首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Pseudomonas putida N.C.I.B. 9869, when grown on 3,5-xylenol, hydroxylates the methyl groups on 3,5-xylenol and on p-cresol by two different enzymes. 3,5-Xylenol methylhydroxylase, studied only in relatively crude extracts, requires NADH, is not active with p-cresol and is inhibited by cyanide, but not by CO. The p-cresol methylhydroxylase requires an electron acceptor and will act under anaerobic conditions. It was purified and is a flavocytochrome c of mol.wt. approx. 114,000 consisting of two subunits of equal size. The enzyme catalyses the hydroxylation of p-cresol (Km 16 micron) and the further oxidation of product, p-hydroxybenzyl alcohol (Km 27 micron) to p-hydroxybenzaldehyde. A different p-cresol methylhydroxylase of the flavocytochrome c type is induced by growth on p-cresol. It too was purified and has mol.wt. approx. 100,000, and again consisted of two equal-size subunits. The Km for p=cresol 3.6 micron and for p=hydroxybenzyl alcohol, 15 micron.  相似文献   

2.
In Sm. lipolytica one NAD+-dependent and three NADP+-dependent alcohol dehydrogenases are detectable by polyacrylamide gelelectrophoresis. The NAD+-dependent ADH (ADH I), with a molecular weight of 240,000 daltons, reacts more intensively with long-chain alcohols (octanol) than with short-chain alcohols (methanol, ethanol). The ADH I is not or only minimally subject to glucose repression. Besides the ADH I band no additional inducible NAD+-dependent ADH band is gel-electrophoretically detectable during growth of yeast cells in medium containing ethanol or paraffin. The ADH I band is very probably formed by two ADH enzymes with the same electrophoretic mobility. The NADP+-dependent alcohol dehydrogenases (ADH II--IV) react with methanol, ethanol and octanol with different intensity. In polyacrylamide gradients two bands of NADP+-dependent ADH are detectable: one with a molecular weight of 70,000 daltons and the other with 120,000 daltons. The occurrence of the three NADP+-dependent alcohol dehydrogenases is regulated by the carbon source of the medium. Sm. lipolytica shows a high tolerance against allylalcohol. Resistant mutants can be isolated only at concentrations of 1 M allylalcohol in the medium. All isolates of allylalcohol-resistant mutants show identical growth in medium containing ethanol as the wild type strain.  相似文献   

3.
Anoxic cell extracts of a denitrifying bacterial isolate (PC-07) were shown to oxidize p-cresol to p-hydroxybenzoate. Oxidation of the substrate was independent of molecular oxygen and required nitrate as the natural terminal electron acceptor. Two enzyme activities were implicated in the pathway utilized by PC-07. A p-cresol methylhydroxylase mediated the oxidation of p-cresol to p-hydroxybenzaldehyde, which was further oxidized to p-hydroxybenzoate by an NAD+-dependent dehydrogenase. The PC-07 methylhydroxylase was partially purified by anion-exchange chromatography. The protein appeared to be a multifunctional flavocytochrome, which first oxidized p-cresol to p-hydroxybenzyl alcohol, which was then oxidized to p-hydroxybenzaldehyde. The identity of the aldehyde was confirmed by mass spectroscopy. The PC-07 methylhydroxylase had a limited substrate range and required an alkyl-substituted phenolic ring with a hydroxyl group in the para position. From the available evidence, p-cresol, a naturally occurring phenol, exhibited the greatest affinity to the enzyme and therefore may be its natural substrate.  相似文献   

4.
Constitutive synthesis of enzymes responsible for methyl group oxidation in 3,5-xylenol degradation and an associated p-cresol methylhydroxylase in Pseudomonas putida NCIB 9869 was shown by their retention at high specific activities in cells transferred from 3,5-xylenol medium to glutamate medium. The specific activities of other enzymes of the 3,5-xylenol pathway declined upon removal of aromatic substrate, consistent with their inducible control. Specific activities of the methyl-oxidizing enzymes showed an eventual decline concomitant with a decrease in the fraction of bacteria capable of growth with 3,5-xylenol; a simultaneous loss of the ability to grow with m-hydroxybenzoate was also observed. The property of 3,5-xylenol utilization could be transferred to another strain of P. putida. It is proposed that enzymes of the 3,5-xylenol pathway and those for conversion of p-cresol to p-hydroxybenzoate are plasmid encoded, that the early methyl-oxidizing enzymes are expressed constitutively, and that the later enzymes are inducible.  相似文献   

5.
Three alcohol dehydrogenases have been identified in Acinetobacter calcoaceticus sp. strain HO1-N: an NAD(+)-dependent enzyme and two NADP(+)-dependent enzymes. One of the NADP(+)-dependent alcohol dehydrogenases was partially purified and was specific for long-chain substrates. With tetradecanol as substrate an apparent Km value of 5.2 microM was calculated. This enzyme has a pI of 4.5 and a molecular mass of 144 kDa. All three alcohol dehydrogenases were constitutively expressed. Three aldehyde dehydrogenases were also identified: an NAD(+)-dependent enzyme, an NADP(+)-dependent enzyme and one which was nucleotide independent. The NAD(+)-dependent enzyme represented only 2% of the total activity and was not studied further. The NADP(+)-dependent enzyme was strongly induced by growth of cells on alkanes and was associated with hydrocarbon vesicles. With tetradecanal as substrate an apparent Km value of 0.2 microM was calculated. The nucleotide-independent aldehyde dehydrogenase could use either Würster's Blue or phenazine methosulphate (PMS) as an artificial electron acceptor. This enzyme represents approximately 80% of the total long-chain aldehyde oxidizing activity within the cell when the enzymes were induced by growing the cells on hexadecane. It is particulate but can be solubilized using Triton X-100. The enzyme has an apparent Km of 0.36 mM for decanal.  相似文献   

6.
Cells of Pseudomonas putida NP, Pseudomonas species (NCIB 9816), and a Nocardia species, after growth on naphthalene as sole source of carbon and energy, contain a nicotinamide adenine dinucleotide (NAD+)-dependent enzyme that oxidizes cis-dihydrodiols of mono- and polycyclic aromatic compounds. Similarly, cells of a strain of P. putida biotype A, when grown either on toluene or benzene vapors, were found to contain a dehydrogenase that oxidized dihydrodiols of aromatic hydrocarbons with cis stereochemistry and required NAD+ as an electron acceptor. In all these cases, no enzymatic activity was detected when trans-naphthalene dihydrodiol was used as a substrate. Purified cis-naphthalene dihydrodiol dehydrogenase was injected into rabbits to obtain antibodies. Physiocochemical and immunological properties of cis-dihydrodiol:NAD+ oxidoreductases from four different organisms were examined. Kinetic analysis showed that, in all the cases, enzymes exhibited higher affinity for cis-dihydrodiols than for NAD+ and had pH optima between 8.8 and 9.0. except in the case of the enzyme from Nocarida sp., which showed maximum activity at pH 8.4. Molecular-weight determination of the dehydrogenases from the four different organisms by gel filtration on a Sephadex G-200 column gave values ranging from 92,000 for the enzyme from Nocardia sp. to 160,000 for that from P. putida biotype A. All the dehydrogenases, except the one from Nocardia sp., exhibited immunological cross-reaction with the antibodies prepared against the enzyme purified from P. putida NP.  相似文献   

7.
The facultatively methylotrophic bacterium Pseudomonas sp. 101, grown on methanol in presence of molybdate, contains a new formate dehydrogenase (N-FDH) catalyzing NAD+-dependent oxidation of formate. The activity of this N-FDH could also be measured in presence of artificial electron acceptors, ferricyanide and 2,6-dichlorophenol indophenol. This new enzyme is absent in cells grown on a methanol-containing medium with tungstate, where only another two, previously described formate dehydrogenases, which are active only with NAD+ or only with artificial acceptors, respectively, were determined. The N-FDH was partially purified by a combination of ion-exchange and gel-filtration chromatography, and was shown to differ in its properties from the known NAD+-dependent counterpart.  相似文献   

8.
Toluene and related aromatic compounds are anaerobically degraded by the denitrifying bacterium Thauera sp. strain K172 via oxidation to benzoyl-CoA. The postulated initial step is methylhydroxylation of toluene to benzyl alcohol, which is either a free or enzyme-bound intermediate. Cells grown with toluene or benzyl alcohol contained benzyl alcohol dehydrogenase, which is possibly the second enzyme in the proposed pathway. The enzyme was purified from benzyl-alcohol-grown cells and characterized. It has many properties in common with benzyl alcohol dehydrogenase from Acinetobacter and Pseudomonas species. The enzyme was active as a homotetramer of 160kDa, with subunits of 40kDa. It was NAD+-specific, had an alkaline pH optimum, and was inhibited by thiol-blocking agents. No evidence for a bound cofactor was obtained. Various benzyl alcohol analogues served as substrates, whereas non-aromatic alcohols were not oxidized. The N-terminal amino acid sequence indicates that the enzyme belongs to the class of long-chain Zn2+-dependent alcohol dehydrogenases, although it appears not to contain a metal ion that can be removed by complexing agents.Dedicated to Prof. Achim Trebst  相似文献   

9.
The capacities of Procion Red HE-3B and Cibacron Blue F3G-A immobilized to Sepharose CL-4B and Matrex 201R for NAD+-, NADP+- and NAD(P)+-dependent dehydrogenases were measured. Procion Red HE-3B columns retarded NADP+-dependent dehydrogenases more effectively than NAD+-dependent dehydrogenases, whilst immobilized Cibacron Blue F3G-A retarded NAD+-dependent dehydrogenases more effectively than NADP+-dependent dehydrogenases. The capacity of procion Red HE-3B-Sepharose CL-4B for five dehydrogenases was highest in the region of 70nmol of immobilized ligand/ml of settled gel. The effects of using poly(ethyleneimine) as a spacer for both porous and pellicular supports were also examined. Four NADP+-dependent dehydrogenases were purified from yeast extract by using Procion Red HE-3B-Sepharose CL-4B. Two NAD+-dependent dehydrogenases were purified from the same source using Cibacron Blue F3G-A-Sepharose CL-4B. These results are discussed in relation to the use of immobilized Procion Red HE-3B to purify dehydrogenases. This immobilized dye's chromatograhic behaviour is compared with that of immobilized nucleotides. The most important feature of immobilized tirazine dyes seems to be their high operational capacities when compared with group-specific nucleotide adsorbents.  相似文献   

10.
A constitutive NAD(+)-linked alcohol dehydrogenase was purified 338-fold from cells of Pseudomonas maltophilia MB11L grown on glucose. Maximum activity was observed with cyclic and linear secondary alcohols, with little activity seen against primary or aromatic alcohols. Substrate oxidation activity was maximal at pH 10.0, while substrate reduction was optimal at pH 4.5. The Km values for propan-2-ol, NAD+ and acetone were 87, 413 and 143 microM respectively. The enzyme is a tetramer with subunit Mr of approximately 44,000. It has an isoelectric point of 4.75, and was inhibited by chelating agents, thiol reagents and certain metal ions.  相似文献   

11.
The metabolism of cresols under sulfate-reducing conditions was investigated in Desulfotomaculum sp. strain Groll. This strain grows on a variety of aromatic compounds, including para- and meta- but not ortho-cresol. Degradation of p-cresol proceeded by oxidation reactions of the methyl group to yield p-hydroxybenzoate, which was then dehydroxylated to benzoate. The aromatic intermediates expected for this pathway, p-hydroxybenzyl alcohol, p-hydroxybenzaldehyde, p-hydroxybenzoate, and benzoate, were readily metabolized by strain Groll. Utilization of these intermediates generally preceded and inhibited the degradation of p-cresol. p-Hydroxybenzoate and benzoate were detected in culture fluid as metabolites of p-cresol. p-Hydroxybenzaldehyde and p-hydroxybenzoate were detected in cultures degrading p-hydroxybenzyl alcohol. Enzyme activities responsible for utilization of p- and m-cresol, induced by growth on the respective cresol, were detected in cell-free extracts of strain Groll. The compounds detected in culture fluids and the enzyme activities detected in cell-free extracts indicate that the pathways for the degradation of p- and m-cresol converge on benzoate, followed by metabolism to benzoyl-coenzyme A (CoA). Strain Groll can utilize both cresol isomers under sulfate-reducing conditions by similar reactions, but the enzyme activities catalyzing these transformations of the two isomers appear distinct.  相似文献   

12.
A new form of alcohol dehydrogenase, designated mu-alcohol dehydrogenase, was identified in surgical human stomach mucosa by isoelectric focusing and kinetic determinations. This enzyme was anodic to class I (alpha, beta, gamma) and class II (pi) alcohol dehydrogenases on agarose isoelectric focusing gels. The partially purified mu-alcohol dehydrogenase, specifically using NAD+ as cofactor, catalyzed the oxidation of aliphatic and aromatic alcohols with long chain alcohols being better substrates, indicating a barrel-shape hydrophobic binding pocket for substrate. mu-Alcohol dehydrogenase stood out in high Km values for both ethanol (18 mM) and NAD+ (340 microM) as well as in high Ki value (320 microM) for 4-methylpyrazole, a competitive inhibitor for ethanol. mu-Alcohol dehydrogenase may account for up to 50% of total stomach alcohol dehydrogenase activity and appeared to play a significant role in first-pass metabolism of ethanol in human.  相似文献   

13.
We have been working to develop an enzymatic assay for the alcohol 2-methyl-3-buten-2-ol (232-MB), which is produced and emitted by certain pines. To this end we have isolated the soil bacterium Pseudomonas putida MB-1, which uses 232-MB as a sole carbon source. Strain MB-1 contains inducible 3-methyl-2-buten-1-ol (321-MB) and 3-methyl-2-buten-1-al dehydrogenases, suggesting that 232-MB is metabolized by isomerization to 321-MB followed by oxidation. 321-MB dehydrogenase was purified to near-homogeneity and found to be a tetramer (151 kDa) with a subunit mass of 37,700 Da. It catalyzes NAD+-dependent, reversible oxidation of 321-MB to 3-methyl-2-buten-1-al. The optimum pH for the oxidation reaction was 10.0, while that for the reduction reaction was 5.4. 321-MB dehydrogenase oxidized a wide variety of aliphatic and aromatic alcohols but exhibited the highest catalytic specificity with allylic or benzylic substrates, including 321-MB, 3-chloro-2-buten-1-ol, and 3-aminobenzyl alcohol. The N-terminal sequence of the enzyme contained a region of 64% identity with the TOL plasmid-encoded benzyl alcohol dehydrogenase of P. putida. The latter enzyme and the chromosomally encoded benzyl alcohol dehydrogenase of Acinetobacter calcoaceticus were also found to catalyze 321-MB oxidation. These findings suggest that 321-MB dehydrogenase and other bacterial benzyl alcohol dehydrogenases are broad-specificity allylic and benzylic alcohol dehydrogenases that, in conjunction with a 232-MB isomerase, might be useful in an enzyme-linked assay for 232-MB.  相似文献   

14.
Two alcohol dehydrogenases (alcohol: NAD oxidoreductase, EC 1.1.1.1 and alcohol: NADP oxidoreductase, EC 1.1.1.2) were partially purified from extracts of strawberry seeds by conventional methods. Some of physical, chemical and kinetic properties of the enzymes are described. On the basis of gel filtration, the molecular weights were estimated to be approximately 78,000 for NAD-dependent enzyme and 82,000 for NADP-dependent enzyme. Thiol-reacting compounds inhibited both enzymes. NAD-dependent alcohol dehydrogenase reacted only with aliphatic alcohols and aldehydes, while aromatic and terpene alcohols and aldehydes were the better substrates for NADP-dependent alcohol dehydrogenase than aliphatic alcohols and aldehydes.  相似文献   

15.
Potato tubers are shown to contain at least 3 alcohol dehydrogenases, one active with NAD and aliphatic alcohols, one active with NADP and terpene alcohols and one active with NADP and aromatic alcohols. The purification of the aliphatic alcohol dehydrogenase is described and its activity with a wide range of substrates is reported. On the basis of substrate specificity, the enzyme is shown to resemble yeast alcohol dehydrogenase rather than liver alcohol dehydrogenase. The enzyme shows high activity with and high affinity for ethanol, activity and affinity decline as the chain length is increased from ethanol to butanol, but a further increase in chain length leads to increased affinity for the alcohol. The physiological significance of the results is briefly discussed.  相似文献   

16.
Cell-free extracts derived from yeasts Candida utilis ATCC 26387, Hansenula polymorpha ATCC 26012, Pichia sp. NRRL-Y-11328 Torulopsis sp. strain A1 and Kloeckera sp. strain A2 catalyzed an NAD+-dependent oxidation of secondary alcohols (2-propanol, 2-butanol, 2-pentanol, 2-hexanol) to the corresponding methyl ketones (acetone, 2-butanone, 2-pentanone, 2-hexanone). We have purified a NAD+-specific secondary alcohol dehydrogenase from methanol-grown yeast, Pichia sp. The purified enzyme is homogenous as judged by polyacrylamide gel electrophoresis. The purified enzyme catalyzed the oxidation of secondary alcohols to the corresponding methyl ketones in the presence of NAD+ as an electron acceptor. Primary alcohols were not oxidized by the purified enzyme. The optimum pH for oxidation of secondary alcohols by the purified enzyme is 8.0. The molecular weight of the purified enzyme as determined by gel filtration is 98 000 and subunit size as determined by sodium dodecyl sulfate gel electrophoresis is 48 000. The activity of the purified secondary alcohol dehydrogenase was inhibited by sulfhydryl inhibitors and metal-binding agents.  相似文献   

17.
Acyclic monoterpene primary alcohol:NADP+ oxidoreductase, a key enzyme in the biosynthesis of monoterpene alcohols in plants, is unstable and has been only poorly characterized. However we have established conditions which stabilize the enzyme from Rauwolfia serpentina cells, and then purified it to homogeneity. It is a monomer with a molecular weight of about 44,000 and contains zinc ions. Various branched-chain allylic primary alcohols such as nerol, geraniol, and 10-hydroxygeraniol were substrates, but ethanol was inert. The enzyme exclusively requires NADP+ or NADPH as the cofactor. Steady-state kinetic studies showed that the nerol dehydrogenation proceeds by an ordered Bi-Bi mechanism. NADP+ binds the enzyme first and then NADPH is the second product released from it. Gas chromatography-mass spectrometric analysis of the reaction products showed that 10-hydroxygeraniol undergoes a reversible dehydrogenation to produce 10-oxogeraniol or 10-hydroxygeranial, which are oxidized further to give 10-oxogeranial, the direct precursor of iridodial. The enzyme has been found to exclusively transfer the pro-R hydrogen of NADPH to neral. The N-terminal sequence of the first 21 amino acids revealed no significant homology with those of various other proteins including the NAD(P)(+)-dependent alcohol dehydrogenases registered in a protein data bank.  相似文献   

18.
An NADP(+)-dependent alcohol dehydrogenase was found in Euglena gracilis Z grown on 1-hexanol, while it was detected at low activity in cells grown on ethanol or glucose as a carbon source, indicating that the enzyme is induced by the addition of 1-hexanol into the medium as a carbon source. This enzyme was extremely unstable, even at 4 degrees C, unless 20% ethylene glycol was added. The optimal pH was 8.8-9.0 for oxidation reaction. The apparent K(m) values for 1-hexanol and NADP(+) were found to be 6.79 mM and 46.7 microM for this enzyme, respectively. The substrate specificity of this enzyme was very different from that of already purified NAD(+)-specific ethanol dehydrogenase by showing the highest activity with 1-hexanol as a substrate, followed by 1-pentanol and 1-butanol, and there was very little activity with ethanol and 1-propanol. This enzyme was active towards the primary alcohols but not secondary alcohols. Accordingly, since the NADP(+)-specific enzyme was separated on DEAE cellulose column, Euglena was confirmed to contain a novel enzyme to be active towards middle and long-chain length of fatty alcohols.  相似文献   

19.
Degradation of 1,4-dichlorobenzene by a Pseudomonas sp.   总被引:16,自引:14,他引:2       下载免费PDF全文
A Pseudomonas species able to degrade p-dichlorobenzene as the sole source of carbon and energy was isolated by selective enrichment from activated sludge. The organism also grew well on chlorobenzene and benzene. Washed cells released chloride in stoichiometric amounts from o-, m-, and p-dichlorobenzene, 2,5-dichlorophenol, 4-chlorophenol, 3-chlorocatechol, 4-chlorocatechol, and 3,6-dichlorocatechol. Initial steps in the pathway for p-dichlorobenzene degradation were determined by isolation of metabolites, simultaneous adaptation studies, and assay of enzymes in cell extracts. Results indicate that p-dichlorobenzene was initially converted by a dioxygenase to 3,6-dichloro-cis-1,2-dihydroxycyclohexa-3,5-diene, which was converted to 3,6-dichlorocatechol by an NAD+-dependent dehydrogenase. Ring cleavage of 3,6-dichlorocatechol was by a 1,2-oxygenase to form 2,5-dichloro-cis, cis-muconate. Enzymes for degradation of haloaromatic compounds were induced in cells grown on chlorobenzene or p-dichlorobenzene, but not in cells grown on benzene, succinate, or yeast extract. Enzymes of the ortho pathway induced in cells grown on benzene did not attack chlorobenzenes or chlorocatechols.  相似文献   

20.
Geraniol dehydrogenase (GeDH), which plays an important role in the biosynthesis of neral, an alarm pheromone, was purified from the astigmatid mite Carpoglyphus lactis. The enzyme was obtained in an apparently homogeneous and active form after 1879-fold purification through seven steps of chromatography. Car. lactis GeDH was determined to be a monomer in its active form with a relative molecular mass of 42 800, which is a unique subunit structure in comparison with already established alcohol dehydrogenases. Car. lactis GeDH oxidized geraniol into geranial in the presence of NAD+. NADP+ was ineffective as a cofactor, suggesting that Car. lactis GeDH is an NAD+-dependent alcohol dehydrogenase. The optimal pH and temperature for geraniol oxidation were determined to be pH 9.0 and 25 degrees C, respectively. The Km values for geraniol and NAD+ were 51.0 microm and 59.5 microm, respectively. Car. lactis GeDH was shown to selectively oxidize geraniol, whereas its geometrical isomer, nerol, was inert as a substrate. The high specificity for geraniol suggests that Car. lactis GeDH specializes in the alarm pheromone biosynthesis of Car. lactis. Car. lactis GeDH is composed of 378 amino acids. Structurally, Car. lactis GeDH showed homology with zinc-dependent alcohol dehydrogenases found in mammals and a mosquito (36.6-37.6% identical), and the enzyme was considered to be a member of the medium-chain dehydrogenase/reductase family, in view of the highly conserved sequences of zinc-binding and NAD+-binding sites. Phylogenetic analyses indicate that Car. lactis GeDH could be categorized as a new class, different from other established alcohol dehydrogenases.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号