 and lin-35 as well as a subset of the class B synMuv genes that include lin-37 and lin-9. Loss-of-function mutations in lin-35, lin-37, and lin-9 strongly enhanced the defects of asymmetric T cell division associated with a psa-1 mutation. Our results suggest that LIN-35/Rb and a certain class B synMuv proteins collaborate with the SWI/SNF protein complex to regulate the T cell division as well as other events essential for larval growth.  相似文献   

14.
Type 1 diabetes mellitus is an autoimmune disease involving both environmental and genetic factors. Genetic analyses in humans and rodents have shown that the major histocompatibility complex (MHC) is a major genetic factor and that several other genes may be involved in the development of the disease. We performed genetic analysis of type 1 diabetes in a newly established animal model, the Komeda diabetes-prone (KDP) rat, and found that most of the genetic predisposition to diabetes is accounted for by two major susceptibility genes, MHC and Iddm/kdp1. In addition, we identified a nonsense mutation in the Casitas B-lineage lymphoma b (Cblb) gene by positional cloning of Iddm/kdp1. In this paper, I review our positional cloning analysis of Iddm/kdp1 and propose a two-gene model of the development of type 1 diabetes in which two major susceptibility genes, Cblb and MHC, determine autoimmune reaction and tissue specificity to pancreatic beta-cells, respectively.  相似文献   

15.
A novel mutation, mei8, was isolated in a forward genetic screen for infertility mutations induced by chemical mutagenesis of ES cells. Homozygous mutant mice are sterile. Mutant females exhibit ovarian dysgenesis and lack ovarian follicles at reproductive maturity. Affected males have small testes due to arrest of spermatogenesis during meiotic prophase I. Genetic mapping and positional cloning of mei8 led to the identification of a mutation in Rec8, a homolog of the yeast meiosis-specific cohesin gene REC8. Analysis of meiosis in Rec8(mei8)/Rec8(mei8) spermatocytes showed that, while initiation of recombination and synapsis occurs, REC8 is required for the completion and/or maintenance of synapsis, cohesion of sister chromatids, and the formation of chiasmata, as it is in other organisms. However, unlike yeast and Caenorhabditis elegans, localization of REC8 on meiotic chromosomes is not required for the assembly of axial elements.  相似文献   

16.
LIN-1 is an ETS domain protein. A receptor tyrosine kinase/Ras/mitogen-activated protein kinase signaling pathway regulates LIN-1 in the P6.p cell to induce the primary vulval cell fate during Caenorhabditis elegans development. We identified 23 lin-1 loss-of-function mutations by conducting several genetic screens. We characterized the molecular lesions in these lin-1 alleles and in several previously identified lin-1 alleles. Nine missense mutations and 10 nonsense mutations were identified. All of these lin-1 missense mutations affect highly conserved residues in the ETS domain. These missense mutations can be arranged in an allelic series; the strongest mutations eliminate most or all lin-1 functions, and the weakest mutation partially reduces lin-1 function. An electrophoretic mobility shift assay was used to demonstrate that purified LIN-1 protein has sequence-specific DNA-binding activity that required the core sequence GGAA. LIN-1 mutant proteins containing the missense substitutions had dramatically reduced DNA binding. These experiments identify eight highly conserved residues of the ETS domain that are necessary for DNA binding. The identification of multiple mutations that reduce the function of lin-1 as an inhibitor of the primary vulval cell fate and also reduce DNA binding suggest that DNA binding is essential for LIN-1 function in an animal.  相似文献   

17.
Zebrafish Genetic Map with 2000 Microsatellite Markers   总被引:33,自引:0,他引:33  
The zebrafish is the first vertebrate organism used for large-scale genetic screens seeking genes critical to development. These screens have been quite successful, with more than 1800 recessive mutations discovered that speak to morphogenesis of the vertebrate embryo. The cloning of the mutant genes depends on a dense genetic map. The 2000 markers we present here, using microsatellite (CA) repeats, provides 1.2-cM average resolution. One centimorgan in zebrafish is about 0. 74 megabase, so, for many mutations, these markers are close enough to begin positional cloning by YAC walks.  相似文献   

18.
Forward genetic screens in model organisms are an attractive means to identify those genes involved in any complex biological process, including neural circuit assembly. Although mutagenesis screens are readily performed to saturation, gene identification rarely is, being limited by the considerable effort generally required for positional cloning. Here, we apply a systematic positional cloning strategy to identify many of the genes required for neuronal wiring in the Drosophila visual system. From a large-scale forward genetic screen selecting for visual system wiring defects with a normal retinal pattern, we recovered 122 mutations in 42 genetic loci. For 6 of these loci, the underlying genetic lesions were previously identified using traditional methods. Using SNP-based mapping approaches, we have now identified 30 additional genes. Neuronal phenotypes have not previously been reported for 20 of these genes, and no mutant phenotype has been previously described for 5 genes. The genes encode a variety of proteins implicated in cellular processes such as gene regulation, cytoskeletal dynamics, axonal transport, and cell signalling. We conducted a comprehensive phenotypic analysis of 35 genes, scoring wiring defects according to 33 criteria. This work demonstrates the feasibility of combining large-scale gene identification with large-scale mutagenesis in Drosophila, and provides a comprehensive overview of the molecular mechanisms that regulate visual system wiring.  相似文献   

19.
J. M. Kramer  J. J. Johnson 《Genetics》1993,135(4):1035-1045
Different mutations in the sqt-1 and rol-6 collagen genes of Caenorhabditis elegans can cause diverse changes in body morphology and display different genetic attributes. We have determined the nucleotide alterations in 15 mutant alleles of these genes. Three mutations in sqt-1 and one in rol-6 that cause dominant right-handed helical twisting (RRol) of animals are arginine to cysteine replacements. These mutations are all within a short conserved sequence, on the amino terminal side of the Gly-X-Y repeats, that is found in all C. elegans cuticle collagens. A recessive RRol mutation of rol-6 is a replacement of one of the same conserved arginines by histidine. In contrast, three sqt-1 mutations that cause recessive left-handed helical twisting (LRol) are replacements of a conserved carboxyterminal cysteine residue with either tyrosine or serine. These results suggest that disulfide bonding is important in collagen organization and that a deficit or surplus of disulfides may cause cuticle alterations of opposite handedness. In contrast to other collagens, glycine replacement mutations in the Gly-X-Y repeats of sqt-1 cause very mild phenotypes. Nonsense mutations of both sqt-1 and rol-6 cause nearly, but not totally, wild-type phenotypes. A nonsense mutation in sqt-1 suppresses the phenotype of rol-6 RRol mutations, suggesting that rol-6 collagen function is dependent on the presence of sqt-1 collagen. Mutations of sqt-1 are not suppressed by a rol-6 nonsense mutation, however, indicating that sqt-1 collagen can function independently of rol-6.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号